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Statement of Results

This paper is a continuation of [5] with the same title. We shall use all
notations defined in Part I [5].

In Theorem A, we constructed nonzero elements p,,, t=1,1<r<p—1, of
order p in Gy, the stable homotopy group of spheres. Here p denotes always
a fixed prime integer with p=5. The following result is a sequel to Theorem
A. Weputg=2(p-—1).

THEOREM AIl.  There exist nonzero elements
Pr0 € Oupre ypg-22 1 =2
of order p such that
Pt €{Pros P> %1 -

REMARK. For t=1, there is no element p; o with p; ; € {py,0, P> %> This
fact is equivalent to the nontriviality of the differential on E3;2*8,proved by
H. Toda [§], in the Adams spectral sequence. The first element p, o coincides
with the element p, constructed in [2].

We recall the stable homotopy rings &Z4(M) and o (X(r)),r=1, of M
=S'U ,e? and X(r)=S*M U ,.CS"*2M; « being the generator of o (M)Z,
(see Definition 1.1). We consider elements in &7(M)and & .(X(p)xorrespond-
ing to the ones in Theorem A II, and obtain the following two results as sequels
to Theorems B and C.

THEOREM BII.  There exist nonzero elements
Po(t) € (tptt-1ypg-1(M), tz2,

such that Po(Da=p(t), po(DeP~t=aP~1po()=Bp» Po()P=0Ppo() =0 and
Txi*po(H)=Pf 0

Here p(t) and B, are the elements in &/4(M) introduced in Theorem B
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and [9], respectively, and we denote the cofiberings for M and X(r) by St -
M—2,8% and S2M =, X(r) X, §7*3M. Recall also the natural mapA:
SiX(r—1)-X().

THEOREM CII. There exist nonzero elements
R(P)(') € Mt(p+ l)pq(X(p))’ t z 2’

such that R(p)PA=AR(p—1)" and kpujER(p)"=po(t), where R(p—1)' is
the t-times composition of the element R(p—1) constructed in Theorem C.

A sequel to Theorem D is given as follows:

THEOREM DII.  The element R(p)® induces the multiplication by an ele-
ment congruent to [V]P* modulo [CP(p— 1)]°~! on the complex bordism theory,
where [V]e€QY is the class of the Milnor manifold for the prime p with dim V
=2(p®— 1). Hence the mapping cone of R(p)'? realizes a cyclic QY-module

Q%/(p, [CP(p—1)17, [VI?*+[N,])
Jor some [N,]e([CP(p —1)]7~1) with dim N,=2t(p?>—1).

The rings &Zx(M) and &4 (X(r))form differential algebras over Z, with
differentials D and O defined in [1] and [9], respectively.

PROPOSITION E. For even t, the elements po(t) and R(p)® can be chosen
so that D(py(t))=0 and O(R(p)V)=0.

In §8, we shall compute & 4(M) completely in degree <(2p?+ p)g¢—4 (Theo-
rem 8.10) and partially in higher degree (Proposition 8.11), by the same tech-
niques as [4]. In §9, Theorems AII-DII and Proposition E will be proved.
From Proposition E, we shall, in § 10, slightly generalize Theorems A’-D’ for
even t. The results are Theorems A'II-D’II.

§8. Some results on <7, (M)

We recall the structure of the ring & 4«(M), M =S1U ,e2, from [4], (cf. [1]).
This is a differential graded algebra over Z, with differential D of degree +1
[4; (1.6)]. The subalgebra

K* = ZkKk: KerD
is commutative [4; (1.11)], and there are direct sum decompositions

&.1) A (M) = K+ 0*Kyy 1 = K+ 04K 11,
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where the right and the left translations 6* and d, by the element § =in € &/ _ (M)
are monomorphic on K, [1; Th. A (¢)]. For any yeG,, the smash product
yA 1y lies in K, [4; Lemma 3.1], and the subgroup Gy A 1, of K is naturally
isomorphic to G,®Z,[4; Lemma 3.3]. For any ye G,_, of order p, there is
an element [y] € K, such that m.i*[y] = y [4; Lemma 32|, where S! — L5 M
— =,8? is the cofibering for M. This element [y] is determined up to the sub-
group G, A 1, The subgroup [G,_;*Z,] of K;, which consists of those elements
[y] for ye Gy,_(*Z,, is isomorphic to G,_,*Z,by the homomorphism m,i* [4;
Lemma 3.3], and there is a direct sum deéomposition

(8.2) Kk = [Gk_l*Zp]-i- Gk A IM ( ~ G,‘_I*Zp—i-Gk@ Zp).

The equalities (8.1) and (8.2) provide that o (M)is computed from G,_,, G,
and G4, [4; Th. 3.5]. Ifye G,_,*Z then there is a relation [4; (3.5)]

(8.3) Y A Ly = [y16—(=1)*3[y].

Let Au(x, §) be the subalgebra generated by the element a €%/ (M), g =2(p —
1), and 8. Then a Z,-basis for A,= A,(a, ) is given as follows [4; Th. 4.1]:

(8.4) Ay = Z{o"}®, A,_y =Z, {0, a""1da},

Az = Z{ar~ 1000}  for r=1;

Ao =Z,{1y}, A1 =Z,{0}, A, =0  forother k,
and hence,
(8.5) for fe*O and rz1, o} and o™*: Ay(a, 0)— Ay, (2, 6) are isomorphic.
We have also [4; pp. 648-651]
(8.6) [e,] =0a", o A 1) = r(@"éd—o"1da),

a, ALy = 16— P~ 160), alp2 A 1y = r(a"?*6—arP*~15a)

In [4; Th. 0.1] we computed the algebra o4«(M) up to degree (p2+3p+1)q
— 6 from our results on G, [3; Th. A]. We have recently determined G, in
higher degrees ([6; Th. C|, [2; Th. 4.1]), and so we can easily continue to com-
pute o7 (M).

LEMMA 8.7. There exists an element k€ Ky, 1Ss<p—3, such that
Tyi*K) =K, the generator of the p-component of Gy -, [6], where fc(s) =
(P> +(s+2p+s+1)q—4. For 1=s<p—4, K, is unique and satisfies oK,
=Bk =0.

x) Zy{d,,..., d;}stands for the Z,-module with basis d,,..., d,.
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PROOF.  Since Ky =Z,, generated by [k.], and Kyy+q= Kisy+pg-1=0
(s £ p-4), we have the result by setting x, = [x]. q.e.d.

We defined the elements By =[B](s=1, s#0 mod p), e=[¢'] and A =[4,]
in Ky ([4; §5], [6; §22]), where B, & and A, are the generators of Gy ([3; Th.
A], [6; Th. C]). For the generators 4’ and u of G,, we also define the fol-
lowing two elements

8.3) A= (2p2+ 1)a—4s
89) u=uN1yeKipip-1y-s

Now let y be any element in the p-component of G, (p2+3p+1)g— 7=k
<(2p*p)q—4. For y of order greater than p, ie, y=a;, /2 or u, the
element y A 1,,is given by (8.6) or (8.9). For y of order p, it suffices by (8.3) to
determine [y]. Furthermore, by [4; Prop. 3.8], it suffices to do for indecompos-
able y, ie., y=a, B, ks, A, A, for which we have [y]=a", B, ki), 1, Aai~1
by (8.6), [4; (5.9)], Lemma 8.7, (8.8), [6; Th. 22.2], respectively. Thus, from
Theorem C of [6], we have obtained the following result.

THEOREM 8.10.  The following elements give a Z,basisfor (M), (p?
+3p +1)g—6<k=(2p®>+p)q—5(a, fee{0, 1}, 0<r<p and s=1 unless other-

wise stated):

atde, at~16ad®  for p?+3p+1=1t < 2p2+p—1;

0By~ 1B1y0® for p+4 =t Z2p+1;

0%(B1)0) B0 for 4<s=Z2p-1,s#p, p+3 Zr+s <2p-1
andfor (r,s) = (p—1,p+1);

0°ad(B1)0) Bsy0® for 4= s=Zp-1forr=0,p+1=s=<2p-2
andfor r =1,s =2p—2;

0%a0)°(B(1y0) B2y0Buy0® for ce{0,1},2 =1 £ p—1

exceptfor b =c=1,r=p—1;

0%(B1)0)ed®  for 4=r=p-1;

0%(B1)0)K0® for 1 £s<p-3,r+s=p-2

6910%; 80ai6®  for 0 < i £ p—4; 6 laidad® for0 £ i < p—35; jde.

We can also determine completely the ring structure in the cited range, but
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we omit the details. For example, the relation [5; Prop. 7.3. (iii)] implies that
Toda's relation (B(;)0)"B=0 (s22,5# -1 modp) [9; Cor. 5.7] also holds
for s= — 1 modp. In [7; Cor. 2] and [6; Th. 22.4], several new relations
have been obtained. The relation (B(;)0)P&=0 clearly holds. The following
corresponds to the result [6; Cor. 21.5] in Gy:

abB2p—1) = 2((By)P " 'Bp+ 1yt (0B(1))P"'0Bp+1y)» z # 0 modp.

We can obtain relations among a, B(s), K and ones among a, A, A similar to
(ii)-(iv) and (vi)-(vii) of [4; Th. 0.1], respectively, and also obtain analogues to
(ix)-(xi), and so on.

We have computed & (M) up to degree corresponding to [6; Th. C]. We
can make further computations corresponding to the recent result [2; Th. 4.1]
on Gy, but can not determine the ring structure because [2; Th. 4.1] does not
give some products in Gy.

In Part I, we gave the elements p(2) and 6(2) in K, such that p(2Q)a?~2 =
Bipy P(R)a?~1=0, 6(2Q)aP~3=p)f2p-1and 6(2)aP~2=0. We also introduced
in [2; Lemma 5.3] a unique element p € K, with pa=p(2).

PROPOSITION 8.11. (i) The group £ (M),k = (2p*+p+i)g-¢, 0 < i <p,
€=0, 1, 2, is the direct sum of A(a, ) in (8.4) and the following subgroup A, ;:

Aia = Z{pd,0p, IV, [yI}  for i=0,

Z,{6(2), pad, pa, (B1)0)P~2Ky)}  for i=1,

Z {o(2a, pa?d, dpa?, 8(B)0)P 3Kk0} for i =2,

Z,{o(Qai"1, paid, dpai}  for 3 Z i p-2,

Z,{par™é, opar~'}  for 1=p —1,

Z,{por="60, B1)0nd, 6P1yon}(+Z,{(8B1))2048} if p = 5) for i = p;
A= Z,{p, mé}  for i=0,

Z {pai} for i=1andfor3 <i<p—1,

Z,{pa?, (B1)0)" =3k (2)8, (8B1))P 30K (3}

(+Z,{(0B1y)?* 28}  if p=15) for i=2,

Z{Bayon}(+Z,{(B10)* 23, (6B)*0A}if p=5) for i=p;
Aio = Z,{nd, on}(+Z,{6p1)04d} if p=15) for i=0,

Z{(BuyO»P k) }(+ Z{(B1y0)?*P*2, (81?2} if p= S)for i = 2,
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0(+Z,{0B1)iid} if p= 5) Jor i =3,
0(+Z{(B1)9)* 2} if /= 5)  for i=p,
0 for i=1andfor4 £i< p—1.
In the above, we put n=(B1)0)""2B(p+2)
(i) The element ipai=1éa€ A, ,,i=1, 5 equal to iac(Qai~'+(i—1)pa‘d

— dpa’ (modulo (B(1)0)P~ 2k y)ifi = 1), where the coefficient a€Z, is independent
of'i. In particular,

2pa P36 = aByyB2p-1)+3pox P26+ dpaP2,
paP~20a = 2paP~15+dpapr=1.
Also the following equality holds:
dpaP~16a = paP~15ad.

PROOF. From discussions similar to those in Theorem 8.10, it is easy
to see (i) with 6(2)ai~! replaced by [p;]. Therelations a(2)a'~! #0 mod Z,{pa‘d
+6pat}(+ Z,{(B1y0)*~ %K)} ifi=1), which provides to replace [p;] by o(2)ai~1,
and (i) follow from the discussions in [2; §5] and [4; §§5-6]. qg.e.d.

COROLLARY 8.12.  The elements p’;€Gprspsjyq-3 1SjS<p—2,given in
[2; Th. 41] can be taken, up to nonzero coefficients,such that p;=mna(2)ai~'i.
For these pj, there are relations p;oy=kapi,for j20, fe*l, j+k=2, where
we interpret p;, =0 fork=p— 1.

§9. Proof of Theorems AII-DII

In this section, we shall prove Theorems AII-DII and Proposition E. We
first prove Theorems AIl, BII and DII assuming CII.

PROOF of CII=DII. Consider the induced homomorphism
R(p)Y: S"O3Y(X(p)) — YX(p)),

where n(t)=1t(p%+ p)qand flg(Jf(p)) = Q§/(p, [P1?) &(p), P=CP(p—1), deg&(p)
=3 (Proposition 3.2). Since A and R(p—1) induce the multiplications by
[P] and by an element congruent to [V1? modulo [P]?~2, we see from the com-
mutativity AR(p—1)'=R(p)PA that R(p){’ is the multiplication by an [M]
such that [M][P]= [V]?*[P]1+[N][P]*®»=2*! for some [N]. Hence we
have [M] = [V]?* mod [P]?~tin QY/(p, [P]P). q.e.d.

In the same way as Definition 4.8, we define elements in r*(M) and G,
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from R(p)®.
DEFINITION 9.1.  Let t=2.
po(t) = k,R(P) V), € A (1pst—1)pg-1(M),
Pro = 1po(1)i = nk,R(P)"jpie Gupie-1)pg-2-

Then the following relation is easily seen from the commutativity AR(p— 1)*
=R(p)"4.

(92) pO(t)‘x = p(t)’ Pe1€ <pt,0’ P, “1) s
where p(t)=k,_R(p— 1)'j,-1and p,1=np(t)i (Definition 4.8).

PROOF of DII=-AIl, BII. This is similar to the proofs of Theorems A
and B [5;p. 105]. It suffices by (9.2) to show p, o #0.

Let & be the MU-Hurewicz homomorphism. By DII, h(R(p)Vj,&
[V1P%(p) mod [P]P~1¢(p)which is not contained in the image of l,xh=hl,,
(1, is the inclusion Y(p)<=X(pkee (3.6)), by Proposition 3.9. Hence R(p)(*)j,i
& Im1,,, which is equivalent to p,o=(mk,)(R(p)"j,i)#0. g.e.d.

Next we prove Theorem CII. To prove CII, we prepare some lemmas.
LEMMA 9.3.  The kernel of
kp—1xjt: {X(1), X(P—D}2pr+2p-1)g-1 — & 2p2+ pg-2(M)

is equal 10 Z,{j,-1kiR(?*XZ{j,-EkYif p=175), where E=(B)0)*A.
PROOF. By Proposition 8.11 and (8.5), we have the following results:

() g 2pdM)Ima* = 0(+ Z,{Jif p = 5),

(2) H@pre2p-139-1(M) T1 Kera* = Z {B,,= k;R(1)%,},

@) (g 29 n(M)Ima* =0,

4) A (2p242p-2)9-1(M) n Kera* =0,

(5)  2pr+p+1y-1(M)/Ima* = 0.

We compute {X(1).M}, for some k by applying the above results to the
exact sequence (1.3)*. From (1) and (2), we have
6) {X(QA), M} 224 2p-1)q-3 = Z{kiR(1)?}(+ Z,{Ek,} if P = 5).
From (3) and (4), we have {X(1), M};p242p-2y4-3=0, and hence, by (1.3),
(7) Juxr {XA), Mo (X)) and jp-gx: XM} > { X)X (p— D}y
are monomorphicfor k =(2p*+2p—1)q—1.
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We also see from (5) that j}: {X(1),M}p2+4 pyg—a=H 2p2+p)g—2(M) 1is
monomorphic. Therefore
Kerk, 14jt = Kerk,_ ;s = Imj,_y4,
which is equal to the desired result by (6) and (7). q.e.d.

LEMMA 9.4, & (3p242p-1)4-1(X(1)) = Z,{B?P6,= 6,57, B>»716, B} (+ Z,{j,
Cky}if p=5), where B? = R(1), 6,=jk,[9] and ¢ =(ﬁ(1)5)21-

PROOF. By Proposition 8.11 and (8.5), & (2p2+2p-1)¢-1(M)/Ima*=0 and

¥ 2p2+2p-2y9-2(M) T1 Kera* = Z,, generated by —Bn)Bizp-1y=Bzp-vb1)=
kiB?r=16,Bj, Hence {X(1), M}zp242p-2)9-4=Z,{kif??716;B}. From this
and (6)-(7) in the proof of Lemma 9.3, the lemma easily follows. g.e.d.

PROOF of Theorem CII. Consider the elements R(p— 1)%j,_;k; and
R(p—1)j,-1kR(1) in {X(1), X(p—1)}(2p242p-1)q-1- Since fcJ*O and &B,
=g2aP~2 =0by [6; (22.2)]these elements lie in Kerfc,  ;4jf. Hence, by Lemma
9.3, we can put

R(p—1)?j,—1ky = Xj,— 1k R(1)? +yj,- &k,
R(p_l)Jp-lklR(l) = x,jp—lklR(l)z_*'yljp—l'}:kly

for some x, y, x’, y'eZ, (y = y'=0 if p=7). Consider the B§ 2-images of
these equalities. Then by Theorem C (c) and (1.4), we get

R(1)%j ks = xj kyR(1)%+ yj &k,
R(1)j ik R(1) = x'j k,R(1)%+y'j, k.

Since 8,=j,k,commutes with R(l) =pr [9], it follows from Lemma 9.4 that
x=x'=1andy =y’'=0,ie.,R(p—1)%j,-1k;=j,- 1k;R(1)? and R(p—1)j,- 1k,;R(1)
=j,-1k,R(1)’.  We obtain therefore

(%) R(p—1)'j,_1ky = j,_ k,R(1)  for t22.

By Lemma 1.5, 4=j,_k,is contained in the following sequence of cofiber-
ings

X(1) —4- STH1X(p—1) -4 SX(p) "= SX(1).

By Lemma 2.5 (i), (*) yields the existence of an element R(p)" e o (X(p)),
t=2, such that R(p)?4A=AR(p—1)*and

9.5 BP~1R(p)® = R(1)'Br~1,
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Consider the element po(2)=k,R(p)‘?)j,. This satisfies po(2)a=p(2) = pa
by (9.2) and [2; Lemma 5.3]. By Proposition 8.11 and (8.5), we have

po(2) = p+xdnd for some xeZ,

Since o (My=A, (2, 6) for k=(2p?+2p—1)q by Proposition 8.11, the Toda

bracket {aP~2, 6nd, o) contains zero. So there is an element S e {X(1),X(p

— 1D} 2p2+2p-2)g Such that k,_,Sj=0nd. Then, replacing R(p)*) by R(p)*

—xA2SBP-1, we obtain k,R(p)®)jz=p. For this R(p)'?), the relations R(p)‘*’4

=AR(p—1)? and (9.5) also hold, because BP~1A4 =0: S1X(p—1)-X(p)—>X(1).
q.e.d.

Finally we consider the element O(R(p)(2))*).

LEMMA 9.6.  The following composition is monomorphic:
ij*: A (2p2+2p)q+ (M) » {M, X(p)}(2p2+2p)q+3 — {M, X(P)}(2p2+2p)q+4'

PROOF. Put I=(2p%2+2p)g-1. From the results on G;,, G, and G,_,
[2; Th. 4.1], we have & (M)=0 if p=27, and =in*G,;=Z,if p=5. If
p=7, the lemma holds obviously, and so we consider the case p = 5.

By Proposition 1.13, 6(j,)=0 and so, by Proposition 1.9 (0), 60),% =0
where 0 in the right side coincides with — D by Proposition 1.12. 'We notice that
(9.7) D is monomorphic on the subgroup i,n*Gy,q of s (M).

For, i47*Gy 4 1= 0*(G, Aly) = 04(G, A1y, and §* and J, are right inverses of D.

In particular, D on /(M) is monomorphic. Since ;_ p,4+1(M)= Z generat-
ed by )04 and since ok(B;,04)=0, jx on (M) is also monomorphic.
Thus, 0j,« —j,«Dis monomorphic. qg.e.d.

LEMMA 9.8. Thefollowing composition is monomorphic:
ky0: {M, X(P)}2p2+ 3p)a+4 — {Ms X(D)}2p2+3p)a+5 — & 2p2+ 2p)q+ 2(X(D)) .

PROOF. Put I=(2p%+3p)q+2. If p=7, then & (M)=o,_,,-(M)=0
and hence {M, X(p)};,+,=0. So we consider the case p = 5.

Since ;- 2,(M)=0, of= 0:,_,(M)— & (M). Since _,4+ (M)=Z,
generated by 0B2)0B2p-1)0= iB2B2,- mand since a26P,,=0 [4; §5], we have
also af=0: &;_ 4+ (M)—>Z;,((M). Hence, we obtain the following com-
mutative diagram of exact sequences :

0— o (M)— {—M, X(P)}t+z — Ml—pq—l(M)

5 e

00— o (M) —> {M, X(P)} 113 — A 1-py(M).

x) For the definition and properties of 4, see § 1,
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From the results on Gy [2; Th. 4.1], o (M)=iyn*G,, for k=1, |—pg—1.
By (9.7), D’s in the above diagram are monomorphic, and hence O is also

monomorphic.

We have &;_,,-3,(M) =0 and A y-3q+ 1(M):Zp{(.3(1)5)2ﬂ(2p—1)for p=>5
Hence o3*=0: {M, X(p)};-34+32>{MX(p)};+3, and k* is monomorphic.
Therefore the lemma follows. g.e.d.

LEMMA 9.9. (3,24 390+ 1(X(P)) IT Ker0 n Kerk,, j=0.

PROOF. Let £ be any element in the left side. ~Then &j=0 by Lemma

9.6. Write §=nk,. Then 0(n)k,=0 and n=0 by Lemma 9.8. Therefore £=0.
g.e.d.

PROOF of Proposition E. It is easily seen that the element &=6(R(p)(?))
satisfies 8(8) =0 and k,&j=0. Then 6(R(p)*))=0 by Lemma 9.9. By setting
R(p)@Y=(R(p)®)!, we obtain A(R(p)?*?)=0 and D(po(21))=0. q.e.d.

§ 10. Generalization of Theorems A'-D’

We considered in § 6 a generalization of the elements in Theorems A and
B for =0 mod p and obtained Theorems A'-D'. In the same way, we shall
generalize the elements in Theorems AII and BII for 1 =0 mod 2p.

The following result corresponds to Lemma 6.1.

LEMMA 10.1. Let A=j,k,. Then
Axp(P8) = R(p)P4—AR(p)®.

PROOF. Since <a?, ond, a?> =0, 1=(B1)0)?"2B(,+2pthere is an element
S’ € A (3p242p)(X(PWith k,Sj= 016 (We can take S’ =A2SBP~! for the element
S in the proof of Theorem CII). Then, by routine calculations, the following
results are verified:

(102) ‘R[(2p2+p)q— 1(X(P)) = Zp{R(P)(z)AAR(P)(Z); S’AsASl}
(+Z,{jlk,if p= 5), where £ = (ﬁ(l)‘s)z'{-
(10.3) k¥ jpse 2p2+ pyg-1(M) = Z,{AR(p)?24S'4} .

Put d =2x,)(pd)—R(p)P 4+ AR(p)®Then, dA =Ad =0 in the same way
as in Lemma 6.1. Hence, d=0 for p27 and d=xj,k,xeZ, for p=>3.
It follows easily from Theorem CII and (9.5) that BP~ 1y, (pd)AP~'= 0,
BP~(R(p)P4— AR(p)*))A?~' =R(1)?6, —6,R(1)>=0 and Br~'j Lk, AP~ =j Lk,
which is nonzero by Lemma 9.4, Hence x=0 and d =0 for p =35. qg.e.d.
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From Proposition 1.12, we have
(104) R(p)®A4—AR(p) P commutes with any element in o (X(p))n Ker@.

By Proposition E, we obtain

THEOREM 10.5.  For R=R(p)® and A =jk,,
R24—2RAR+A4R? =0 in o «(X(p)).

Then all the relations in Corollary 6.4 are also verified for these R and A.
In particular, RPA=ARP holds. From this relation together with R(r)?PA
=AR(r—1)??,2<r<p-—1,and RPA=AR(p—1)??, we can construct the fol-
lowing elements R'(r)(?) e o (X(r)), p<r=2p, in the same manner as in the
proof of Theorem C'.

THEOREM C'II.  There exist nonzero elements
R’(r)(Z) € MZ(pi’-{-pz)q(X(r))’ P é r é 2P,

satisfying the following relations:
(i) R'(p)® = (R(p)®),
(ii) AR'(r—1)® = R'(r)»4 for p+1<Zr=<2p,
(iii) BPR'(r)®»= R(r—p)?*?B*  for p+1=r <2p,
where R(p)2?=(R(p)»)r.

REMARK. The squares of the elements R'(r),p<r=<2p-—2, constructed in
Theorem C' also satisfy (ii), but may possibly differ from the above elements

R'(r)®.
The following results are also obtained by the same techniques.

THEOREM ATI. The elements
p’2tp,r = T[k2p—r-—1(R’(2p_r_ 1)(2))tj2p—r—1i € G(tp3+tp2—2p+r+ 1)g—2»
—1=r=Zp— 1, t=1, are nonzero and satisfy

pIth,rE <p12tp,r—1> P, al) fOI" 0 é r é p(p’th,p: pth,O)

THEOREM B'II.  The element po(2tp) in Theorem Ell is strictly divisible
by of, and hence P.p2) 18 strictlydivisible by a?P~1.
Here we say that £ is strictly divisible by n if £ =nt =&y for some ¢

THEOREM D'II.  The complex bordism module of the mapping cone of
R'(N®,p<r<2p, is isomorphic to

Q/(p, [CP(p—1)T, [VI***+[N,])  for some [N.Je(CP(p—1)1").

Let BP,( ) be the Brown-Peterson homology theory for the prime p (25).
BP, =BP,(S°) is a polynomial ring on generators v; of degree 2(pi— 1) over
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the integers localized at p. An ideal / of BP, is called realizable if there is a
CW-complex (or- spectrum) X with BPy(X)=BP,/I.

We consider the ideal I,,=(p,v},v%), where r=1, s=apf,az1, a#0
mod p, f=0. R. S. Zahler proved [10] that I, is not realizable if r>p/, and
we consider the converse conclusion. In general, the converse is negative.
In fact, I, ,is not realizable. Since the element 3 realizes the multiplication by
v, on BP,( ), I, is realized by the mapping cone of 5. We see therefore
that I, ;, s#0 mod p, is realizable if and only if r=1. Similarly we see the real-
izability of I, ¢ for the following four cases:

l=sr=sp-1,f21; psSr<2p-2,fz22;
r=p,fz1,s22p; r=2p-1,2p,f22, a=0mod2;

by Theorems D, D', DII, D’Il, respectively. In particular, for f=1, realizable
I, ; are exhausted by the above.

PROPOSITION 10.6. The ideal (p, v, v¥), r=1, t=1, t#0 mod p, is real-
izable if and only if r<pand (r, t)#(p, 1).
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