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Introduction

Throughout this note 4 denotes a commutative ring with a unit and all
modules are unitary A-modules. For any module M, if L is a submodule of M
and S is a subset of M, then we put (L: S)={xe€ A; xS< L}, in particular 0(S)
=(0: S). For any filter F of ideals of A, we have an operation upon the lattice
of submodules of any A-module M, as follows. If L is a submodule of M, we
define C(L, M)={xeM; (L: x)e F}. Especially we rewrite C(0, M)=T(M);
C(M, E(M))=D(M), where E(M) is an injective hull of M. Our main purpose
is to answer the question: With the above notations, let F’ be another filter and
T’, D' be the associated operators relative to F’. Can we have the equalities
() D(TM)=T(D'(M)), (2) D'(M|/T(M))=D'(M)/D'(T(M)) and
(3) D(Hom(N, M))=Hom (N, D(M))?

The above equalities have been obtained, in [8], in a special case using the
local property.

§1. Notation and Preliminaries

Let F be a filter of ideals of 4. When L is a submodule of an A-module M,
we put C(L, M)={xeM; (L: x)e F}. Especially we rewrite C(0, M)=T(M),
which is called the F-torsion of M; C(M, E(M))=D(M); C(a, A)=c(a). It is
easy to see that, for any submodule N of M, C(L, M)n N=C(Ln N, N) and
C(L, M)[L=T(M/L). We denote the class of A-modules M such that T(M)
=M by J and the class of A-modules M such that T(M)=0 by &#. The follow-
ing facts are easy and well-known:

(1) The class 7 is closed under submodule, image and direct sum (such class
will be called a weak torsion class). Hence a module M belongs to  if and only
if Ax e 7 for any element x in M.

(2) Tis a left exact subfunctor. Namely, the functor T satisfies the proper-
ties: (i) T(M)< M, (ii) if L is a submodule of M, then T(L)=T(M) n L, and (iii)
for any homomorphism f: M—N, f(T(M))= T(N) (such functor is called a left
exact preradical).

(3) The operator c satisfies the properties: (i) a=c(a), (ii)) c(anb)=c(a)
nc(b) and (iii) (c(a): x)=c(a: x), for any ideals a, b and any element x in 4
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(such operator ¢ will be called a modular operation).

(4) The class & is the right annihilator of .7, i. e., an A-module M belongs to
& if and only if Hom, (N, M)=0 for any module N in & (cf. [2], [6]). Hence
& 1is closed under submodule, group extension and direct product. Further &
is closed under essential extension. - And an A-module M belongs to & if and only
if Axe & for any element x in M.

(5) (Relations among F, T, J and ¢) For any ideal a of A, the following
statements are equivalent: (a) ae F, (b) A/ae S, (c) T(A/a)=A/a and (d) c¢(a)
=A. Let us note that, for any ideal a, c(a)=a if and only if A/ae #. Further
note that ¢(a) is the union of ideals (a: b), where b runs through F.

The above notations will be fixed throughout this note.

ProrosITION 1. The following conditions for a filter F are equivalent:
(a) For any ideal a, c(a)=c?(a).

(b) For any ideals a, b, if bjae 7, beF, then aeF.

(c) For any ideal a, if c(a)e F then a€F.

(d) For any module M, M|T(M)e #.

(e)  is the left annihilator of &.

(f) & is closed under group extension.

(g8) For any submodule L of a module M with Le 7, C(L, M)=T(M).

Proor. (a)=>(b)=>(c)follow from the fact that b/a € 7 if and only if b < c(a).
(c)=>(a): If xec?(a), then (c(a): x)=c(a: x)e F, hence (a: x)e F by (¢). (c)=
(d)=>(e)=>(f)=>(g) are rather obvious. (g)=>(a) follows from the equalities: c%(a)/a
=C(c(a)/a, A/a)=c(a)/a.

DErFINITION |. - A filter satisfying the above condition is said to be idem-
potent (cf. [1], [3] and [6]). The associated operator c is called a modular closure
operator. The associated functor Tis called a left exact radical or torsion radical
(cf. [4], [7], [9]). And the class o will be called a torsion class (cf. [2], [9]).

ProposITION 2. The following conditions for an A-module M are equiva-
lent:

(@) M=D(M), i.e. EM)|Me <.

(b) If 0-L—->N->K—0 be an exact sequence of modules with K e 7, then
any homomorphism L—M can be extended to a homomorphism N—-M.

(¢) Exti(L, M)=0 forany LeJ.

(d) Exti(4/a, M)=0  for any ac€kF.

(e) Any exact sequence 0->M—->N—->K—0 with Ke J is split.

(f) Let 0-M—>N->K—0 be an exact sequence with Ke 7. Then for any
element x in K there exists an inverse image y of x in N such that 0(y)=0(x).

ProOF. (b)=>(e)=>(f)=>(a) and the equivalence of (b), (c) and (d) are obvious
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(e.g. see [9]). (a)=>(b): Under the assumption in (b), we can construct a com-
mutative diagram of modules with exact rows:

00— L > N - K > 0

bl

Since h=0, g(N)<= M, which completes the proof.

DEFINITION 2. An A-module M is said to be F-injective or F-divisible
if M satisfies the conditions above. The class of F-injective modules will be de-
noted by 2.

CoROLLARY 1. The class 2 is closed under group extension and direct
product.

COROLLARY 2. If M is F-injective, then for any module N containing M,
an exact sequence 0-M->C(M, N)->T(N/M)—0 is split. And C(M, N)
=M+ T(N), furthermore 0—T(M)— T(N)—T(N/M)—0 is exact.

DerFINITION 3. The intersection 2 n & will be denoted by &, whose mem-
ber will be said to be F-closed.

COROLLARY 3. Let M be an F-closed module and L its submodule. Then
L is F-closed if and only if M|Le &#.

Proor. Let a be anideal in F. Since Hom,(A/a, M)=Ext}(4/a, M)=0,
Hom,(A/a, M/L)~Ext}(A4/a, L).

RemaRrk 1. If F is an idempotent filter, then D(M) is F-injective for any mod-
ule M. D(M) is the only submodule D of E(M) so that D/M e g and E(M)/D
e #. Consequently we can say that D(M) is an F-injective hull of an A-module
M.

NoTice. For each filter F the class J is a Serre subcategory if and only if
F is idempotent. See [10] for the terminology. Further we can say that F is
idempotent if and only if 7 is a localizing subcategory. Recently an idempotent
filter is called a Gabriel topology by Bo Stenstrom.

§2. Splitting filters

THEOREM 1. The following conditions for a filter F are equivalent:
(a) For any module M, if M ¢ 7, then there exists a non-zero submodule
L of M with Le #.
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(b) 7 is closed under essential extension.

(c) For any module M, E(T(M))=T(E(M)).

(d) If an A-module M is injective, then so is T(M).

(e) For any ideal a of A, there exists b in F such that a=c(a)nb.

(f) For any ideal a with a¢ F, there exists ae A—c(a) such that (a: a)
=c(a: a).

ProoF. This can be obtained by a modification of the proof of [8, Theorem
2]. So we shall omit the proof.

NotICE. A part of Theorem 1 has already been known (see [3] and [9]).
Recently S. Itoh, in [5], has shown the equivalence of (a)-(d) in Theorem 1 when
T is a localizing subcategory.

DEFINITION 4. A filter F is called a splitting filter if F satisfies the condition
above. Note that if F is a splitting filter, then it is idempotent by the condi-

tion (e).

ProposITION 3. If F is a splitting filter, then E(M|T(M))=E(M)/E(T(M))
and E(M)=E(T(M))® E(M|T(M)) for any A-module M.

Proor. First consider a canonical commutative diagram of modules with
exact rows and columns:

0 0 0
I I I

0 — E(T(M))]T(M) — E(M)|M L >0
| | Js

0 »E(T(M)) —— E(M) — E(M)|T(E(M)) — 0
] T [»

0 > T(M) > M » M|T(M) ———0
| | |
0 0 0

Since E(M)/T(E(M)) is injective, it suffices to show that homomorphism A in the
diagram is essential. If h is not essential then, by virtue of the next Lemma 1,
there exists a non-zero element x of E(M)/T(E(M)) such that 0(x)=0(g(x)).
And there exists an inverse image y of x in E(M) such that 0(x)=0(y). Hence
0(»)=0(f(y)), which contradicts the fact that E(M) is essential over M.

LeEmMMA 1. Let L be a submodule of an A-module M. Then L is not essential
in M if and only if there exists a non-zero element x of M such that 0(x)=0(X),
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where X is the canonical image of x in M/L.
Proor. Clear.

ProOPOSITION 4. Suppose that F be a splitting filter and let F' be another
filter of ideals of A. Then, for any A-module M, T(D'(M))=D'(T(M)), in which
D'(M)={xeE(M);(M: x)eF'}.

Proor. For any submodule L of M, we denote by C'(L, M) the set of ele-
ments x in M such that (L: x)e F’. Our assertion follows from the equalities for
any module M: TD'(M)=D'(M) n T(E(M))=C'(M, EIM)) n E(T(M))=C'(M n
E(T(M)), E(T(M)))=C'(T(M), E(T(M)))=D'(T(M)).

Now, with the same notations and assumptions in Prop. 4, can we see that
D'(M|T(M))~D'(M)/D'(T(M))? The rest of this section will be devoted to ex-
amine into conditions for this equality.

Let E be an A-module and M, E’ its submodules. Then we have a commuta-
tive diagram of modules with exact rows and columns:

0 0 0
1 7 1
0O— N — N— N —0
7 7 T
Q— E' — E— E" — 0 (*)
7 1 1
O—M —M—M —0
T T 7
0 0 0

in which M'=E’' n M, and morphisms and modules are all canonical. From this
diagram (), we can construct directly another commutative diagram of modules
with exact rows and columns except the middle row:

0 0 0
1 7 1
0—— T(N') » T(N) » T(N")
T 7 1
0— CM',E') — C(M, E) — C(M", E") (%)
i 1 i
0 M » M s M — 0
T 1 7
0 0 0

But, by consideration of the homology group at each module in the diagram (*x),
we have the following commutative diagram of modules with exact rows:
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0 T(N') » T(N) T(N")—— L — 0

T T T N

0 — C(M', E') — C(M, E) — C(M", E") —> K — 0

Hence we have

LEmMMA 2. With the same notations as above, if F is idempotent and N’
€7, then C((M", E"Y\~C(M, E)|C(M’', E).

More generally, using the notion of the right derived functors R"T (n>0)
of T, we have

LemMmA 3. With the same notations as above, if R*T(N')=0, then C(M",
E"Y~C(M, E)/]C(M', E").

As a special case, we have

THEOREM 2. Let F be a splitting filter and M an A-module. Then D(T(M))
=T(D(M))=E(T(M)) and D(M)=~D(T(M))® D(M/T(M)).

Proor. Apply Lemma 2, putting E'= T(E(M)). Then our assertion fol-
lows directly since D(T(M))=E(T(M)) is injective.

LEMMA 4. Let F be a splitting filter and M an A-module. Then
(@) IfMeZ, then R"T(M)=0 for n>1.
(b) R"T(M)=R"T(D(M))=R"T(D(M|T(M))) for n>2.

Proor. (a) comes from (b) in Theorem 1. (b) follows from long exact
sequences derived from R"T’s, using (a) and Theorem 2.

PROPOSITION 5. Let F, be a splitting filter with the associated left exact
functor t, and let F be another splitting filter. Suppose that R*T(M)=0 for
any A-module M such that t(tM)=M and M e &,. Then, for any module M,
D(M/t(M))~ DM)/D(((M)).

Proor. Apply Lemma 3, putting E =t(E(M)). Since R2T(t(M))=
R!'T(E(((M))/t(M)), it suffices to show that R2T(t(M))=0. This last equality
follows directly from our assumption and Lemma 4.

§3. Divisorial lattices

A lattice C(A) of ideals of A will be said to be divisorial if it is closed under
intersection and, for any ideal a in C(A) and any element x in 4, (a: x) lies also
in C(A). Let F be an idempotent filter of ideals of A. Then we say that an ideal
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a of A is F-closed if c(a)=a. The set of F-closed ideals of A forms a divisorial
lattice Cr(4). Note that the closure c(a) of any ideal a relative to F is the smallest
F-closed ideal containing it.

Conversely, for each divisorial lattice C(4) of ideals of 4, we have a closure
operation upon the lattice of ideals of A, defining the closure & of an ideal a by
the smallest ideal in C(A4) containing a.

ProrosITION 6. With the same notations as above, the set F of ideals a
of A such that 8= A forms an idempotent filter. '

Proor. First of all we show that F isafilter. Since a< @, and achif ach,
it suffices to show that if a and b are in F, then so is a.b. Suppose that a.béF.
Then there exists a proper ideal ¢ in C(A4) containing a.b. Since agc, (¢c: a)
is a proper ideal in C(A4) containing b, contrary to the hypothesis.

The fact that F is idempotent follows from the next

LEMMA 5. With the same notations as above, let a be an ideal of A. Then
c(a)=d. Thus, c(a)€F if and only if a=A.

Proor. It suffices to show that, for any ideal a and element x in 4, if (a:
x)eF, then xed. If x¢d, then (d: x) is a proper ideal in C(A4) containing (a: x),
which shows that (a: x)¢F.

ProrosiTION 7. Let C(A) be a divisorial lattice of ideals of A and F an
associated idempotent filter as above. Then the following conditions for C(A)
are equivalent:

(@  C(4)=CxA.

(b) For any ideal a of A, c(a)=3a. ~

(c) For any ideal a and element x in A, (§: x)=(a: x).

PrROOF. (a)<>(b)<>(c): Clear.

ReEMARK 2. With the above notations, consider the condition (d): @ nb
=m for any ideals a, b of A. It is easy to see that the condition in Prop. 7
implies (d). But the converse is not true. For example, let C(A4) be the set of
ideals a of A such that a=./a. Then C(A4) is a divisorial lattice with the condi-
tion (d) since =./a for any ideal a of A. However c(a)=a for any ideal a of
A. Thus, unless A is regular in the sense of von-Neumann, C(A4) does not satisfy
the condition in Prop. 7.

ReMARK 3. With the above notations, suppose that A is an integral domain
and C(A) satisfies the conditions (d) and (¢): x.d=xa for any ideal a and ele-
ment x in A. Then C(A) satisfies the condition in Prop. 7. In fact, for any a

N

~—~
and x, x(a: x)=xA N a. Therefore x(a: x)=xA4 nd=x(d: x) since x4=xA.
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ExaMPLE. Let A be an integral domain. Consider the set of ideals of A
which are divisorial in the usual sense. Then it is a divisorial lattice with the
condition (¢). The associated filter consists of all ideals a of 4 such that a=! =A4.
Let a be a non-zero ideal of A and K the fractional field of 4. Then, since K/A
e & and thus T(A4/a)=T(K/a), c(a)=D(a) with respect to the above filter.

In [8], the following proposition is proved. We shall prove it again rather
easily.

PROPOSITION 8. With the same situation in the above example, assume that
A is completely integrally closed. Then, for any ideal a of A, c(a)=a.

ProOOF. Suppose that x € @, namely that x.a"! € 4, then x.a.a ! Saq, thus
. ~—
a.a 'c(a: x). By our assumption, a.a~!=A4, hence x € c(a).

REMARK 4. To avoid the trivial case we assume that A is not a field. Let
F be the filter in the above example. Then the associated (hereditary) torsion
theory (7, &) is cogenerated by E(K/A). That is, an A-module M belongs to 7
if and only if Hom, (M, E(K/A))=0 (cf. [6], [9] and [8, Prop. 5]). In fact,
““only if” part is easy to see, so we shall show “‘if” part. If Hom, (M, E(K/A))
=0, then Hom 4 (Ax, K/A)=0 for any element x of M. Hence it suffices to show
that if Hom,(A/a, K/A)=0, then ae F. Suppose that an ideal a is not in F,
then @# A by Lemma 5. Hence we can take an element x of a!—A4. Define
f: A->KJA so that f(a)=ax modulo A. Then f(a)=0 and f#0, which com-
pletes the proof.

§4. Relations with ® and Hom
As before, we fix a filter F of ideals of A.

LEMMA 6. Let M be an A-module. Then
(@) IfMisin 7, then so are Tori (M, N) for any module N.
(b) If M isin &, then so is Hom, (N, M) for any module N.

ProoFr. Clear.

ProrosITION 9. If an A-module M is F-closed, then so is Hom (N, M)
for any module N.

Proor. Let a be an ideal in F and N an A-module. It suffices to show that
Hom, (A, Hom, (N, M))~Hom,(a, Hom, (N, M)). Consider two exact se-
quences:

0 — Tor{(4/a, N) — a® N — aN — 0,
0— aN—> N— N/aN— 0
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Since Tor{(A/a, N) is in 7, Hom,(aN, M)~Hom,(a® N, M)~Hom,(a,
Hom (N, M)). Again since N/aN is in  and M is F-injective, Hom,(aN,
M)~Hom (N, M). These isomorphisms are all natural, and hence the proof is
complete.

ProPosITION 10. Let M and N be A-modules. If M is F-injective and if
Tor{(A/a, N)=0 for any ideal a in F, then Hom (N, M) is F-injective.

ProoOF. Let a be an ideal in F. Then we have a commutative diagram of
modules with exact columns:

Hom, (N, M) ~ Hom,(A® 4 N, M) ~ Hom (4, Hom, (N, M))
14

Hom, (aN, M) ~ Hom, (a®, N, M) ~ Hom, (a, Hom, (N, M))

l l

0 0

In fact, since M is in &, the columns are exact. And the isomorphism i can be
obtained by our assumption for N. This diagram shows that p is epimorphic,
which proves our assertion.

LeMMA 7. Let M and N be A-modules. If M is F-closed, then Hom ,(D(N),
M)=Hom/, (N, M).

Proor. Clear.

COROLLARY 1. Let N and M be A-modules. Assume that F is idempotent
and that M is in . Then Hom (D(N), D(M))=Hom ,(N, D(M)).

Proor. Since D(M) is F-closed by Remark 1, our assertion follows directly
from Lemma 7.

COROLLARY 2. With the same assumptions as in Cor. 1, assume further that
Hom, (N, D(IM)/{M)e 9. Then Hom,(N, D(M)) is an F-injective hull of
Hom, (N, M).

Proor. By our assumption, Hom, (N, M) is essential in Hom (N, D(M)).
Since the latter is F-injective, our assertion follows from the min-max property of
an F-injective hull.

Let us now inquire into an 4-module N such that Hom , (N, L) belongs to I
for any module L in . We shall say that such a module N is of F-finite type.
It is easy to see that each module of finite type is always of F-finite type.

PrOPOSITION 11. If F is a splitting filter, then every submodule of an A-
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module of F-finite type is of F-finite type.

Proor. Let N be an A-module of F ;ﬁnite type and M its submodule. Then,
for any module L in 4, Hom, (M, L) is a submodule of Hom (M, E(L)), which
is a homomorphic image of Hom (N, E(L)). The last module is in 7, since E(L)

is in 7 by our assumption. Thus M is of F-finite type because of the closedness
of the class 7.

The above result generalizes Prop. 32 in [8]. But we can have more gener-
alization as follows. At first, note that the class of modules of F-finite type is
closed under image and group extension.

DEFINITION 5. Let F be a filter of ideals of A. We say that F is a com-
pletely multiplicative filter if it satisfies the conditions:

(i) For any ideals a and b in F; a.b belongs to F.

(ii) For any ideal a, (a: c¢(a)) belongs to F, or equivalently,

(ii)’ For any ideal a, there exists an ideal b in F such that (a: b)=c(a).

REMARK 5. In the above, the equivalence of (ii) and (ii)’ follows from the
statement (5) in § 1. ' '

PROPOSITION 12.  Let M be an A-module of finite type qnd suppose that F
is a completely multiplicative filter. Then every submodule of M is of F-finite

type.

Proor. We prove the assertion by induction on the number of generators
of M. If M iscyclic, then its submodule is of the form a/b where a and b are ideals
of A. It suffices to show that each ideal a is of F-finite type. - Let f be a homo-
morphism from an ideal a into an A-module L in . Then f(a)~a/b and bSa
cc(b). By our assumption there exists an ideal ¢ in F such that cach, i.e.,
¢f=0, which shows that Hom,(a, L)e 7 if Lisin J.

If M is not cyclic, then we can write M =M, + M,, where M, and M, are gen-
erated by less elements than M is. Let N be a submodule of M. Then N n M,
and NINNM,=N+M,/M, are of F-finite type, by induction hypothesis, hence
so is N, which completes the proof. ’

REMARK 6. Let F be a filter of ideals of 4. It is easy to see that if F is com-
pletely multiplicative, then it is idempotent. Further, if F is of splitting type, then
it is completely multiplicative, by the condition (e) in Theorem 1.

As a summary of the above results, we have

THEOREM 3. Let M be an A-module with M € # and N a submodule of an
A-module of finite type. If F is a completely multiplicative filter, then Hom 4, (N,
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D(M)) is an F-injective hull of Hom, (N, M).

ExaMPLE (continued). Let A be a completely integrally closed domain and
F the set of ideals a of 4 such that a~!=A4. Then F is completely multiplicative.
In fact, for any non-zero ideal a of A4, a-a~! € F by our assumption on 4. On
the other hand since a™!=c(a)™!, a.a~! =(a: ¢(a)), which shows our assertion.

By Theorem 3, for any A-lattices N and M, D(Hom, (N, M))=Hom, (N,
D(M))=Hom, (D(N), D(M)).
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