Remarks on the Multiplicative Products of Distributions

Mitsuyuki Itano

(Received January 20, 1976)

Many attempts have been made for defining the multiplication between distributions. Y. Hirata and H. Ogata [3] have defined a product of distributions and J. Mikusiŋ́ski [9] has also defined the same product in a different fashion. In [5], we have considered the multiplication invariant under diffeomorphism which covers the multiplication in the above sense. If $S, T \in \mathscr{D}^{\prime}\left(R^{N}\right)$ arid if $\alpha S * \check{T}$ has the value $(\alpha S * \check{T})(0)$ at 0 in the sense of S. Łojasiewicz [8] for any α e $\mathscr{D}\left(R^{N}\right)$, then there exists a unique distribution W such that $\langle W, \alpha\rangle=(\alpha S * \check{T})(0)$. In [10], R. Shiraishi has defined a restricted δ-sequence $\left\{\rho_{n}\right\}$ as a sequence of nonnegative functions $\rho_{n} \mathrm{e} \mathscr{D}\left(R^{N}\right)$ such that
(i) $\operatorname{supp} \rho_{n}$ converges to $\{0\}$ as $n \rightarrow \infty$
(ii) $\int \rho_{n}(x) d x$ converges to 1 as $n \rightarrow \infty$;
(iii) $\quad \int|x|^{|p|}\left|D^{\prime} \rho_{n}(x)\right| d x \leqq M_{p}\left(M_{p}\right.$ being independent of $\left.n\right)$,
where the integral is extended over the whole N-dimensional space, and he has shown that the existence of the product $W=S \circ T$ of \mathcal{S} and T is equivalent to each of the following conditions:
(1) The distributional limit $\lim _{n \rightarrow \infty}\left(S * \rho_{n}\right)\left(T * \tilde{\rho}_{n}\right)$ exists for every restricted δ-sequences $\left\{\rho_{n}\right\}$ and $\left\{\tilde{\rho}_{n}\right\}$:
(2) The distributional limit $\lim _{n \rightarrow \infty}\left(S * \rho_{n}\right) T$ existsfor every restricted δ-sequence $\left\{\rho_{n}\right\}$.
(3) The distributional limit $\lim _{n \rightarrow \infty} S\left(T * \rho_{n}\right)$ exists for every restricted δ-sequence $\left\{\rho_{n}\right\}$
And if one of these conditions is satisfied, the limit equals W.
On the other hand, we may define the multiplicative product $S \Delta T$ as the distributional limit $\lim _{n \rightarrow \infty}\left(S * \rho_{n}\right)\left(T * \rho_{n}\right)$, if it exists for every restricted δ-sequence $\left\{\rho_{n}\right\}$ ([10, p. 97]). The purpose of this paper is to investigate this multiplication Δ by making a comparison with the multiplication o.

By the definition stated above we see that if $\boldsymbol{S} \circ \boldsymbol{T}$ exists, then $\boldsymbol{S} \Delta \boldsymbol{T}$ exists and is equal to $S \circ T$. However the converse does not hold ([10, p. 97]).

LEMMA 1. $\quad \delta \Delta \operatorname{Pf} \cdot \frac{\mathbf{1}_{1}}{x}=-\frac{\mathbf{1}_{1}}{2} \delta^{\prime}$ but $\delta \circ$ Pf. $\frac{\mathbf{1}_{1}}{x}$ does not exist.
PROOF. Since the distribution Pf. $\frac{\mathbf{1}_{\perp}}{x}$ has not a value at 0 , the product $\delta \circ \operatorname{Pf}$. $\frac{1}{\iota}$ does not exist. For any restricted δ-sequence $\left\{\rho_{n}\right\}$ and any $\varphi \in \mathscr{D}(R)$ we can write

$$
<\rho_{n}\left(\frac{1}{x} * \rho\right)^{\prime} \phi>=<\frac{1}{x}, \check{\rho}_{n} * \phi \rho_{n}>
$$

If we write $\phi(x)=\phi(0)+\phi^{\prime}(0) x+x^{2} \psi(x)$, then $\psi(0)=\lim _{x \rightarrow 0} \psi(x)=2^{-1} \phi^{\prime \prime}(0)$, $\lim _{x \rightarrow 0} x^{-1}(\psi(x)-\psi(0))=(3!)^{-1} \phi^{\prime \prime \prime}(0)$ and so on. Since $\rho_{n} * \rho_{n}$ is an even function, $<\frac{1}{x}, \dot{\rho}_{n} * \rho_{n}>$ vanishes. Put $\alpha_{n}=\rho_{n} * x \rho_{n}$. Then $\alpha_{n}=\rho_{n} *(-x) \check{\rho}_{n}=(-x)\left(\rho_{n} * \check{\rho}_{n}\right)$ $+\left(x \rho_{n}\right) * \check{\rho}_{n}, \alpha_{n}-\ddot{\alpha}_{n}=x\left(\rho_{n} * \check{\rho}_{n}\right)$ andtherefore

$$
<\frac{1}{x}, \alpha_{n}>=\int_{0}^{\infty}\left(\rho_{n} * \check{\rho}_{n}\right) d x=\frac{1}{2} \int_{-\infty}^{\infty}\left(\rho_{n} * \check{\rho}_{n}\right) d x=\frac{1}{2}
$$

On the other hand, if we put $\beta_{n}=\check{\rho}_{n} * x^{2} \psi \rho_{n}$, then

$$
\beta_{n}^{\prime \prime}=\check{\rho}_{n} * x^{2} \psi \rho_{n}^{\prime \prime}+2 \check{\rho}_{n} * x\left(2 \psi+x \psi^{\prime}\right) \rho_{n}^{\prime}+\check{\rho}_{n} *\left(x^{2} \psi\right)^{\prime \prime} \rho_{n}
$$

By the property (iii) of $\left\{\rho_{n}\right\}$ we see that $\beta_{n}^{\prime}(x)=-\int_{J_{x}}^{\infty} \beta_{n}^{\prime \prime}(x) d x$ is bounded and therefore $x^{-1}\left(\beta_{n}-\check{\beta}_{n}\right)=x^{-1}\left(\beta_{n}(x)-\beta_{n}(0)\right)+x^{-1}\left(\beta_{n}(0)-\check{\beta}_{n}(x)\right)$ is bounded. Since $\operatorname{supp}\left\{x^{-1}\left(\beta_{n}-\beta_{n}\right)\right\}$ tends to $\{0\}$ as $n \rightarrow \infty$, we see that $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} x^{-1}\left(\beta_{n}-\beta_{n}\right) d x=0$. Thus the product $\delta \circ P f . \frac{\mathbf{1}}{x}$ exists and is equal to $-2^{-1} \delta^{\prime}$.

PROPOSITION 1. For any non-negative integer fc, the product $\delta^{(k)} \Delta \mathrm{Pf}-\frac{1}{\lambda^{k+1}}$ exists and

$$
\delta^{(k) \Delta} \operatorname{Pf} \cdot \frac{1}{x^{k+1}}-\frac{(-1)^{k+1} k!}{2(2 k+1)!} \delta^{(2 k+1)}
$$

PROOF. Given $S, T \in \mathscr{D}^{\prime}(R)$, the existence of the product $S \circ T^{\prime}$ implies the existence of $\boldsymbol{S}^{\prime} \circ \boldsymbol{T}$ and $\boldsymbol{S} \circ \boldsymbol{T}([5, \mathrm{p} .162])$. Thus it follows from Lemma 1 that the product $\boldsymbol{\delta}^{(\boldsymbol{k})} \circ \mathbf{P f}{ }_{\boldsymbol{A}^{\mathrm{fc}+1}}^{\mathbf{1}}$ does not exist.

For any restricted δ-sequence $\left\{\rho_{n}\right\}$ and any $\varphi \in \mathscr{D}(R)$, we have

$$
<\left(\delta^{(k)} * \rho_{n}\right)\left(\frac{1}{x^{k+1}} * \rho_{n}\right), \phi>={ }_{\kappa!}^{1 \cdots k}-<_{\lambda^{\prime}}^{1},\left(\rho_{n}^{(k)}\right)^{\vee} * \phi \rho_{n}^{(k)}>
$$

where we write

$$
\phi(x)=\phi(0)+\phi^{\prime}(0) x+\cdots+\frac{1}{(2 k+1)!} \phi^{(2 k+1)}(0) x^{2 k+1}+x^{2 k+2} \psi(x)
$$

$\left(\rho_{n}^{(k)}\right)^{\imath} * \rho_{n}^{(k)}$ is an everfunction and

$$
\left(\rho_{n}^{(k)}\right)^{\vee} * x \rho_{n}^{(k)}=x\left(\left(\rho_{n}^{(k)}\right)^{\vee} * \rho_{n}^{(k)}\right)-x\left(\rho_{n}^{(k)}\right)^{\vee} * \rho_{n}^{(k)}
$$

and therefore we have

$$
<\frac{1}{x},\left(\rho_{n}^{(k)}\right)^{\vee} * \rho_{n}^{(k)}>=0
$$

and

$$
\begin{aligned}
<\frac{1}{x},\left(\rho_{n}^{(k)}\right)^{*} * x \rho_{n}^{(k)}> & =\int_{0}^{\infty}\left(\rho_{n}^{(k)}\right)^{2} * \rho_{n}^{(k)} d x \\
& =\frac{1}{2} \int_{-\infty}^{\infty}\left(\rho_{n}^{(k)}\right)^{2} * \rho_{n}^{(k)} d x=\left\{\begin{aligned}
\frac{1}{2} & (k=0), \\
0 & (k \geqq 1) .
\end{aligned}\right.
\end{aligned}
$$

Let $\mathrm{fc}^{\wedge} 1$ and put $\beta_{l, n}(x)=\left(\rho_{n}^{(k)}\right)^{\imath} * x^{l} \rho_{n}^{(k)}$ for $0 \leqq l \leqq 2 k+1$. For $l=2 p+1$, $p=1,2, \ldots, \mathrm{fc}$, we can write

$$
\beta_{l, n}(x)=x\left\{\sum_{i=0}^{2 p}(-x)^{i}\left(\rho_{n}^{(k)}\right)^{v^{*}} * x^{2 p-i} \rho_{n}^{(k)}\right\}-x^{2 p+1}\left(\rho_{n}^{(k)}\right)^{\vee} * \rho_{n}^{(k)}
$$

and hence

$$
\beta_{l, n}(x)-p_{l, n}^{f}(-x \alpha) \bar{x}\left\{\sum_{i=0}^{2 p} \sum(-x)^{j}\left(\beta_{n}^{(k)}\right) \tilde{k}\right) x^{\left.2 p-\dot{\beta}_{n}(k)\right\}}
$$

If $p<k$, then $i+(2 p-i)=2 p<2 k$ and therefore either i or $2 p-i$ is less than k. Moreover the function $\sum_{i=0}^{2 p}(-x)^{i}\left(\rho_{n}^{(k)}\right)^{\curlyvee} * x^{2 p-i} \rho_{n}^{(k)}$ is an even function with compact support. Thus we have

$$
<\frac{1}{x}, \beta_{l, n}>=\frac{1}{2} \sum_{i=0}^{2 p} \int_{-\infty}^{\infty}\left\{(-x)^{i}\left(\rho_{n}^{(k)}\right)^{\vee} * x^{2 p-i} \rho_{n}^{(k)}\right\} d x=0 .
$$

In the case where $p=k$, we have

$$
\left.<\frac{1}{x}, \beta_{2 k+1, n}>=\frac{1}{2} \sum_{i=0}^{2 k}\right)_{-\infty}^{\infty}\left\{(-x)^{i}\left(\rho_{n}^{(k)}\right)^{2} * x^{2 k-i} \rho_{n}^{(k)}\right\} d x
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{-\infty}^{\infty}\left\{(-x)^{k}\left(\rho_{n}^{(k)}\right)^{\vee} * x^{k} \rho_{n}^{(k)}\right\} d x \\
& =\frac{1}{2}\left\{\int_{-\infty}^{\infty}\left(x^{k} \rho_{n}^{(k)}\right) d x\right\}^{2}=\frac{1}{2}(k!)^{2} .
\end{aligned}
$$

For $l=2 p, p=1,2, \ldots, \mathrm{fe}$, we can write

$$
\beta_{l, n}(x)-\beta_{l, n}(-x)=x\left\{\sum_{i=0}^{2 p-1}(-x)^{i}\left(\rho_{n}^{(k)}\right)^{\ulcorner } * x^{2 p-i-1} \rho_{n}^{(k)}\right\}
$$

where $\sum_{\mathrm{i}=0}^{2 P-1}(-x)^{i}\left(\rho_{n}^{(k)}\right)^{\vee} * x^{2 p-i-1} \rho_{n}^{(k)}$ s an even function and either i or $2 p-i-1$ is less than fc. Thus we have

$$
\int_{0}^{\infty} \frac{1}{\lambda}\left(\beta_{n}(x)-\beta_{n}(-x)\right) d x=0
$$

For $\beta_{n}(x)=\left(\rho_{n}^{(k)}\right)^{\nu} * x^{2 k+2} \psi \rho_{n}^{(k)}$ we have

$$
\begin{aligned}
\beta_{n}^{\prime \prime} & =(-1)^{k} \check{\rho}_{n} *\left(x^{2 k+2} \psi \rho_{n}^{(k)}\right)^{(k+2)} \\
& =(-1)^{k} \sum_{j=0}^{k+2}\binom{k+2}{j}\left(\check{\rho}_{n} *\left(x^{2 k+2} \psi\right)^{(j)} \rho_{n}^{(2 k+2-j)}\right)
\end{aligned}
$$

By the property (iii) of $\left\{\rho_{n}\right\}$ we see that $\beta_{n}^{\prime}=-\oint^{\infty} \beta_{n}^{\prime \prime}(x) d x$ is bounded and so is $x^{-1}\left(\beta_{n}(x)-\beta_{n}(-x)\right)$. Moreover supp $\left\{x^{-1}\left(\beta_{n}(x)-{ }_{\mathcal{J}}^{\boldsymbol{J}} \boldsymbol{\beta}_{n}(-x)\right)\right\}$ tends to $\{0\}$ as $n \rightarrow \infty$. Thus we have $\lim _{n \rightarrow \infty} x^{-1}\left(\beta_{n}(x)-\beta_{n}(-x)\right)=0$.

Consequently the product $\delta^{(k)} \Delta \operatorname{Pf}_{x^{k+1}}{ }^{1}$ exists and is equal to $\frac{(-1)^{k+1} k!}{2(2 k+1)!}$. $\delta^{(2 k+1)}$.

In [1], B. Fisher has introduced the product of two distributions on the open interval $(a, b),-\infty \leqq a<b \leqq \infty$, as the distributional limit of $\left(S * \delta_{n}\right)\left(T * \delta_{n}\right)$, where $\delta_{n}(x)=n \rho(n x)$ and p is a fixed C^{∞} function having the following properties: (1) $\rho(x)=0$ for $|x| \geqq 1$, (2) $\rho(x) \geqq 0$, (3) $\mathrm{p}(\mathrm{x})=\rho(-x)$, (4) $\int_{-1}^{1} \rho(x) d x=1$ and (5) $\rho^{(r)}(x)$ has only r changes of sign for $r=1,2, \ldots$. And he has shown that the product of the distributions $\boldsymbol{\delta}^{(k)}$ and Pf. ${\underset{\sim}{\lambda+1}}_{\boldsymbol{1}}$ in his sense exists and equals $-\frac{\left.-1)^{k+1} \cdot \frac{k!}{(2 k}+1\right)!}{(2)!}{ }^{(2 k+1)}$ foranynon-negative integer fc.

In our previous paper [6] with collaboration of S. Hatano, we have shown
 Tillmann exists and the same result as above holds true.

In the proof of Proposition 2 below we shall need the following lemma, which we have shown in [4, p. 71].

LEMMA 2. Let E and F be spaces of type (F). Let G be a locally convex space. If a family of separately continuous bilinear maps $u_{\alpha}, \alpha \in A$, of $E \times F$ into G is bounded at each point of $E \times F$, then $\left\{u_{\alpha}\right\}_{\alpha \in A}$ is equicontinuous.

PROPOSITION 2. Let $S, T \in \mathscr{D}^{\prime}\left(R^{N}\right)$. If the multiplicative product (S^{*} $\left.(\alpha T)^{\vee}\right) \Delta \delta$ exists for any $\alpha \in \mathscr{D}\left(R^{N}\right)$, then the product $S \Delta T$ exists.

PROOF. Let K be any compact subset of $\boldsymbol{R}^{\boldsymbol{N}}$ and let φ e $\mathscr{D}_{\mathbf{K}}$. There exist two compact subsets K^{\prime} and $K^{\prime \prime}$ of R^{N} such that $K \subset K^{\prime \prime}$ and $K^{\prime \prime} \subset \dot{K}^{\prime}$. Let α_{1} $\in \mathscr{D}\left(R^{N}\right)$ such that $\alpha_{1}=1$ on K^{\prime} and

$$
\alpha_{1} S *(\psi T)^{\vee}=S *(\psi T)^{\smile}
$$

in a 0 -neighbourhood for any ψ e $\mathscr{D}_{K^{\prime \prime}}$. Then we have

$$
\left(\alpha_{1} S *(\psi T)^{\vee}\right) \Delta \delta=\left(S *(\psi T)^{\vee}\right) \Delta \delta, \quad \psi \in \mathscr{D}_{K^{\prime \prime}}
$$

For $\alpha_{2} \in \mathscr{D}_{K^{\prime \prime}}$ sucn that $\alpha_{2}=1$ in a small neighbourhood of K we have

$$
\lim _{n \rightarrow \infty}<\left(S * \rho_{n}\right)\left(T * \rho_{n}\right), \phi>=\lim _{n \rightarrow \infty}<\left(\alpha_{1} S * \rho_{n}\right)\left(\alpha_{2} T * \rho_{n}\right), \phi>,
$$

where $\left\{\rho_{n}\right\}$ is any restricted δ-sequence.
To estimate the right hand side of the equation we may assume that φ is a periodic function with period $2 l$ for each coordinate where / is taken large enough. Thus we can write

$$
\phi=\sum c_{m} e^{i \frac{\pi}{l}\langle m, x\rangle}
$$

where $\Sigma\left|c_{m}\right|(1+|m|)^{k}<\infty$ for any positive integer fc. Writing $e(m)=e^{\left.i \frac{\pi}{I}<m, x\right\rangle}$, we have

$$
\begin{aligned}
<\left(\alpha_{1} S * \rho_{n}\right)\left(\alpha_{2} T * \rho_{n}\right), \varphi> & =\Sigma c_{m}<\left(\alpha_{1} S * \rho_{n}\right)\left(\alpha_{2} T * \rho_{n}\right), e(m)> \\
& =\Sigma c_{m}<\alpha_{1} S * \rho_{n}, e(m) \alpha_{2} T * \rho_{n} e(m)> \\
& =\Sigma c_{m}<\alpha_{1} S *\left(e(m) \alpha_{2} T\right)^{2}, \check{\rho}_{n} * \rho_{n} e(m)>.
\end{aligned}
$$

Since the product $\left(\alpha_{1} S *(\psi T)^{\vee}\right) \Delta \delta$ exists for any $\psi \in \mathscr{D}_{K^{\prime \prime}}$, we can write for any $\chi \in \mathscr{B}$

$$
\begin{aligned}
<\left(\alpha_{1} S *(\psi T)^{\smile}\right) \Delta \delta, \chi> & =\lim _{n \rightarrow \infty}<\left(\alpha_{1} S *(\psi T)^{\smile} * \rho_{n}\right) \rho_{n}, \chi> \\
& =\lim _{n \rightarrow \infty}\left\langle\alpha_{1} S *(\psi T)^{\smile}, \check{\rho}_{n} * \rho_{n} \chi\right\rangle .
\end{aligned}
$$

Here the map

$$
(\psi, \chi) \longrightarrow<\alpha_{1} S *(\psi T)^{\check{ }}, \check{\rho}_{n} * \rho_{n} \chi>
$$

of $\mathscr{D}_{K^{\prime \prime}} \mathrm{X} \mathscr{B}$ into the complex number field is separately continuous for any ρ_{n} and the family of maps is bounded at each point of $\mathscr{D}_{K^{\prime \prime}} \times \mathscr{B}$. By virtue of Lemma 2 this family of maps is equicontinuous. Thus there exist a constant M and a positive constant k such that

$$
\left|<\alpha_{1} S *(\psi T)^{\sim}, \check{\rho}_{n} * \rho_{n} \chi>\left|\leqq M \sup _{|p| \leq k}\right| D^{p} \psi\right| \sup _{|p| \leq k}\left|D^{p} \chi\right|
$$

and consequently there exists a constant M^{\prime} such that

$$
\left|<\alpha_{1} S *\left(e(m) \alpha_{2} T\right)^{乞}, \check{\rho}_{n} * \rho_{n} e(m)>\right| \leqq M^{\prime}(1+|m|)^{2 k} .
$$

From $\Sigma\left|c_{m}\right|(1+|m|)^{2 k}<\infty$ it follows that $\Sigma c_{m}<\alpha_{1} S *\left(e(m) \alpha_{2} T\right)^{\nu}, \check{\rho}_{n} * \rho_{n} e(m)>$ is normally convergent. Furthermore each term has a limit as $n \rightarrow \infty$. Thus the multiplicative product $S \Delta T$ exists.

Proposition 3. Let $S, T \in \mathscr{D}^{\prime}\left(R^{N}\right)$. If the multiplicative product $S \Delta \beta T$ existsfor any $\beta \in \mathscr{E}\left(R^{N}\right)$, then the product $\left(S *(\alpha T)^{\vee}\right) \Delta \delta$ exists for any $\alpha \in \mathscr{D}\left(R^{N}\right)$.

PROOF. Let K be any compact subset of R^{N} and take a compact subset K_{1} with $K \subset \dot{K}_{1}$. If we take $\beta \in \mathscr{D}\left(R^{N}\right)$ such that $\beta=1$ on K_{1}, then $\beta S *(\alpha T)^{\nu}=S *$ $(\alpha T)^{\vee}$ in a 0 -neighbourhood for any α e $\mathscr{D}_{\boldsymbol{K}}$. From the fact that

$$
(1-\beta) S \Delta(\alpha T)^{\llcorner }=\lim _{n \rightarrow \infty}\left((1-\beta) S * \rho_{n}\right)\left((\alpha T)^{\llcorner } * \rho_{n}\right)=0
$$

it follows that the multiplicative product $\beta S \Delta \alpha T$ exists for any $\alpha \in \mathscr{D}_{K}$ and equals $S \Delta \alpha T$. Thus we have for any $\varphi e \mathscr{D}\left(R^{N}\right)$

$$
\left.<\left(S *(\alpha T)^{\vee}\right) \Delta \delta, \varphi\right\rangle=\lim _{n \rightarrow \infty}\left\langle\left(\beta S *(\alpha T)^{\vee} * \rho_{n}\right) \rho_{n}, \varphi\right\rangle
$$

if the right hand side exists. In the same way as in the proof of Proposition 2 we can write

$$
\varphi=\Sigma c_{m} e^{i \frac{\pi}{l}<x, m>}=\Sigma c_{m} e(m),
$$

where $\Sigma\left|c_{m}\right|(1+|m|)^{k}<\infty$ for any positive integer k and / is taken sufficiently large. Then we have

$$
\begin{aligned}
<\left(\beta S *(\alpha T)^{\imath} * \rho_{n}\right) \rho_{n}, \phi> & =\Sigma c_{m}<\beta S *(\alpha T)^{\imath}, \check{\rho}_{n} * \rho_{n} e(m)> \\
& =\Sigma c_{m}<\beta S,(\alpha T) * \check{\rho}_{n} * \rho_{n} e(m)> \\
& \left.=\Sigma c_{m}<\left(\beta S * \rho_{n}\right)\left(e(-m) \alpha T * \rho_{n}\right), e(m)\right\rangle .
\end{aligned}
$$

By the existence of the product $\beta S \Delta \chi T$ for any $\chi e \mathscr{D}_{K}$ there exist a constant M and a positive integer k such that

$$
\left|<\left(\beta S * \rho_{n}\right)\left(\chi T * \rho_{n}\right) \psi>\left|\leqq M \sup _{|p| \leq k}\right| D^{p} \chi\right| \sup _{|p| \leq k}\left|D^{p} \psi\right|
$$

for any $\psi \in \mathscr{B}$ and therefore we have the inequality

$$
\left|<\left(\beta S * \rho_{n}\right)\left(e(-m) \alpha T * \rho_{n}\right), e(m)>\right| \leqq M_{1}(1+|m|)^{2 k}
$$

with a constant M_{1}. Thus the sequence $\Sigma c_{m}<\left(\beta S * \rho_{n}\right)\left(e(-m) \alpha T * \rho_{n}\right), e(m)>$ is normally convergent and we have

$$
\lim _{n \rightarrow \infty}<\left(\beta S * \rho_{n}\right)\left(e(-m) \alpha T * \rho_{n}\right), e(m)>=<\beta S * e(-m) \alpha T, e(m)>.
$$

Consequently we see that the limit of $\left\langle\left(\beta S *(\alpha T)^{2} * \rho_{n}\right) \rho_{n} \phi>\right.$ exists as $n \rightarrow \infty$, which means that the product $\left(\beta S *(\alpha T)^{\vee}\right) \Delta \delta=\left(S *(\alpha T)^{\vee}\right) \Delta \delta$ exists.

Now recall the definition of the multiplicative product $S T$ of $S \in \mathscr{D}^{\prime}\left(R^{N}\right)$ and $T \in \mathscr{D}^{\prime}\left(R^{N}\right)$ in the sense of Y. Hirata-H. Ogata and J. Mikusínski. The product $S T$ is defined as one of the limits of the sequences in the following equivalent conditions ([11]):
(1) The distributional limit $\lim _{n \rightarrow \infty}\left(S * \rho_{n}\right)\left(T * \tilde{\rho}_{n}\right)$ exists for every δ-sequences $\left\{\rho_{n}\right\}$ and $\left\{\tilde{\rho}_{n}\right\}$:
(2) The distributional limit $\lim _{n \rightarrow \infty}\left(S * \rho_{n}\right)$ Texists for every δ-sequence $\left\{\rho_{n}\right\}$:
(3) The distributional limit $\lim _{n \rightarrow \infty}^{n \rightarrow \infty} S\left(T * \rho_{n}\right)$ exists for every δ-sequence $\left\{\rho_{n}\right\}$. Here a δ-sequence $\left\{\rho_{n}\right\}$ is a sequence of non-negative functions $\rho_{n} \in \mathscr{D}\left(R^{N}\right)$ with the following properties:
(i) $\operatorname{supp} \rho_{n}$ converges to $\{0\}$ as $n \rightarrow \infty$;
(ii) $\int \rho_{n}(x) d x=1$, the integral being extended to the whole N-dimensional space.

In [11, p. 229] we showed that $S T$ exists if and only if, for any $\alpha \in \mathscr{D}\left(R^{N}\right)$, there exists a 0 -neighbourhood in which $\alpha S * \check{T}$ is a bounded function continuous at 0 and that $\langle S T, \alpha\rangle=(\alpha S * \check{T})(0)$ in this case.

We may define the multiplicative product $S \cdot T$ as the distributional limit $\lim _{n \rightarrow \infty}\left(S * \rho_{n}\right)\left(T * \rho_{n}\right)$, if it exists for every δ-sequence $\left\{\rho_{n}\right\}$. Since the property (iii) of a restricted δ-sequence $\left\{\rho_{n}\right\}$ does not play any role in the proofs of the above two propositions, we have the analogues of Propositions 2 and 3 for such multiplication.

PROPOSITION 4. Let $S, T \in \mathscr{D}^{\prime}\left(R^{N}\right)$. If the product $\left(\mathbf{S} *(\alpha T)^{\vee}\right) \boldsymbol{\delta}$ exists for any $\alpha \in \mathscr{D}\left(R^{N}\right)$, then the product $S T$ exists.

PROPOSITION 5. Let 5, $T \in \mathscr{D}^{\prime}\left(R^{N}\right)$. If the product $S \beta T$ exists for any $\beta e \mathscr{E}\left(R^{N}\right)$, then the product $\left(S *(\alpha T)^{\vee}\right) \delta$ exists for any $\alpha \in \mathscr{D}\left(R^{N}\right)$.

REMARK. Let $\left\{\rho_{n}\right\}$ be any fixed δ-sequence. We may define another multiplicative product of $S E \mathscr{D}^{\prime}\left(R^{N}\right)$ and $T \in \mathscr{D}^{\prime}\left(R^{N}\right)$ as the distributional limit $\lim _{n \rightarrow \infty}\left(\mathrm{~S}^{*}\right.$ $\left.\rho_{n}\right)\left(T * \rho_{n}\right)$, if it exists. For such multiplication we have also the analogues of Propositions 4 and 5.

We have shown in [5, p. 162] that if the products $S \circ \frac{\partial T}{\partial x_{\boldsymbol{j}}}$ exist for $J=1$, $2, \ldots, N$, then the products $\mathrm{S}^{\circ} \mathrm{T}$ and $\frac{\partial S}{\partial x_{j}} \circ T$ exist for $j=1,2, \ldots, N$ and $\frac{\ddots}{\partial x_{j}}(S \circ T)$ $=\frac{\hat{V} S}{\partial x_{j}} \circ T+S \circ \frac{\hat{z} x}{\partial x_{j}}$ holds. The same property holds also true of the multiplicative product $S T$. But the statement is not true in general for the multiplication Δ. Let $N=1$. The product $\delta^{\prime} \circ$ Pf. $\frac{1_{1}}{x^{2}}$ exists but the product $\delta^{\prime} \Delta$ Pf. ${ }^{1} \perp$ does not exist. In fact, let $\rho \in \mathscr{D}(R)$ such that $\rho \geqq 0$ and ${ }^{\wedge} \mid \rho(x) d \models 1$, and put $\rho_{n}(x)$ $=n \rho(n x)$. Then $\left\{\rho_{n}\right\}$ is a restricted δ-sequence and we have

$$
\left.<\left(\frac{1}{x} * \rho_{n}\right) \rho_{n}^{\prime}, \boldsymbol{\rho}>=<\frac{1}{x}, \rho_{n}^{\prime} \phi * \check{\rho}_{n}\right\rangle
$$

for any $\varphi e \mathscr{D}(R)$. If we take $\varphi e \mathscr{D}(R)$ such that $\varphi=1$ in a 0 -neighbourhood, then for a sufficiently large n we have

$$
\begin{aligned}
<\frac{1}{x}, \rho_{n}^{\prime} * \check{\rho}_{n}> & =n^{2}<\frac{1}{x}, \rho^{\prime} * \check{\rho}> \\
& =2 n^{2} J_{0}^{\infty} x^{\prime 2}(\rho * \check{\rho}(x)-\rho * \check{\rho}(0)) d x
\end{aligned}
$$

where $\rho * \check{\rho} \geqq 0$ and $\rho * \check{\rho}(0)=\int_{-\infty}^{\infty} \rho^{2}(x) d x$. In the relations

$$
\begin{aligned}
(\rho * \check{\rho})^{2} & =\left(\int \rho(x-t) \rho(-t) d t\right)^{2} \\
& \leqq\left(\int \rho^{2}(x-t) d t\right)\left(\int \rho^{2}(-t) d t\right)=(\rho * \check{\rho}(0))^{2}
\end{aligned}
$$

the equality does not hold and therefore

$$
\int_{0}^{\infty} x^{-2}(\rho * \check{\rho}(x)-\rho * \check{\rho}(0)) d x<0 .
$$

Thus $<\left(\frac{1}{x} * \rho_{n}\right) \rho_{n}^{\prime}, \Phi>$ does not converge. This means the product $\delta^{\prime} \Delta \mathrm{Pf} . \pm$ does not exist.

Moreover the product $\delta^{\prime \prime} \Delta$ Pf. $\frac{1}{x}$ does not exist. In fact, for any restricted δ-sequence $\left\{\rho_{n}\right\}$ and any $\varphi e \mathscr{D}(R)$ we have

$$
\begin{aligned}
<\rho_{n}^{\prime \prime}\left(\frac{1}{x} * \rho_{n}\right), \phi> & =<\frac{1}{x}, \rho_{n}^{\prime \prime} \phi * \check{\rho}_{n}> \\
& =<\frac{1}{x} \cdot\left(n_{n}^{\prime} \not\right)^{\prime} * \check{n}_{n}-\rho_{n}^{\prime} \phi^{\prime} * \check{\rho}_{n}> \\
& =<\frac{1}{x^{2}}, \rho_{n}^{\prime} \phi * \check{\rho}_{n}>-<\rho_{n}^{\prime}\left(\frac{1}{x} * \rho_{n}\right), \phi^{\prime}>
\end{aligned}
$$

From the facts that the product $\delta^{\prime} \Delta \mathrm{Pf} \cdot \frac{1}{x} \overline{2}^{2}$ exists but the product $\delta^{\prime} \Delta \mathrm{Pf} \cdot \frac{1}{x}$ does not exist it follows that $<\frac{1}{x} \overline{2}, \rho_{n}^{\prime} \phi * \check{\rho}_{n}>$ converges to $\left\langle\delta^{\prime} \Delta\right.$ Pf. $\left.\frac{1}{x} \cdot \overline{2}, \phi\right\rangle$ but $<\rho_{n}^{\prime}$ $\left(\frac{\cdot}{\iota} * \rho_{n}^{\prime}\right), \phi^{\prime}>$ does not converge as $n \rightarrow \infty$ and therefore $<\rho_{n \prime \prime}^{\prime \prime}\left(\frac{\cdot}{\imath} * \rho_{n}^{\prime}\right), \phi>$ does not converge.

It is easily shown that if the products $S \Delta T$ and $S \Delta \frac{\wedge T}{\wedge \wedge_{j}}$ exist for $j=1,2, \ldots, N$, then the product $\frac{\partial S}{\partial x_{j}} \Delta T$ exists and $\frac{\partial}{\partial x_{i}}(S \Delta T)=\frac{\partial S}{\partial x_{i}} \Delta T+S \Delta \frac{\partial T}{\partial x_{j}}$ holds. From the facts that $\delta \Delta \mathrm{Pf} \cdot \frac{1}{X}$ exists but $\delta^{\prime} \Delta \mathrm{Pf} \cdot \frac{1}{X}$ does not exist it follows that $\partial \Delta$ Pf. $\frac{1}{i}{ }_{2}$ does not exist.

We have shown in [5, p. 162] that if the product $S \circ T$ exists, then $(\alpha S) \circ T$ and $S \circ(\alpha T)$ exists for any α e $\mathscr{E}\left(R^{N}\right)$ and $(\alpha S) \circ T=\alpha(S \circ T)=S \circ(\alpha T)$. The same property holds also true of the multiplicative product $S T$. But the statement is not true in general for $S \Delta T$. In fact, let $N=1$ and take $S=\delta^{\prime}$ and $T=$ Pf. $\frac{1}{x^{-2}}$. Then the product $\delta^{\prime} \Delta \mathrm{Pf} \cdot \frac{1}{\bar{X}}{ }_{\mathbf{2}}$ exists but $\delta^{\prime} \Delta \mathrm{Pf}_{\dot{X}}^{\prime}-$ and $\delta \Delta \mathrm{Pf}_{\dot{\chi}}^{\prime} \overline{\mathrm{m}^{2}}$ do not exist. On the other hand, if we take $S=\delta$ and $T=\operatorname{Pf} \cdot \frac{1}{X}$, then $(\alpha S) \Delta T=-\frac{\alpha(0)}{2} \delta^{\prime}$ and $\alpha(S \Delta T)=$ $\frac{1}{2} \alpha^{\prime}(0) \delta-\frac{\alpha(0)}{2} \delta^{\prime}$ for any $\alpha \in \mathscr{E}(R)$ and therefore $\alpha(S \Delta T)$ is not equal to $(\alpha S) \Delta T$ in general.

Let $5, T$ be tempered distributions on R^{N} and suppose S and T are \mathscr{S}^{\prime} composable, that is, $\left(S_{x} \otimes T_{y}\right) \phi(\hat{x}+\hat{y}) \in\left(\mathscr{D}_{L^{1}}^{\prime}\right)$ for any $\varphi \in \mathscr{S}\left(R^{N}\right)$. Then the product $S f$ exists and $(S * T)^{\wedge}=S T$ ([3, p. 151]). Furthermore $\left(S * \rho_{n}\right)\left(\mathrm{f} * \tilde{\rho}_{n}\right)$ converges in $\mathscr{S}^{\prime}\left(R^{N}\right)$ to $\widehat{S T}$ as $n \rightarrow \infty$ for any δ-sequences $\left\{\rho_{n}\right\}$ and $\left\{\tilde{\rho}_{n}\right\}([11$, p. 233]). Thus, if 5 and T are \mathscr{S}^{\prime}-composable, then $\hat{S} \Delta \hat{T}$ exists, $\hat{S} \Delta \hat{T}=(S * T)^{\wedge}$ and $\left(\hat{S} * \rho_{n}\right)\left(\hat{T} * \rho_{n}\right)$ converges to $\hat{S} \Delta \hat{T}$ in $\mathscr{S}^{\prime}\left(R^{N}\right)$ for any restricted δ-sequence $\left\{\rho_{n}\right\}$

PROPOSITION 6. Let $S \in \mathscr{D}^{\prime}\left(R^{N}\right)$. Then the following conditions are equivalent to each other:
(1) $S \in \mathscr{E}\left(R^{N}\right)$.
(2) $S \triangle$ Texists for any $T \in \mathscr{D}^{\prime}\left(R^{N}\right)$.
(3) $S \Delta T$ exists for any $T \in \mathscr{E}^{\prime}\left(R^{N}\right)$.

PROOF. It suffices to prove the implications $(1) \Rightarrow(2)$ and $(3) \Rightarrow(1)$.
(1) $\Rightarrow(2)$. Let $S \in \mathscr{E}\left(R^{N}\right)$. Then the product $S T$ exists for any $T \in \mathscr{D}^{\prime}\left(R^{N}\right)$, and a fortiori $S \Delta T$ exists.
(3) $\Rightarrow(1)$. Suppose $S_{\Delta} T$ exists for any $T \in \mathscr{E}^{\prime}\left(R^{N}\right)$. For any restricted δ sequence $\left\{\rho_{n}\right\}$, the map

$$
T \longrightarrow\left(S * \rho_{n}\right)\left(T * \rho_{n}\right)
$$

of $\mathscr{E}^{\prime}\left(R^{N}\right)$ into $\mathscr{D}^{\prime}\left(R^{N}\right)$ is continuous and $\mathscr{E}^{\prime}\left(R^{N}\right)$ is a barrelled space. By the Banach-Steinhaus theorem the map $\mathscr{E}^{\prime}\left(R^{N}\right) \equiv T \rightarrow \lim _{n \rightarrow \infty}\left(S * \rho_{n}\right)\left(T * \rho_{n}\right)=S \Delta T \in \mathscr{D}^{\prime}\left(R^{N}\right)$ is continuous, and therefore for any ϕ e $\mathscr{D}\left(R^{n \rightarrow \infty}\right)^{\text {there exists an element } \phi(S)}$ e $\mathscr{E}\left(R^{N}\right)$ such that

$$
\langle\mathbf{S \Delta T}, \varphi\rangle=\langle\phi(S), T\rangle
$$

If we take $\Gamma=\alpha \mathrm{E} \mathscr{D}\left(R^{N}\right)$, then $\langle S \Delta \alpha, \phi\rangle=\langle\alpha S, \varphi\rangle=\langle\phi S, \alpha\rangle$. Thus $\varphi S=\phi(S)$ e $\mathscr{E}\left(R^{N}\right)$, which implies $S \in \mathscr{E}\left(R^{N}\right)$.

Let ξ be a C^{∞} map of a non-empty open subset $\Omega \subset R^{N}$ into another open subset $\Omega^{\prime} \subset R^{n}$. If the map $\xi^{*}: \mathscr{D}\left(\Omega^{\prime}\right) \ni \alpha \rightarrow \alpha_{\circ} \xi \in \mathscr{D}^{\prime}(\Omega)$ is continuously extended to the map of $\mathscr{D}^{\prime}(\Omega)$ (or equivalently of $\mathscr{E}^{\prime}(\Omega)$)into $\mathscr{D}^{\prime}(\Omega)$, then the map ξ is said to be admissible ($\left[7\right.$, p. 76]) and $\xi^{*} S$ is said to be the transposed image of 5 e $\mathscr{D}^{\prime}\left(\Omega^{\prime}\right)$. Then we see that $n \leqq N([7, \mathrm{p} .77])$.

Let ξ and η be C^{∞} maps of a non-empty open subset $\Omega \subset R^{N}$ into another open subsets $\Omega_{1} \subset R^{p}$ and $\Omega_{2} \subset R^{q}$ respectively, and assume the map $\chi=(\xi, \eta)$ of Ω into $\Omega_{1} \times \Omega_{2}$ has no critical point. By the facts that the multiplication o is invariant under the diffeomorphism and has the local property ([5, pp. 162 $-165])$ we conclude that the multiplicative product $\left(\xi^{*} S\right) \Delta\left(\eta^{*} T\right)$ exists for every $S e$ $\mathscr{D}^{\prime}\left(\Omega_{1}\right)$ and $T \in \mathscr{D}^{\prime}\left(\Omega_{2}\right)$.

PROPOSITION 7. Let ξ be an admissible map of $\Omega \subset R^{N}$ into $\Omega_{1} \subset R^{p}$ and η be an admissible map of Ω into $\Omega_{2} \subset R^{q}$. If the multiplicative product $\left(\xi^{*} S\right) \Delta$ ($\eta^{*} T$) exists for every $S \in \mathscr{D}^{\prime}\left(\Omega_{1}\right)$ and $T \in \mathscr{D}^{\prime}\left(\Omega_{2}\right)$, then the map $\chi=(\xi, \eta)$ is admissible.

PROOF. Let $\left\{\rho_{n}\right\}$ be any restricted δ-sequence defined in Ω and consider the map

$$
(S, T) \longrightarrow\left(\left(\xi^{*} S\right) * \rho_{n}\right)\left(\left(\eta^{*} T\right) * \rho_{n}\right)
$$

of $\mathscr{E}^{\prime}\left(\Omega_{1}\right) \times \mathscr{E}^{\prime}\left(\Omega_{2}\right)$ into $\mathscr{D}^{\prime}(\Omega)$ for a large n. It is a separately continuous bilinear map for each ρ_{n} and $\left(\left(\xi^{*} S\right) * \rho_{n}\right)\left(\left(\eta^{*} T\right) * \rho_{n}\right)$ converges in $\mathscr{D}^{\prime}(\Omega)$ to $\left(\xi^{*} S\right)^{\Delta}$
$\left(\eta^{*} T\right)$ as $n \rightarrow \infty$. Since $\mathscr{E}^{\prime}\left(\Omega_{1}\right)$ and $\mathscr{E}^{\prime}\left(\Omega_{2}\right)$ are barrelled, the bilinear map

$$
(\mathrm{S}, \mathrm{~T}) \longrightarrow\left(\xi^{*} S\right) \Delta\left(\eta^{*} T\right)
$$

of $\mathscr{E}^{\prime}\left(\Omega_{1}\right) \times \mathscr{E}^{\prime}\left(\Omega_{2}\right)$ into $\mathscr{D}^{\prime}(\Omega)$ is hypocontinuous. Owing to the theorem of Grothendieck ([2, p. 66]), since $\mathscr{E}^{\prime}\left(\Omega_{1}\right)$ and $\mathscr{E}^{\prime}\left(\Omega_{2}\right)$ are (DF)-spaces, the map is continuous and therefore it can be continuously extended to the map of $\mathscr{E}^{\prime}\left(\Omega_{1}\right)$ $\hat{\otimes}_{\pi} \mathscr{E}^{\prime}\left(\Omega_{2}\right)=\mathscr{E}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$ into $\mathscr{D}^{\prime}(\Omega)$; this means that the map $\chi=(\xi, \eta)$ is admissible.

Since the property (iii) of a restricted δ-sequence $\left\{\rho_{n}\right\}$ does not play any role in the proofs of the above two propositions, the analogues of Propositions 6 and 7 remain valid for the multiplication.

References

 72 (1972), 201-204.
[2] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil Math. 3 (1954), 57122.
[3] Y. Hirata and H. Ogata, On the exchangeformulafor distributions, J. Sci. Hiroshima Univ. Ser. A-I 22 (1958), 147-152.
[4] M. Itano, On the multiplicative products ofdistributions, J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 51-74.
[5], On the theory of the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 151-181.
[6] and s. Hatano, Note on the multiplicative products of $\boldsymbol{x}_{+}^{\alpha}$ and \mathfrak{r}_{+}^{β}, Mem. Fac. Gen. Ed. Hiroshima Univ. III 8 (1974), 159-174.
[7 — and A. Jóichi, On C^{∞} maps which admit transposed image of every distribution, J. Sci. Hiroshima Univ. Ser. A-I 31 (1967), 75-88.
[8] S. Łojasiewicz, Sur la valeur et la límite d'une distribution dans un point, Studia Math. 16 (1957), 1-36.
[9] J. Mikusiński, Criteria of the existence and of the associativity of the product of distributions, Studia Math. 21 (1962), 253-259.
[10] R. Shiraishi, On the value of distributions at a point and the multiplicative products, J. Sci. Hiroshima Univ. Ser. A-I 31 (1967), 89-104.
[11] and M. Itano, On the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I 28 (1964), 223-235.

