Remarks on the Multiplicative Products of Distributions

Mitsuyuki ITANO

(Received January 20, 1976)

Many attempts have been made for defining the multiplication between distributions. Y. Hirata and H. Ogata [3] have defined a product of distributions and J. Mikusiński [9] has also defined the same product in a **different** fashion. In [5], we have considered the multiplication invariant under **diffeomorphism** which covers the multiplication in the above sense. If S, $T \in \mathcal{D}'(\mathbb{R}^N)$ arid if $\alpha S * \check{T}$ has the value $(\alpha S * \check{T})(0)$ at 0 in the sense of S. Łojasiewicz [8] for any $\alpha \in \mathcal{D}(\mathbb{R}^N)$, then there exists a unique distribution W such that $\langle W, \alpha \rangle = (\alpha S * \check{T})(0)$. In [10], R. Shiraishi has defined a restricted δ -sequence $\{\rho_n\}$ as a sequence of nonnegative functions $\rho_n \in \mathcal{D}(\mathbb{R}^N)$ such that

- (i) $\operatorname{supp} \rho_n$ converges to $\{0\}$ as $n \to \infty$
- (ii) $\int \rho_n(x) dx$ converges to 1 as $n \to \infty$; (iii) $\int |x|^{|p|} |D^i \rho_n(x)| dx \leq M_p(M_p \text{ being independent of } n)$,

where the integral is extended over the whole *N*-dimensional space, and he has shown that the existence of the product $W = S \circ T$ of *S* and *T* is equivalent to each of the following conditions:

(1) The distributional limit $\lim_{n \to \infty} (S * \rho_n) (T * \tilde{\rho}_n)$ exists for every restricted δ -sequences $\{\rho_n\}$ and $\{\tilde{\rho}_n\}$:

(2) The distributional limit $\lim_{n \to \infty} (S * \rho_n) T$ exists for every restricted δ -sequence $\{\rho_n\}$.

(3) The distributional limit $\lim_{n \to \infty} S(T * \rho_n)$ exists for every restricted δ -sequence $\{\rho_n\}$

And if one of these conditions is satisfied, the limit equals W.

On the other hand, we may define the multiplicative product $S \triangle T$ as the distributional limit $\lim_{n \to \infty} (S * \rho_n)(T * \rho_n)$, if it exists for every restricted δ -sequence $\{\rho_n\}$ ([10, p. 97]). The purpose of this paper is to investigate this multiplication Δ by making a comparison with the multiplication o.

By the definition stated above we see that if $S \circ T$ exists, then $S \wedge T$ exists and is equal to $S \circ T$. However the converse does not hold ([10, p. 97]).

Mitsuyuki **Itano**

LEMMA 1.
$$\delta \triangle Pf. \frac{\mathbf{1}_{x}}{x} = -\frac{\mathbf{1}_{x}}{2} \delta'$$
 but $\delta \triangle Pf. \frac{\mathbf{1}_{x}}{x}$ does not exist.

PROOF. Since the distribution $\operatorname{Pf}_{\cdot,\frac{1}{\chi}}$ has not a value at 0, the product $\delta \circ \operatorname{Pf}_{\cdot,\frac{1}{\chi}}$ does not exist. For any restricted δ -sequence $\{\rho_n\}$ and any $\varphi \in \mathscr{D}(R)$ we can write

$$<
ho_n\left(\frac{1}{x}*
ho
ight) \phi> = <\frac{1}{x}, \check{
ho}_n*\phi
ho_n>$$

If we write $\phi(x) = \phi(0) + \phi'(0)x + x^2\psi(x)$, then $\psi(0) = \lim_{x \to 0} \psi(x) = 2^{-1}\phi''(0)$, $\lim_{x \to 0} x^{-1}(\psi(x) - \psi(0)) = (3!)^{-1}\phi'''(0)$ and so on. Since $\rho_n * \rho_n$ is an even function, $< \frac{1}{x}, \rho_n * \rho_n > \text{vanishes.}$ Put $\alpha_n = \rho_n * x \rho_n$. Then $\alpha_n = \rho_n * (-x)\check{\rho}_n = (-x)(\rho_n * \check{\rho}_n)$ $+ (x\rho_n) *\check{\rho}_n, \alpha_n - \alpha_n = x(\rho_n * \check{\rho}_n)$ and therefore

$$<\frac{1}{x}, \alpha_n>=\int_0^\infty (\rho_n*\check{\rho_n})\,dx=\frac{1}{2}\int_{-\infty}^\infty (\rho_n*\check{\rho_n})\,dx=\frac{1}{2}\,.$$

On the other hand, if we put $\beta_n = \check{\rho}_n * x^2 \psi \rho_n$, then

$$\beta_n'' = \check{\rho}_n * x^2 \psi \rho_n'' + 2\check{\rho}_n * x(2\psi + x\psi')\rho_n' + \check{\rho}_n * (x^2\psi)'' \rho_n.$$

By the property (iii) of $\{\rho_n\}$ we see that $\beta'_n(x) = -\int_x^{\infty} \beta''_n(x) dx$ is bounded and therefore $x^{-1}(\beta_n - \check{\beta}_n) = x^{-1}(\beta_n(x) - \beta_n(0)) + x^{-1}(\beta_n(0) - \check{\beta}_n(x))$ is bounded. Since $\sup \{x^{-1}(\beta_n - \beta_n)\}$ tends to $\{0\}$ as $n \to \infty$, we see that $\lim_{n \to \infty} \int_{-\infty}^{\infty} x^{-1}(\beta_n - \beta_n) dx = 0$. Thus the product $\delta \circ \operatorname{Pf}$. $\frac{1}{x}$ exists and is equal to $-2^{-1}\delta'$.

PROPOSITION 1. For any non-negative integer fc, the product $\delta^{(k)} Pf - \frac{1}{\sqrt{k+1}}$ exists and

$$\delta^{(k)} \Phi \mathbf{f} \cdot \frac{1}{x^{k+1}} - \frac{(-1)^{k+1}k!}{2(2k+1)!} \delta^{(2k+1)}$$

but the product $\delta^{(k)} \circ \operatorname{Pf.} \frac{1}{\lambda^{k+1}}$ does not exist.

PROOF. Given $S, T \in \mathscr{D}'(R)$, the existence of the product $S \circ T'$ implies the existence of $S' \circ T$ and $S \circ T$ ([5, p. 162]). Thus it follows from Lemma 1 that the product $\delta^{(k)} \circ \operatorname{Pf.}_{\lambda^{(k+1)}}^{1}$ does not exist.

For any restricted δ -sequence $\{\rho_n\}$ and any $\varphi \in \mathscr{D}(R)$, we have

366

Remarks on the Multiplicative Products of Distributions

$$<(\delta^{(k)}*\rho_n)\left(\frac{1}{x^{k+1}}*\rho_n\right), \phi > = \left(\begin{array}{c} 1 \\ \kappa \\ \vdots \end{array} \right) - \left(\begin{array}{c} 1 \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \vdots \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \kappa \\ \end{array} \right) + \left(\begin{array}{c} \rho_n^{(k)} \\ \end{array} \right) + \left(\left(\left(\left(\rho_n^{(k)} \right) \right) + \left(\left(\left(\left(\left(\rho_n^{(k)} \right) \right) \right) \right)$$

where we write

$$\phi(x) = \phi(0) + \phi'(0)x + \dots + \frac{1}{(2k+1)!} \phi^{(2k+1)}(0)x^{2k+1} + x^{2k+2}\psi(x).$$

 $(\rho_n^{(k)})^* * \rho_n^{(k)}$ is an even function and

$$(\rho_n^{(k)})^* * x \rho_n^{(k)} = x((\rho_n^{(k)})^* * \rho_n^{(k)}) - x(\rho_n^{(k)})^* * \rho_n^{(k)}$$

and therefore we have

$$<\frac{1}{x}, (\rho_n^{(k)})^* * \rho_n^{(k)} > = 0$$

and

$$<\frac{1}{x}, (\rho_n^{(k)})^* * x \rho_n^{(k)} > = \int_0^\infty (\rho_n^{(k)})^* * \rho_n^{(k)} dx$$
$$= \frac{1}{2} \int_{-\infty}^\infty (\rho_n^{(k)})^* * \rho_n^{(k)} dx = \begin{cases} \frac{1}{2} & (k=0), \\ 0 & (k \ge 1). \end{cases}$$

Let fc^l and put $\beta_{l,n}(x) = (\rho_n^{(k)})^* * x^l \rho_n^{(k)}$ for $0 \le l \le 2k+1$. For l=2p+1, p=1, 2, ..., fc, we can write

$$\beta_{l,n}(x) = x \{ \sum_{i=0}^{2p} (-x)^{i} (\rho_{n}^{(k)})^{*} * x^{2p-i} \rho_{n}^{(k)} \} - x^{2p+1} (\rho_{n}^{(k)})^{*} * \rho_{n}^{(k)} \}$$

and hence

$$\beta_{l,n}(x) - p_{l,n}^{c}(\cdot, x) \propto \{x\}_{i=0}^{2^{p}} \sum_{j=0}^{2^{p}} (-x_{j})^{i} (p_{nj}^{c(k)}) + x^{2^{p-j}} p_{n-j}^{n(k)} \}$$

If p < k, then i + (2p - i) = 2p < 2k and therefore either *i* or 2p - i is less than *k*. Moreover the function $\sum_{i=0}^{2p} (-x)^i (\rho_n^{(k)})^* * x^{2p-i} \rho_n^{(k)}$ is an even function with compact support. Thus we have

$$<\frac{1}{x}, \beta_{1,n}> = \frac{1}{2}\sum_{i=0}^{2^{p}}\int_{-\infty}^{\infty} \{(-x)^{i}(\rho_{n}^{(k)})^{*} * x^{2^{p-i}}\rho_{n}^{(k)}\} dx = 0.$$

In the case where p = k, we have

$$<\frac{1}{x}, \beta_{2k+1,n}> = \frac{1}{2} \sum_{i=0}^{2k} \int_{-\infty}^{\infty} \{(-x)^{i} (\rho_{n}^{(k)})^{*} * x^{2k-i} \rho_{n}^{(k)}\} dx$$

367

Mitsuyuki Itano

$$= \frac{1}{2} \int_{-\infty}^{\infty} \{(-x)^{k} (\rho_{n}^{(k)})^{*} * x^{k} \rho_{n}^{(k)}\} dx$$
$$= \frac{1}{2} \left\{ \int_{-\infty}^{\infty} (x^{k} \rho_{n}^{(k)}) dx \right\}^{2} = \frac{1}{2} (k!)^{2}.$$

For $l=2p, p=1, 2, \dots$, fe, we can write

$$\beta_{l,n}(x) - \beta_{l,n}(-x) = x \{ \sum_{i=0}^{2^{p-1}} (-x)^i (\rho_n^{(k)})^* * x^{2^{p-i-1}} \rho_n^{(k)} \},$$

where $\sum_{i=0}^{2p-1} (-x)^i (\rho_n^{(k)})^* * x^{2p-i-1} \rho_n^{(k)}$ is an even function and either *i* or 2p-i-1 is less than fc. Thus we have

$$\int_0^\infty \frac{1}{x} (\beta_n(x) - \beta_n(-x)) dx = 0.$$

For $\beta_n(x) = (\rho_n^{(k)})^* * x^{2k+2} \psi \rho_n^{(k)}$ we have

$$\beta_n'' = (-1)^k \check{\rho}_n * (x^{2k+2} \psi \rho_n^{(k)})^{(k+2)}$$
$$= (-1)^k \sum_{j=0}^{k+2} \binom{k+2}{j} (\check{\rho}_n * (x^{2k+2} \psi)^{(j)} \rho_n^{(2k+2-j)})$$

By the property (iii) of $\{\rho_n\}$ we see that $\beta'_n = -\int_{x}^{\infty} \beta''_n(x) dx$ is bounded and so is $x^{-1}(\beta_n(x) - \beta_n(-x))$. Moreover supp $\{x^{-1}(\beta_n(x) - \beta_n(-x))\}$ tends to $\{0\}$ as $n \to \infty$. Thus we have $\lim_{n \to \infty} x^{-1}(\beta_n(x) - \beta_n(-x)) = 0$.

Consequently the product $\delta^{(k)} Pf_{x_{k+1}} exists$ and is equal to $\frac{(-1)^{k+1}k!}{2(2k+1)!}$.

In [1], B. Fisher has introduced the product of two distributions on the open interval (a, b), $-\infty \le a < b \le \infty$, as the distributional limit of $(S * \delta_n) (T * \delta_n)$, where $\delta_n(x) = n\rho(nx)$ and p is a fixed C^{∞} function having the following properties: (1) $\rho(x) = 0$ for $|x| \ge 1$, (2) $\rho(x) \ge 0$, (3) $p(x) = \rho(-x)$, (4) $\int_{-1}^{1} \rho(x) dx = 1$ and (5) $\rho^{(r)}(x)$ has only r changes of sign for $r=1, 2, \ldots$. And he has shown that the product of the distributions $\delta^{(k)}$ and Pf. $\int_{k+1}^{1} h$ in his sense exists and equals $(2 - 1)^{k+1} k! \delta^{(2k+1)}$ for any non-negative integer fc.

In our previous paper [6] with collaboration of S. Hatano, we have shown that the product of the distributions $\delta^{(k)}$ and Pf. $\frac{1}{\lambda^{fc+1}}$ in the sense of H. G. Tillmann exists and the same result as above holds true.

In the proof of Proposition 2 below we shall need the following lemma, which we have shown in [4, p. 71].

LEMMA 2. Let E and F be spaces of type (F). Let G be a locally convex space. If a family of separately continuous bilinear maps u_{α} , $\alpha \in A$, of $E \times F$ into G is bounded at each point of $E \times F$, then $\{u_{\alpha}\}_{\alpha \in A}$ is equicontinuous.

PROPOSITION 2. Let $S, T \in \mathcal{D}'(\mathbb{R}^N)$. If the multiplicative product $(S^*(\alpha T)^{\sim}) \Delta \delta$ exists for any $\alpha \in \mathcal{D}(\mathbb{R}^N)$, then the product $S \Delta T$ exists.

PROOF. Let K be any compact subset of \mathbb{R}^N and let $\varphi \in \mathscr{D}_K$. There exist two compact subsets K' and K'' of \mathbb{R}^N such that $K \subset K''$ and $K'' \subset \mathring{K}'$. Let $\alpha_1 \in \mathscr{D}(\mathbb{R}^N)$ such that $\alpha_1 = 1$ on K' and

$$\alpha_1 S * (\psi T) = S * (\psi T)$$

in a **0-neighbourhood** for any $\psi \in \mathscr{D}_{K''}$. Then we have

$$(\alpha_1 S \ast (\psi T)^{\check{}}) \vartriangle \delta = (S \ast (\psi T)^{\check{}}) \vartriangle \delta, \qquad \psi \in \mathscr{D}_{K''}.$$

For $\alpha_2 \in \mathcal{D}_{K''}$ such that $\alpha_{\overline{2}} = 1$ in a small neighbourhood of K we have

$$\lim_{n\to\infty} \langle (S*\rho_n)(T*\rho_n), \phi \rangle = \lim_{n\to\infty} \langle (\alpha_1 S*\rho_n)(\alpha_2 T*\rho_n), \phi \rangle$$

where $\{\rho_n\}$ is any restricted δ -sequence.

To estimate the right hand side of the equation we may assume that φ is a periodic function with period 2*l* for each coordinate where / is taken large enough. Thus we can write

$$\phi = \sum c_m e^{i\frac{\pi}{l} < m, x>},$$

where $\Sigma |c_m| (1 + |m|)^k < \infty$ for any positive integer fc. Writing $e(m) = e^{i \frac{\pi}{l} < m, x>}$, we have

$$<(\alpha_1 S * \rho_n)(\alpha_2 T * \rho_n), \ \varphi > = \Sigma c_m < (\alpha_1 S * \rho_n)(\alpha_2 T * \rho_n), \ e(m) >$$
$$= \Sigma c_m < \alpha_1 S * \rho_n, \ e(m)\alpha_2 T * \rho_n e(m) >$$
$$= \Sigma c_m < \alpha_1 S * (e(m)\alpha_2 T)^{\checkmark}, \ \check{\rho}_n * \rho_n e(m) >$$

Since the product $(\alpha_1 S * (\psi T)^{\check{}}) \Delta \delta$ exists for any $\psi \in \mathcal{D}_{K''}$, we can write for any $\chi \in \mathscr{B}$

$$<(\alpha_1 S * (\psi T)^{\check{}}) \vartriangle \delta, \chi > = \lim_{n \to \infty} <(\alpha_1 S * (\psi T)^{\check{}} * \rho_n) \rho_n, \chi >$$
$$= \lim_{n \to \infty} <\alpha_1 S * (\psi T)^{\check{}}, \check{\rho}_n * \rho_n \chi >.$$

Here the map

$$(\psi, \chi) \longrightarrow \langle \alpha_1 S * (\psi T) \check{}, \check{\rho}_n * \rho_n \chi \rangle$$

of $\mathscr{D}_{K''} \times \mathscr{B}$ into the complex number field is separately continuous for any ρ_n and the family of maps is bounded at each point of $\mathscr{D}_{K''} \times \mathscr{B}$. By virtue of Lemma 2 this family of maps is equicontinuous. Thus there exist a constant M and a positive constant k such that

$$|\langle \alpha_1 S * (\psi T) \rangle, \check{\rho}_n * \rho_n \chi \rangle| \leq M \sup_{|p| \leq k} |D^p \psi| \sup_{|p| \leq k} |D^p \chi|$$

and consequently there exists a constant M' such that

$$|<\alpha_1 S * (e(m)\alpha_2 T)^*, \check{\rho}_n * \rho_n e(m) > | \leq M'(1+|m|)^{2k}.$$

From $\Sigma |c_m|(1+|m|)^{2k} < \infty$ it follows that $\Sigma c_m < \alpha_1 S * (e(m)\alpha_2 T)^*$, $\check{\rho}_n * \rho_n e(m) >$ is normally convergent. Furthermore each term has a limit as $n \to \infty$. Thus the multiplicative product $S \Delta T$ exists.

PROPOSITION 3. Let $S, T \in \mathcal{D}'(\mathbb{R}^N)$. If the multiplicative product $S \triangleq \beta T$ exists for any $\beta \in \mathscr{E}(\mathbb{R}^N)$, then the product $(S*(\alpha T)^*) \triangleq \delta$ exists for any $\alpha \in \mathcal{D}(\mathbb{R}^N)$.

PROOF. Let K be any compact subset of \mathbb{R}^N and take a compact subset K_1 with $K \subset \hat{K}_1$. If we take $\beta \in \mathcal{D}(\mathbb{R}^N)$ such that $\beta = 1$ on K_1 , then $\beta S * (\alpha T)^{\vee} = S * (\alpha T)^{\vee}$ in a 0-neighbourhood for any $\alpha \in \mathcal{D}_K$. From the fact that

$$(1 - \beta)S_{\Delta}(\alpha T)^{\vee} = \lim_{n \to \infty} ((1 - \beta)S * \rho_n) ((\alpha T)^{\vee} * \rho_n) = 0,$$

it follows that the multiplicative product $\beta S \triangle \alpha T$ exists for any $\alpha \in \mathcal{D}_K$ and equals $S \triangle \alpha T$. Thus we have for any $\varphi \in \mathcal{D}(\mathbb{R}^N)$

$$<(S*(\alpha T)^{\checkmark}) \vartriangle \delta, \varphi > = \lim_{n \to \infty} <(\beta S*(\alpha T)^{\checkmark}*\rho_n)\rho_n, \varphi >$$

if the right hand side exists. In the same way as in the proof of Proposition 2 we can write

$$\varphi = \Sigma c_m e^{i \frac{\pi}{l} < x, m >} = \Sigma c_m e(m),$$

where $\Sigma |c_m|(1+|m|)^k < \infty$ for any positive integer k and / is taken sufficiently large. Then we have

$$<(\beta S*(\alpha T)^{*}*\rho_{n})\rho_{n}, \phi > = \Sigma c_{m} < \beta S*(\alpha T)^{*}, \check{\rho}_{n}*\rho_{n}e(m) >$$
$$= \Sigma c_{m} < \beta S, \ (\alpha T)*\check{\rho}_{n}*\rho_{n}e(m) >$$
$$= \Sigma c_{m} < (\beta S*\rho_{n})(e(-m)\alpha T*\rho_{n}), \ e(m) >$$

By the existence of the product $\beta S \land \chi T$ for any $\chi e \mathcal{D}_K$ there exist a constant M and a positive integer k such that

Remarks on the Multiplicative Products of Distributions

$$| < (\beta S * \rho_n)(\chi T * \rho_n)\psi > | \leq M \sup_{|p| \leq k} |D^p \chi| \sup_{|p| \leq k} |D^p \psi|$$

for any $\psi \in \mathcal{B}$ and therefore we have the inequality

$$|<(\beta S*\rho_n)(e(-m)\alpha T*\rho_n),e(m)>| \leq M_1(1+|m|)^{2k}$$

with a constant M_1 . Thus the sequence $\sum c_m < (\beta S * \rho_n) (e(-m)\alpha T * \rho_n), e(m) >$ is normally convergent and we have

$$\lim_{n\to\infty} \langle (\beta S * \rho_n) (e(-m)\alpha T * \rho_n), e(m) \rangle = \langle \beta S * e(-m)\alpha T, e(m) \rangle.$$

Consequently we see that the limit of $\langle (\beta S * (\alpha T)^* * \rho_n) \rho_n \phi \rangle$ exists as $n \to \infty$, which means that the product $(\beta S * (\alpha T)^*) \Delta \delta = (S * (\alpha T)^*) \Delta \delta$ exists.

Now recall the definition of the multiplicative product ST of $S \in \mathscr{D}'(\mathbb{R}^N)$ and $T \in \mathscr{D}'(\mathbb{R}^N)$ in the sense of Y. Hirata-H. Ogata and J. Mikusiński. The product ST is defined as one of the limits of the sequences in the following equivalent conditions ([11]):

(1) The distributional limit $\lim_{n \to \infty} (S * \rho_n) (T * \tilde{\rho}_n)$ exists for every δ -sequences $\{\rho_n\}$ and $\{\tilde{\rho}_n\}$:

(2) The distributional limit $\lim (S*\rho_n)$ Texists for every δ -sequence $\{\rho_n\}$:

(3) The distributional limit $\lim_{n \to \infty} S(T*\rho_n)$ exists for every δ -sequence $\{\rho_n\}$. Here a δ -sequence $\{\rho_n\}$ is a sequence of non-negative functions $\rho_n \in \mathcal{D}(\mathbb{R}^N)$ with the following properties:

(i) supp ρ_n converges to $\{0\}$ as $n \to \infty$;

(ii) $\int \rho_n(x) dx = 1$, the integral being extended to the whole *N*-dimensional space.

In [11, p. 229] we showed that *ST* exists if and only if, for any $\alpha \in \mathscr{D}(\mathbb{R}^N)$, there exists a 0-neighbourhood in which $\alpha S * \check{T}$ is a bounded function continuous at 0 and that $\langle ST, \alpha \rangle = (\alpha S * \check{T})(0)$ in this case.

We may define the multiplicative product $S \cdot T$ as the distributional limit $\lim_{n \to \infty} (S * \rho_n)(T * \rho_n)$, if it exists for every δ -sequence $\{\rho_n\}$. Since the property (iii) of a restricted δ -sequence $\{\rho_n\}$ does not play any role in the proofs of the above two propositions, we have the analogues of Propositions 2 and 3 for such multiplication.

PROPOSITION 4. Let $S, T \in \mathcal{D}'(\mathbb{R}^N)$. If the product $(S*(\alpha T)^{\checkmark}) \delta$ exists for any $\alpha \in \mathcal{D}(\mathbb{R}^N)$, then the product S T exists.

PROPOSITION 5. Let 5, $T \in \mathcal{D}'(\mathbb{R}^N)$. If the product $S \beta T$ exists for any $\beta \in \mathscr{E}(\mathbb{R}^N)$, then the product $(S*(\alpha T)^{\checkmark}) \delta$ exists for any $\alpha \in \mathcal{D}(\mathbb{R}^N)$.

REMARK. Let $\{\rho_n\}$ be any fixed δ -sequence. We may define another multiplicative product of $S \in \mathscr{D}'(\mathbb{R}^N)$ and $T \in \mathscr{D}'(\mathbb{R}^N)$ as the distributional limit $\lim_{n \to \infty} (S^* \rho_n)(T*\rho_n)$, if it exists. For such multiplication we have also the analogues of Propositions 4 and 5.

We have shown in [5, p. 162] that if the products $S \circ \frac{\partial T}{\partial x_j}$ exist for j = 1, 2,..., N, then the products S°T and $\frac{\partial S}{\partial x_j} \circ T$ exist for j = 1, 2, ..., N and $\frac{\sigma}{\partial x_j} (S \circ T) = \frac{\partial S}{\partial x_j} \circ T + S \circ \frac{\partial T}{\partial x_j}$ holds. The same property holds also true of the multiplicative product ST. But the statement is not true in general for the multiplication Δ . Let N = 1. The product $\delta' \circ Pf$. $\frac{1}{x^2}$ exists but the product $\delta' \wedge Pf$. $\frac{1}{\sigma} does$ not exist. In fact, let $\rho \in \mathcal{D}(R)$ such that $\rho \ge 0$ and $\int \rho(x) dx = 1$, and put $\rho_n(x) = n\rho(nx)$. Then $\{\rho_n\}$ is a restricted δ -sequence and we have

$$<\left(\frac{1}{x}*\rho_n\right)\rho'_n, \varphi> = <\frac{1}{x}, \rho'_n\phi*\check{\rho}_n>$$

for any $\varphi e \mathcal{D}(\mathbf{R})$. If we take $\varphi e \mathcal{D}(\mathbf{R})$ such that $\varphi = 1$ in a 0-neighbourhood, then for a sufficiently large *n* we have

$$<\frac{1}{x}, \ \rho_n'*\check{\rho_n} > = n^2 < \frac{1}{x}, \ \rho'*\check{\rho} >$$
$$= 2n^2 \int_0^\infty \ \bar{x}^{\,2} (\rho *\check{\rho}(x) - \rho *\check{\rho}(0)) dx,$$

where $\rho * \check{\rho} \ge 0$ and $\rho * \check{\rho}(0) = \int_{-\infty}^{\infty} \rho^2(x) dx$. In the relations

$$(\rho * \check{\rho})^2 = \left(\int \rho(x-t)\rho(-t)dt\right)^2$$
$$\leq \left(\int \rho^2(x-t)dt\right) \left(\int \rho^2(-t)dt\right) = (\rho * \check{\rho}(0))^2,$$

the equality does not hold and therefore

$$\int_0^\infty x^{-2}(\rho*\check{\rho}(x)-\rho*\check{\rho}(0))dx<0.$$

Thus $\langle (\frac{1}{x} * \rho_n) \rho'_n, \Phi \rangle$ does not converge. This means the product $\delta' \Delta Pf$.

Moreover the product $\delta'' \triangle Pf. \frac{1}{x}$ does not exist. In fact, for any restricted δ -sequence $\{\rho_n\}$ and any $\varphi \in \mathcal{D}(R)$ we have

$$\langle \rho_n'' \left(\frac{1}{x} * \rho_n \right), \phi \rangle = \langle \frac{1}{x}, \rho_n'' \phi * \check{\rho}_n \rangle$$

$$= \langle \frac{1}{x}, (\alpha_n' \phi)' * \check{\alpha}_n - \rho_n' \phi' * \check{\rho}_n \rangle$$

$$= \langle \frac{1}{x^2}, \rho_n' \phi * \check{\rho}_n \rangle - \langle \rho_n' \left(\frac{1}{x} * \rho_n \right), \phi' \rangle .$$

From the facts that the product $\delta' \triangle Pf$. $\frac{1}{x} \frac{1}{2}$ exists but the product $\delta' \triangle Pf$. $\frac{1}{x}$ does not exist it follows that $\langle \frac{1}{x} \frac{1}{2}, \rho'_n \phi * \check{\rho}_n \rangle$ converges to $\langle \delta' \triangle Pf$. $\frac{1}{x} \frac{1}{2}, \phi \rangle$ but $\langle \rho'_n \langle (\frac{1}{x} * \rho_n), \phi' \rangle$ does not converge as $n \to \infty$ and therefore $\langle \rho''_n \langle (\frac{1}{x} * \rho_n), \phi \rangle$ does not converge.

It is easily shown that if the products $S \triangle T$ and $S \triangle \stackrel{\frown}{=} \frac{\partial T}{\partial x_j}$ exist for j = 1, 2, ..., N, then the product $\frac{\partial S}{\partial x_j} \triangle T$ exists and $\frac{\partial}{\partial x_i} (S \triangle T) = \frac{\partial S}{\partial x_j} \triangle T + S \triangle \frac{\partial T}{\partial x_j}$ holds. From the facts that $\delta \triangle Pf. \frac{1}{X}$ exists but $\delta' \triangle Pf. \frac{1}{X}$ does not exist it follows that $\partial \triangle Pf. \frac{1}{A}$ 2 does not exist.

We have shown in [5, p. 162] that if the product $S \circ T$ exists, then $(\alpha S) \circ T$ and $S \circ (\alpha T)$ exists for any $\alpha \in \mathscr{E}(\mathbb{R}^N)$ and $(\alpha S) \circ T = \alpha(S \circ T) = S \circ (\alpha T)$. The same property holds also true of the multiplicative product ST. But the statement is not true in general for $S \circ T$. In fact, let N = 1 and take $S = \delta'$ and T = Pf. $\frac{1}{\chi'^2}$. Then the product $\delta' \circ Pf$. $\frac{1}{\chi} = \alpha$ exists but $\delta' \circ Pf_{\chi}^1 - \alpha$ and $\delta \circ Pf_{\chi}^1 = \alpha(0)$ and $\alpha(S \circ T) = \frac{1}{2}\alpha'(0)\delta - \frac{\alpha(0)}{2}\delta'$ for any $\alpha \in \mathscr{E}(\mathbb{R})$ and therefore $\alpha(S \circ T)$ is not equal to $(\alpha S) \circ T$ in general.

Let 5, *T* be tempered distributions on \mathbb{R}^N and suppose *S* and *T* are \mathscr{S}' composable, that is, $(S_x \otimes T_y)\phi(\hat{x}+\hat{y}) \in (\mathscr{D}'_{L^1})$ for any $\varphi \in \mathscr{S}(\mathbb{R}^N)$. Then the product *Sf* exists and $(S*T)^* = ST$ ([3, p. 151]). Furthermore $(S*\rho_n)$ ($f*\tilde{\rho}_n$)
converges in $\mathscr{S}'(\mathbb{R}^N)$ to $\hat{S}\hat{T}$ as $n \to \infty$ for any δ -sequences $\{\rho_n\}$ and $\{\tilde{\rho}_n\}$ ([11,
p. 233]). Thus, if 5 and *T* are \mathscr{S}' -composable, then $\hat{S} \wedge \hat{T}$ exists, $\hat{S} \wedge \hat{T} = (S*T)^*$ and $(\hat{S}*\rho_n)(\hat{T}*\rho_n)$ converges to $\hat{S} \wedge \hat{T}$ in $\mathscr{S}'(\mathbb{R}^N)$ for any restricted δ -sequence $\{\rho_n\}$

PROPOSITION 6. Let $S \in \mathscr{D}'(\mathbb{R}^N)$. Then the following conditions are equivalent to each other:

- (1) $S \in \mathscr{E}(\mathbb{R}^N)$.
- (2) $S \triangle T$ exists for any $T \in \mathscr{D}'(\mathbb{R}^N)$.

Mitsuyuki Itano

(3) $S \triangle T$ exists for any $T \in \mathscr{E}'(\mathbb{R}^N)$.

PROOF. It suffices to prove the implications $(1)\Rightarrow(2)$ and $(3)\Rightarrow(1)$.

(1) \Rightarrow (2). Let $S \in \mathscr{E}(\mathbb{R}^N)$. Then the product ST exists for any $T \in \mathscr{D}'(\mathbb{R}^N)$, and a fortiori $S \triangle T$ exists.

(3) \Rightarrow (1). Suppose $S \triangle T$ exists for any $T \in \mathscr{E}'(\mathbb{R}^N)$. For any restricted δ -sequence $\{\rho_n\}$, the map

$$T \longrightarrow (S * \rho_n) (T * \rho_n)$$

of $\mathscr{E}'(\mathbb{R}^N)$ into $\mathscr{D}'(\mathbb{R}^N)$ is continuous and $\mathscr{E}'(\mathbb{R}^N)$ is a barrelled space. By the Banach-Steinhaus theorem the map $\mathscr{E}'(\mathbb{R}^N) \cong T \to \lim_{n \to \infty} (S * \rho_n) (T * \rho_n) = S \vartriangle T \in \mathscr{D}'(\mathbb{R}^N)$ is continuous, and therefore for any $\phi \in \mathscr{D}(\mathbb{R}^N)$ there exists an element $\phi(S) \in \mathscr{E}(\mathbb{R}^N)$ such that

$$<\mathbf{S}\Delta\mathbf{T}, \ \varphi> = <\phi(S), \ T>$$

If we take $\Gamma = \alpha \to \mathcal{D}(\mathbb{R}^N)$, then $\langle S \land \alpha, \phi \rangle = \langle \alpha S, \phi \rangle = \langle \phi S, \alpha \rangle$. Thus $\varphi S = \phi(S) \in \mathscr{E}(\mathbb{R}^N)$, which implies $S \in \mathscr{E}(\mathbb{R}^N)$.

Let ξ be a C^{∞} map of a non-empty open subset $\Omega \subset \mathbb{R}^N$ into another open subset $\Omega' \subset \mathbb{R}^n$. If the map $\xi^* : \mathscr{D}(\Omega') \ni \alpha \to \alpha \circ \xi \in \mathscr{D}'(\Omega)$ is continuously extended to the map of $\mathscr{D}'(\Omega)$ (or equivalently of $\mathscr{E}'(\Omega)$)into $\mathscr{D}'(\Omega)$, then the map ξ is said to be admissible ([7, p. 76]) and ξ^*S is said to be the transposed image of 5 e $\mathscr{D}'(\Omega')$. Then we see that $n \leq N$ ([7, p. 77]).

Let ξ and η be C^{∞} maps of a non-empty open subset $\Omega \subset \mathbb{R}^N$ into another open subsets $\Omega_1 \subset \mathbb{R}^p$ and $\Omega_2 \subset \mathbb{R}^q$ respectively, and assume the map $\chi = (\xi, \eta)$ of Ω into $\Omega_1 \times \Omega_2$ has no critical point. By the facts that the multiplication o is invariant under the diffeomorphism and has the local property ([5, pp. 162 -165]) we conclude that the multiplicative product $(\xi^*S) \land (\eta^*T)$ exists for every $S \in \mathscr{D}'(\Omega_1)$ and $T \in \mathscr{D}'(\Omega_2)$.

PROPOSITION 7. Let ξ be an admissible map of $\Omega \subset \mathbb{R}^N$ into $\Omega_1 \subset \mathbb{R}^p$ and η be an admissible map of Ω into $\Omega_2 \subset \mathbb{R}^q$. If the multiplicative product $(\xi^*S) \land (\eta^*T)$ exists for every $S \in \mathscr{D}'(\Omega_1)$ and $T \in \mathscr{D}'(\Omega_2)$, then the map $\chi = (\xi, \eta)$ is admissible.

PROOF. Let $\{\rho_n\}$ be any restricted δ -sequence defined in Ω and consider the map

$$(S, T) \longrightarrow ((\xi^*S) * \rho_n)((\eta^*T) * \rho_n)$$

of $\mathscr{E}'(\Omega_1) \times \mathscr{E}'(\Omega_2)$ into $\mathscr{D}'(\Omega)$ for a large *n*. It is a separately continuous bilinear map for each ρ_n and $((\xi^*S)*\rho_n)((\eta^*T)*\rho_n)$ converges in $\mathscr{D}'(\Omega)$ to (ξ^*S)

374

 (η^*T) as $n \to \infty$. Since $\mathscr{E}'(\Omega_1)$ and $\mathscr{E}'(\Omega_2)$ are barrelled, the bilinear map

$$(\mathbf{S},\mathbf{T}) \longrightarrow (\xi^* S) \vartriangle (\eta^* T)$$

of $\mathscr{E}'(\Omega_1) \times \mathscr{E}'(\Omega_2)$ into $\mathscr{D}'(\Omega)$ is hypocontinuous. Owing to the theorem of Grothendieck ([2, p. 66]), since $\mathscr{E}'(\Omega_1)$ and $\mathscr{E}'(\Omega_2)$ are (DF)-spaces, the map is continuous and therefore it can be continuously extended to the map of $\mathscr{E}'(\Omega_1)$ $\hat{\otimes}_{\pi}\mathscr{E}'(\Omega_2) = \mathscr{E}'(\Omega_1 \times \Omega_2)$ into $\mathscr{D}'(\Omega)$; this means that the map $\chi = (\xi, \eta)$ is admissible.

Since the property (iii) of a restricted δ -sequence $\{\rho_n\}$ does not play any role in the proofs of the above two propositions, the analogues of Propositions 6 and 7 remain valid for the multiplication.

References

- [1] B. Fisher, The product of the distributions x^{-r} and $\delta_{(x)}^{(r-1)}$, Proc. Camb. Phil. Soc. 72 (1972), 201-204.
- [2] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil Math. 3 (1954), 57-122.
- [3] Y. Hirata and H. Ogata, On the exchange formula for distributions, J. Sci. Hiroshima Univ. Ser. A-I 22 (1958), 147–152.
- [4] M. Itano, On the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 51-74.
- [5], On the theory of the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 151-181.
- [6] and s. Hatano, Note on the multiplicative products of x_{+}^{α} and r_{+}^{β} , Mem. Fac. Gen. Ed. Hiroshima Univ. III 8 (1974), 159–174.
- [7] _____and A. Jóichi, On C[∞] maps which admit transposed image of every distribution, J. Sci. Hiroshima Univ. Ser. A-I 31 (1967), 75-88.
- [8] S. Łojasiewicz, Sur la valeur et la límite d'une distribution dans un point, Studia Math. 16 (1957), 1-36.
- [9] J. Mikusiński, Criteria of the existence and of the associativity of the product of distributions, Studia Math. 21 (1962), 253-259.
- [10] R. Shiraishi, On the value of distributions at a point and the multiplicative products, J. Sci. Hiroshima Univ. Ser. A-I 31 (1967), 89-104.
- [11] _____and M. Itano, On the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I 28 (1964), 223-235.

Faculty of Integrated Arts and Sciences, Hiroshima University