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1. Introduction

This paper is concerned with nonlinear functional differential equations
with deviating arguments of the form

(A) x<">(t)+f(t, x<go(t)>, M2 <#!«>,..., [x("-1)]2<^-ι(0>) = 0,

where n^

and

[χ(θ]2<g.(0> =([X(0(6

The conditions we always assume for/, gtj are as follows:
(a) f ( t 9 jo, jr,..-, j,,_ι) is continuous on the set [r0, oo)x£, where

/(*» Jo> Jι» •••> Jn-ι)>^ if Jo^*^? an<i

(b) 9ij(f)9j= 1, .., m ί5 ί = 0, 1,..., n —1, are continuous on [ί0, oo) and

f->00

In what follows we restrict our discussion to those solutions x(t) of equation
(A) which exist on some half-line [Tx, oo) and satisfy

sup{|x(f)|: t ^ T} > 0

for every t^.Tx. Such a solution is called oscillatory if the set of its zeros is not
bounded above. Otherwise the solution is called nonoscillatory. A nonoscil-
latory solution is said to be strongly nomotone if it tends monotonically to zero
as f-»oo together with its first n — \ derivatives.

The objective of this paper is to study the oscillatory behavior of solutions of
equation (A) with specific nonlinearity defined below. We provide conditions
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under which every (bounded) solution of (A) is oscillatory if n is even, and is either
oscillatory or strongly monotone if n is odd. The results obtained prove to
apply not only to the case where (A) is a retarded equation but also to the case
where (A) is an advanced equation, and include recent results of Onose [4] and
Grammatikopoulos [1] for retarded differential equations of the form less general
than (A).

DEFINITION, (i) Equation (A) is called superlinear if there are non-
negative numbers /9 l 5...,pm o with pί-i ----- f-pwo = l such that for each ί^ί0 the
function

is nondecreasing in (j0, j1?..., JM-I) on £+=(0, oo)'"° x R'ϊ1 x ••• x Rfn-1.
(ii) Equation (A) is called strongly superlinear if there are nonnegative

numbers σl9...9 σmo with σί-\ ----- hσ w o >l such that for each ί^ί0 the function

is nondecreasing in (j0, jl5..., yn-ι) on £+•
(iii) Equation (A) is called sublinear if there are nonnegative numbers

Pι>'->Pmo with PH ----- ̂ Pm0

 = l sucn tnat f°r eaςh * = *o the function defined in
(i) is nonincreasing in (j0, yl9..., yn-ι) on E+.

(iv) Equation (A) is called strongly sublinear if there are nonnegative
numbers τ l v . .,τm o with τ{-\ ----- hτ w o <l such that for each t^t0 the function

is nonincreasing in (j0, ji,..., JM-I) on E + .

REMARK. Inequality between vectors j = ()Ί,..., ym), » = (zlv.., zm) in Rm

is defined as

y < z equivalent to yj < zj for j = 1,..., m,

(and similarly for the symbols g, >, ^). A function h(y) defined on a set of
Rm is said to be nondecreasing in y [or nonincreasing in j] if h(y) g /t(s) [or h( y)

^ /t(«)] for y^z. We shall use the symbols 0 and 1 to denote the vectors (0, . . . , 0)
and (!,...,!) in ft™, respectively. We define: sgnj=+l for j>0, and sgnj
= -1 for j<0.

REMARK. The super- and sublinearity defined above extend the cor-
responding notions introduced by Onose [5] and Grammatikopoulos •[!].
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For closely related results we refer to Kusano [3], Sficas and Staikos [6]
and Staikos and Sficas [7].

2. Oscillation of bounded solutions

In this section we study the oscillatory behavior of bounded solutions of
equation (A) which is either superlinear or sublinear.

THEOREM 1. Let equation (A) be superlinear. Suppose that

(1) fVM/(ί,μl,0,...,0)|c/f = oo

for any μ^O. Then, for n even, every bounded solution of (A) is oscillatory,

while, for n odd, every bounded solution 0/(A) is either oscillatory or strongly
monotone.

THEOREM 2. Let equation (A) be sublinear. Suppose that

(2) (V1 \f(t, μιl, /£§!,..., μ2

2l)\dt = oo

for any μ l 9 μ2 with |μ ι l> |μ2l Then, for n even, every bounded solution o/(A)
is oscillatory, while, for n odd, every bounded solution of (A) is either oscil-
latory or strongly monotone.

PROOF OF THEOREMS 1 AND 2. Let x(i) be a bounded nonoscillatory solu-
tion of (A). Without loss of generality we may suppose that x(t) is eventually

positive. From (A) there is /^/o such that λ'(M)(/)<0 for ί^ίj. Since x(t)
is bounded and positive, it follows that

(3) (-l)*+1x<"-*>(0 > 0, ί ̂  tί9 and limjc<"-*>(0 = 0, /c = 1,..., w-1.

In view of (3) x'(t) is of fixed sign for ί^ί l5 so that the limit limx(f) =
f-»oo

exists and is finite. Observe that x(oo)>0 if n is even, and that x(oo) = 0 may
occur only if n is odd. We assume x(oo)>0 and derive a contradiction. If

x(oo)>0, then there are positive numbers c, d(c<d) and ^2 = ^1 such that for

(4) c < x(0o/0) < d, 7 = l,...,m0,

(5) |x(ί)(0, /0)l < c, j = 1,..., mi9 i = 1,..., n-1.

Let (A) be superlinear. Then, using (4), (5) and the superlinearity, we have

f ( t , x<gΌ(t)>, [x']2<βf1(ί)>,;.., [x(n-1)
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= Π 1X00/0)]" Π M0o/0)]~"'/0> *<go(t)>,
y=ι 7=1

^ CPl+" + p,no.C-Pl~' -P«0/(/, Cl, 0,..., 0)

= /(f,cl,0,...,0), f £ f 2 .

From this and (A) we obtain

(6) x ( π )(0+/(*,cl,0,...,0)gO, f ^ί2.

We multiply (6) by f""1 and integrate it from t2 to t :

(7) Γ s' -^ί^sXs-fΓ s"-1/^, cl, 0,..., 0)ds ^ 0.
J ί 2 J ί 2

It is easy to verify that

(8)

where F(0= Σ (-l) f c + 1(w-l)(n-2)-(n-fc-fl)i f |- f cx ( n" f c )(0. Noting that P(ί)
fc=l

>0 by (3), we see from (7) and (8) that

which contradicts (1).
Let (A) be sublinear. Then, by (4), (5) and the sublinearity, we have

ί.-s [*(π-1)]2<βrι,-ι(0>)

= [^tooXO)]^ Π

— ~Pmθ/(ί, ί/1, C2!,..., C21)

Therefore we obtain

from which, proceeding as in the superlinear case, we arrive at
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sn-if(s, dl, c2!,..., c2l)ds < oo,

a contradiction to (2). This completes the proof.

We now present conditions which guarantee the existence of a bounded

nonoscillatory solution of equation (A).

THEOREM 3. Let equation (A) be superlinear. Suppose there exist

μi^O, μ 2 τ έ O such that

(9) VM/O, μil, μil,..., μil)|Λ < oo.

Then, for n even, (A) has a bounded nonoscillatory solution, while, for n odd,

(A) has a bounded nonoscillatory solution x(t) with li

THEOREM 4. Let equation (A) be sublinear. Suppose there exists

such that

(10) p'-M/ίf, μl, 0,...,0)|Λ< oo.

Then, for n even, (A) Λαs α bounded nonoscillatory solution, while, for n odd,

(A) ftαs α bounded nonoscillatory solution x(t) with limx(ί)/0.
ί-*00

PROOF OF THEOREM 3 AND 4. Without loss of generality we may suppose

that μ{, // 2 in (9) and μ in (10) are positive. When (A) is superlinear we take

c0 such that max{μl/2, μί—μ2}^Co<μl and put δ = μ1 — c0. When (A) is

sublinear we take c0 such that 0 < μ < c0 and put δ = c0 — μ.

For simplicity of exposition we restrict our consideration to the case where

all the gtj(t) are advanced arguments, that is, g^(t)^.t for t^t0. Choose T

so large that

(11) (s-Γ)''-1-/^, μl, μil,..., μ2

2l)ds ^ δ, ί= 1,..., n-1,

if (A) is superlinear, and

(12)

if (A) is sublinear, and consider the integral equation

(13)

where
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(14) (φΛ)(/) = Co + ΰli"(J-/)Λ-1/(j, x<gQ(s)>9

In view of (14) it is clear that a solution of (13) is a bounded nonoscillatory solu-
tion of (A) and tends monotonically to c0 as ί->oo. To solve (13) with the aid
of TychonofΓs fixed point theorem we introduce the Frechet space Y of all n— 1
times continuously differentiate functions x(t) on [T, oo) endowed with the

topology induced by the sequence of seminorms {pv} :

pv(x) = max \x(n-^(t)\ + Σ\x(ί\T)\, v = 1, 2,....
f e [ Γ , Γ + v ] i = 0

Let X denote the set of all x e Y such that

(15) |x(0-c0|gδ, |x(l)(OI ^ £ t^T, /=l,...,n-l.

Obviously, X is a nonempty, closed and convex subset of Y. We shall show that
Φ is continuous and maps X into a compact subset of X. We shall do this only
for the superlinear equation (A), since a similar argument holds if (A) is sublinear.

i) Φ maps X into X. If XE X, then, by (15),

Using the above inequalities and the superlinearity, we have

f(t, X<go(l)>, [X']2 <£,(/)>,...', C*0-0]2 <£„

Π, M0o

(16)

Therefore, by (11) and (16), we see that y = Φx satisfies the following inequalities
for

-co I ̂
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1 Γ°°/ w- l - i 2 2

ii) ΦX is compact. Let j;v = Φχv, xveX9 v = l, 2,..., be any sequence of

elements of ΦX. In view of (16) we have

Ct2

\y[n~ 1)(;2)-}v (Ί)l ^ \ /0» Ah 1 * ^ii,...,μii)ds ,
/ f l

so that {/v""1^ is equicontinuous at each point of [T, oo). Since, moreover,
{y(v"~O} is uniformly bounded, there exists a subsequence {zv} of {yv} for which
{z(

v

n~1}} converges uniformly on every compact subinterval of [T, oo). Since
the sequences {z(

v

f)(T)}, / = 0, 1,..., n — 2, are bounded, there exists a subsequence
{wv} of {zv} such that each {w(

v

n(T)}, /' = 0, 1,..., n-2, is convergent. It fol-
lows that the sequence {wv} converges to an element of X in the topology of Y.
This shows that ΦX is a compact subset of X.

iii) Φ is continuous. Let {xv} be a sequence of elements of X such that
x v-»xeX in the topology of 7. Put yv = Φχv and y = Φx. It is clear that xv(ί)
-»x(ί) at every point t e [T, oo) and that by (16) the function

is bounded above by (s—T)n~ίf(s9μίl9μ%l,...9μ%l) which is integrable on
[T, oo). Hence, by the Lebesgue dominated convergence theorem, we see that

j>v(0-»XO at every point t e [T, oo).
Let {uv} be an arbitrary subsequence of {yv}. Since ΦX is compact, there

is a subsequence {vv} of {uv} such that vv-+vεΦX in the topology of T. The
convergence in Y implies the pointwise convergence on [T, oo), and so we have
v = y. It follows that yv-+y in the topology of Y.

Thus we are able to apply Tychonoίf 's fixed point theorem to the operator
Φ. Let xeX be a fixed point of Φ: x = Φx. As we observed earlier, this fixed
point x = x(ί) provides the required solution of equation (A). This completes

the proof.

COROLLARY. Consider the equation

(B) x

which is either superlinear or sublinear. Then, a necessary and sufficient
condition in order that every bounded solution o/(B) be oscillatory for n even,
and be either oscillatory or strongly monotone for n odd is that

, μl)|Λ= oo ' for -all μ * 0.
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3. Oscillation of all solutions

In this section we confine our attention to equation (A) which is either
strongly superlinear or strongly sublinear and present conditions under which
all of its solutions are oscillatory.

We start with the strongly sublinear case. Let τ1 ?..., τmo be the strong sub-
linearity constants and put

no/0 = min {0o/0, '}> j = !>•••> ™o»

THEOREM 5. Let equation (A) be strongly sublinear. Suppose that

/or α/ί /ι 7^0. TTίen, ei ery solution o/(A) is oscillatory when n is even, and every
solution is either oscillatory or strongly monotone when n is odd.

PROOF. Let x(t) be a nonoscillatory solution of (A) such that
ί-»00

We may suppose x(0 is eventually positive. Thus from (A) x("\t)<Q for t^tί9

provided t± is sufficiently large. According to a lemma of Kiguradze [2, Lemma
2] there is an integer /, 0</<n, such that

(18) x<' >(f) > 0 (i = 0, 1,..., /), (-])n+i-^x^(t) > 0 (/ =

and

for all
By Taylor's formula for x(ί)(ί) we obtain

for ί^ίl9 which implies that x(ί>(ί)Aw~1~/ (i = 0, 1,..., /) are eventually bounded.

Consequently, there are positive numbers c and ί2^*ι su°h

(20) 0 < x^K^/O) ^ c^/0]--1-1, = 1,..., mh i = 0, 1,..., /,
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for t^ί2. Since |x ( ί )(OI (/ = /+!,..., n-1) are bounded, we have

(21) | x ( / > (

for ί g Ξ f 2 On tne other hand, using (19) and the decreasing nature of x(n~l\t),
it is easy to check that there are positive constants d and f 3 ̂  ί2 such that

(22) x(AoXO) £ W/ioXO]"-1*'

for ί^ί3. Noting that x(ί) is increasing and using (20), (21), (22) and the strong
sublinearity, we obtain

(23) /(f, x<go(ί)>, [x']

^ Π [χ(
7=1

!! CΛoXO/0oXO]("-1)τ'

where τ = TJ H ----- h τmo < 1 . From (A) and (23) it follows that

Π

^ o
for I^ί3. Dividing the above inequality by [x("~1)(ί)]τ and integrating, we
conclude that

oo.

But this contradicts (17) and the proof is complete.

REMARK. If in aάά'ιtionf(t9yθ9yl9...9yn,ί) is assumed to be nondecreas-

ing in yθ9 then the assertion of Theorem 5 is true under the condition

= oo for all μ * 0,

where ΛΓ1(0 = ([Λoι(0]""1

>.. ϊ C^omoCO]""1), which is weaker than (17).
We now turn to the strongly superlinear equation (A). Let σ l 5..., σmo be the

strong superlinearity constants with σ = σ1 H ----- h σmo > 1 .
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THEOREM 6. Let equation (A) be strongly superlinear. Suppose that
there exist differentia ble functions k0j(t), 7 = !,..., m0, on [ί0, oo) such that

fcoXO ^ min {goj(t)9 t}, /c'0/0 ^ 0, lim fc0/f) = <*>,

flttίί

o j 9 , c0
r-»oo

(24) -̂  - |/(/,μl,0,...,0)|A=oo
J ΠOo/*)]01-1"'-"'

y=ι

/or fl// μ^O. TTien, every solution of (A) is oscillatory when n is even, and
every solution is either oscillatory or strongly monotone when n is odd.

PROOF. Let x(t) be a nonoscillatory solution of (A) such that \imx(t)τ£Q.
f-»00

We may suppose x(t) is eventually positive. Kiguradze's lemma [2, Lemma 2]
implies in particular that x(r) is eventually increasing, so that there are positive
numbers c and ̂  such that

(25) c ̂  x(Λ0χθ) ^ xfoo/0) for ' ̂  Ί> 7 = I v - , wι0.

In view of (25) and the strong superlinearity we find

/(', *<βro(0>, M2<βrι(0

S ff W/ioXO)]^ Π C^
7=1 j=l

^ <Γ'/(f, cl, 0,..., 0) Π WΛ

Combining this with (A), we conclude that x(t) satisfies the retarded differential
inequality

(26) x<">(0 + c-"/(f, cl, 0,..., 0)Π WAoXO)]^ ^ 0

for t^tί. We now apply the theory developed by Sficas and Staikos [6] to the
differential inequality (26). Then, because of (24), it can be shown that x(t)
is either oscillatory or strongly monotone. This, however, contradicts the
hypothesis that x(t) is a nonoscillatory solution not tending to zero as ί-»oo.
For the details the reader is referred to the paper [6].

REMARK. In the particular case when g0j(t)^t for t^.tθ9 j = 1,..., m0,
we can replace (24) by
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, μl, 0,..., 0)\dt = oo for all μ ϊ 0.

From this remark and Theorem 3 we have the following result which charac-
terizes the oscillation situation for strongly superlinear advanced equations

of the form

(B) x{Λ}(t)+f(t,x<go(t)>) = 0.

COROLLARY. Let (B) be strongly superlinear and suppose that

0o/0 ^ t for t ^ tΌ9 7 = 1,..., m0.

Then, a necessary and sufficient condition in order that every solution of (B)
be oscillatory when n is even, and be either oscillatory or strongly monotone when
n is odd is that

, lΛ)\dt = oo for all μ Φ 0.
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