On an Infinite-Dimensional Lie Algebra Satisfying the Maximal Condition for Subalgebras

Fujio Kubo
(Received May 10, 1976)

R. K. Amayo and I. Stewart have asked the following among "some open questions" at the end of their book [1]: Do there exist Lie algebras satisfying the maximal condition for subalgebras that are not finite-dimensional? The purpose of this paper is to give the affirmative answer to this question.

They have shown in [1, p. 177] that the Lie algebra W over a field \mathfrak{f} of characteristic 0 with basis $\{w(1), w(2), \ldots\}$ and multiplication

$$
[w(i), w(j)]=(i-j) w(i+j)
$$

satisfies the maximal condition for subideals. We shall show that the same Lie algebra W actually satisfies the maximal condition for subalgebras.

We first show the following
Lemma. Let S be a subset of \mathbf{N} satisfying the condition: If $s, t \in S$ and $s \neq t, s+t \in S$. Then there exist the different elements $s_{1}, s_{2}, \ldots, s_{r}$ of S such that
(i) s_{1} is the smallest element of S,
(ii) $S=\left\{s_{1}\right\} \cup\left\{s_{2}+n s_{1} \mid n=0,1,2, \ldots\right\} \cup \cdots \cup\left\{s_{r}+n s_{1} \mid n=0,1,2, \ldots\right\}$.

Proof. We define recursively subsets S_{i} of S and integers s_{i} for integers $i \geq 1$ as follows: Define s_{1} as the smallest element of S and put $S_{1}=\left\{s_{1}\right\}$. Let $i \geq 1$ and assume that S_{i}, s_{i} are already defined and $S_{i} \neq S$. Let s_{i+1} be the smallest element of $S \backslash S_{i}$ and put $S_{i+1}=S_{i} \cup\left\{s_{i+1}+n s_{1} \mid n=0,1,2, \ldots\right\}$. Then $\{s \in S \mid$ $\left.s \leq s_{i+1}\right\} \subseteq S_{i+1}$ and, for $T_{i+1}=\left\{s \in S \mid s \geq s_{i+1}\right\}$, if $s \in T_{i+1}$ and t is the smallest element of T_{i+1} such that $t>s$ then $t-s \leq s_{1}-i+1$. Therefore the construction terminates after a finite number of steps. Thus there exists an integer r such that $S=S_{r}$.

We now show the following
Theorem. W satisfies the maximal condition for subalgebras.
Proof. For any element x of W, let $m(x)$ be the integer m such that

$$
x=\sum_{i=1}^{m} \alpha_{i} w(i), \quad \alpha_{m} \neq 0 .
$$

Let H be any subalgebra of W and let S be the set of all $m(x)$ for $x \in H$. If $s, t \in S$
and $s \neq t$, then

$$
s=m(x), t=m(y) \quad \text { for some } x, y \in H .
$$

and therefore

$$
s+t=m([x, y]) \in S .
$$

Hence there exist the elements $s_{1}, s_{2}, \ldots, s_{r}$ of S satisfying the conditions (i), (ii) in the lemma. For $i=1,2, \ldots, r$, we take an element z_{i} of H such that $m\left(z_{i}\right)=s_{i}$. We assert that any element x of H belongs to $\left\langle z_{1}, z_{2}, \ldots, z_{r}\right\rangle$.

Let us define recursively elements x_{i} of H and integers p_{i} for integers $i \geq 0$ as follows. Put $x_{0}=x$ and $p_{0}=m(x)$. Assume that x_{i} and $p_{i}=m\left(x_{i}\right)$ are already defined and that $x_{i} \notin<z_{1}, z_{2}, \ldots, z_{r}>$. If $p_{i}=s_{1}$, then $m\left(x_{i}-\beta z_{1}\right)<s_{1}$ for some $\beta \in \mathfrak{f}$. Since $x_{i}-\beta z_{1} \in H$, we have $x_{i}-\beta z_{1}=0$ by the minimality of s_{1}. This contradicts our assumption. Therefore

$$
p_{i}=s_{\mu(i)}+n_{i} s_{1}, \quad \mu(i) \neq 1 .
$$

Then there exists a γ_{i} in \mathfrak{f} such that

$$
m\left(x_{i}-\gamma_{i}\left[z_{\mu(i), n_{i}} z_{1}\right]\right)<p_{i} .
$$

We now define x_{i+1} and p_{i+1} by

$$
x_{i+1}=x_{i}-\gamma_{i}\left[z_{\mu(i), n_{i}} z_{1}\right] \quad \text { and } \quad p_{i+1}=m\left(x_{i+1}\right) .
$$

Since $p_{i+1}<p_{i}$, the recursive construction terminates after a finite number of steps. This shows that $x_{n} \in\left\langle z_{1}, z_{2}, \ldots, z_{r}\right\rangle$ for some n. It follows that x $\in\left\langle z_{1}, z_{2}, \ldots, z_{r}\right\rangle$.

Thus we conclude that $H=\left\langle z_{1}, z_{2}, \ldots, z_{r}\right\rangle$. Consequently every subalgebra of W is finitely generated. It is now immediate that W satisfies the maximal condition for subalgebras.

We denote, as usual, by Max, Min and Min $-\triangleleft$ respectively the classes of Lie algebras satisfying the maximal condition for subalgebras, the minimal condition for subalgebras and for ideals. Then we have the following

Corollary. Max \ddagger Min and Max \ddagger Min- $-\triangleleft$.
Proof. Let I_{n} be the subspace of W spanned by all $w(i)$ with $i \geq n$. Then $I_{1} \geq I_{2} \geq \cdots$ is a strictly descending series of ideals of W. Therefore $W \notin$ Min\triangleleft and a priori $W \notin$ Min.

Reference

[1] R. K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.

Department of Mathematics, Faculty of Science, Hiroshima University

