Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems with Variable Coefficients

Hisayoshi SHINTANI and Kenji TOMOEDA (Received September 20, 1976)

1. Introduction

Let us consider the Cauchy problem for a hyperbolic system

(1.1)
$$\frac{\partial u}{\partial t}(x,t) = \sum_{j=1}^{n} A_j(x) \frac{\partial u}{\partial x_j}(x,t) \quad (0 \le t \le T, -\infty < x_j < \infty),$$

(1.2)
$$u(x, 0) = u_0(x), \quad u_0(x) \in L_2,$$

where u(x, t) and $u_0(x)$ are N-vectors and $A_j(x)$ (j = 1, 2, ..., n) are $N \times N$ matrices, and assume that this problem is well posed. For the numerical solution of this problem we consider the difference scheme

(1.3)
$$v(x, t+k) = S_h(x, h)v(x, t)$$
 $(0 \le t \le T, -\infty < x_i < \infty)$

(1.4)
$$v(x, 0) = u_0(x), \quad k = \lambda h,$$

and study the stability of the scheme in the sense of Lax-Richtmyer, where $S_h(x, h)$ is a difference operator and h is a space mesh width.

The stability of schemes for symmetric hyperbolic systems was studied by Lax [7], Lax and Wendroff [8, 9], Kreiss [5] and Parlett [12] in the case

(1.5)
$$S_h(x, h) = \sum_{\alpha} c_{\alpha}(x, h) T_h^{\alpha},$$

where α is a multi-index, c_{α} is an $N \times N$ matrix and T_h is the translation operator.

The stability for nonsymmetric hyperbolic systems was treated first by Yamaguti and Nogi [20]. They defined a family of bounded linear operators in L_2 associated with an $N \times N$ matrix $k(x, \omega)$ which is homogeneous of degree zero in ω , is independent of x for $|x| \ge R$ (R > 0) and belongs to $C^{\infty}(R_x^n \times (R_{\omega}^n - \{0\}))$. They studied the properties of the algebra of such families and applied the results to the investigation of the stability of Friedrichs' scheme under the assumption: The system (1.1) is regularly hyperbolic and $A_j(x)$ (j=1, 2, ..., n) are independent of x for $|x| \ge R$ and belong to C^{∞} . Under the same assumption, Vaillancourt [16, 17] obtained an improved stability condition for Friedrichs' scheme and a condition for the modified Lax-Wendroff scheme; Kametaka [4] treated the regularly hyperbolic systems with nearly constant coefficients.

In this paper we are concerned with the nonsymmetric hyperbolic systems that satisfy the conditions: Eigenvalues of $A(x, \xi) = \sum_{j=1}^{n} A_j(x)\xi_j/|\xi|$ ($\xi \neq 0$) are all real and their multiplicities are independent of x and ξ ; elementary divisors of $A(x, \xi)$ are all linear; there exists a constant $\delta > 0$ such that

$$|\lambda_i(x,\,\xi) - \lambda_j(x,\,\xi)| \ge \delta \qquad (i \neq j;\, i, j = 1,\,2,\dots,\,n),$$

where $\lambda_i(x, \xi)$ (i=1, 2,..., s) are all the distinct eigenvalues of $A(x, \xi)$.

We consider the case where $S_h(x, h)$ is a sum of products of operators of the form (1.5). Our proof of stability is based on the following result: If $S_h(x, h)$ and $S_h(x, 0)$ are the families of bounded linear operators in L_2 and if there exist positive constants c_0 and c_1 and a norm $||| \cdot |||$ equivalent to the L_2 -norm $|| \cdot ||$ such that

(1.6)
$$|||S_h(x, 0)u||| \le (1 + c_0 h) |||u|||,$$

(1.7)
$$||(S_h(x, h) - S_h(x, 0))u|| \le c_1 h ||u||$$
 for all $u \in L_2$, $h > 0$,

then the scheme (1.3) is stable.

To construct such a norm $||| \cdot |||$, after Friedrichs [3] and Kumano-go [6] we introduce a family of bounded linear operators in L_2 associated with an $N \times N$ matrix $p(x, \omega)$ such that

$$p(x, \omega) = p_0(x, \omega) + p_{\infty}(\omega), \quad \lim_{|x| \to \infty} p_0(x, \omega) = 0 \quad \text{for each} \quad \omega \in \mathbb{R}^n$$

and the Fourier transform of $p_0(x, \omega)$ with respect to x satisfies some conditions. We construct an algebra \mathscr{H}_h of such families and show an analogue of Lax-Nirenberg Theorem [10] for elements of \mathscr{H}_h in order to obtain sufficient conditions under which (1.6) holds.

Taking the properties of \mathscr{K}_h into consideration, in Section 5 we construct an algebra of difference operators $S_h(x, h)$ for which (1.7) holds and in Section 6 the stability of the schemes with elements of this algebra is studied. For instance Vaillancourt's result is valid under the assumption:

$$A_j(x) = A_{j0}(x) + A_{j\infty}, \lim_{|x| \to \infty} A_{j0}(x) = 0$$
 $(j = 1, 2, ..., n)$

and $(\partial^m/\partial x_k^m) A_{j0}(x)$ (j, k=1, 2, ..., n; m=0, 1, ..., n+3) are bounded, continuous and integrable.

In Section 7 some examples of the schemes are given. Lemmas and theorems stated without proof are proved in the last section.

2. Notations and preliminaries

2.1. Notations

Let C be the field of complex numbers. Let \bar{c} and c^* stand for the conjugate and the conjugate transpose of a matrix c respectively. We denote by |a|, |z| and $\rho(a)$ the spectral norm of an $N \times N$ matrix a, the Euclidean norm of an N-vector z and the spectral radius of a respectively. For any hermitian matrices a and b we use the notation $a \ge b$ if a-b is positive semi-definite.

We denote by R^n the real *n*-space and write it as R_x^n , R_{ω}^n , etc. to specify its space variables. Unless otherwise stated, we denote by u(x), $\varphi(x)$, etc. the *N*-vector functions defined on R^n .

The space L_p $(p \ge 1)$ consists of all measurable functions u(x) in \mathbb{R}^n such that $|u(x)|^p$ is integrable, i.e. $\int |u(x)|^p dx < \infty$, where two functions are identified if they coincide almost everywhere. The scalar product and the norm in L_2 are denoted by (,) and $\|\cdot\|$ respectively.

Let \mathscr{S} be the space of all C^{∞} functions on \mathbb{R}^n which, together with all their derivatives, decrease faster than any negative power of |x| as $|x| \to \infty$. We denote by $\hat{u}(\xi)$ ($\xi \in \mathbb{R}^n$) the Fourier transform of u(x). For each $\varphi(x)$ in \mathscr{S} , $\hat{\varphi}(\xi)$ can be written as follows:

$$\hat{\varphi}(\xi) = \kappa \int e^{-ix \cdot \xi} \varphi(x) dx$$
 for all $\varphi \in \mathscr{S}$,

where

(2.1)
$$\kappa = (2\pi)^{-n/2}, \qquad x \cdot \xi = \sum_{j=1}^{n} x_j \xi_j.$$

We denote by $\hat{p}(\xi, \omega)$ the Fourier transform of $p(x, \omega)$ with respect to x and by a*b(x) the convolution $\int a(x-t)b(t)dt$ of two measurable functions a(x) and b(x).

For simplicity we make use of the notations

$$D_l = \frac{\partial}{\partial x_l}, \ \partial_j = \frac{\partial}{\partial \omega_j}.$$

We denote by $\sup_{\substack{\omega\neq 0 \\ \omega\neq z}} u(x, \omega)$ and $\sup_{\substack{\omega\neq z \\ \omega\neq z}} u(x, \omega)$ the supremum of $u(x, \omega)$ on $\mathbb{R}^n_{\omega} - \{0\}$ and that on $\mathbb{R}^n_{\omega} - Z$ for each fixed x in \mathbb{R}^n respectively.

Let S^{n-1} be the unit spherical surface in R_{ω}^{n} , and let $\omega' = (\omega'_{1}, \omega'_{2}, ..., \omega'_{n})$ denote a point on S^{n-1} . Then we have $|\omega'| = 1$.

We say that $l(\chi, \omega)$ is absolutely continuous with respect to ω_k , if it is so on any finite closed interval for each fixed χ and ω_j $(j=1, 2, ..., n; j \neq k)$. We say that a scalar function $c(x, \omega)$ satisfies conditions imposed on matrix functions, if $c(x, \omega)I$ does.

2.2. The difference approximations

We consider a mesh imposed on (x, t)-space with a spacing of h in each x_j direction (j=1, 2, ..., n) and a spacing of k in the t-direction. The ratio $\lambda = k/h$ is to be kept constant as h varies. We approximate (1.1) and (1.2) by the difference scheme of the form:

(2.2)
$$v(x, t+k) = S_h(x, h)v(x, t) \quad (0 \le t \le T),$$

(2.3)
$$v(x, 0) = u_0(x),$$

where

(2.4)
$$S_h(x, h) = \sum_m \prod_{j=1}^{\nu} C_{m_j}(x, h, T), \quad m = (m_1, m_2, ..., m_{\nu}),$$

(2.5)
$$C_{m_j}(x, h, T) = \sum_{\alpha} c_{\alpha m_j}(x, h) T_h^{\alpha}, \quad \alpha = (\alpha_1, \alpha_2, \dots, \alpha_n),$$

(2.6)
$$T_{h}^{\alpha} = T_{1h}^{\alpha_{1}} T_{2h}^{\alpha_{2}} \cdots T_{nh}^{\alpha_{n}}, T_{jh} u(x) = u(x_{1}, \dots, x_{j-1}, x_{j}+h, x_{j+1}, \dots, x_{n}),$$

 $m_j \ (m_j \ge 0; j=0, 1, ..., v)$ and $\alpha_j \ (j=1, 2, ..., n)$ are integers and $c_{\alpha m_j}(x, h)$'s are $N \times N$ matrices.

We approximate the partial differential operator hD_j $(1 \le j \le n)$ by the difference operator Δ_{jh} of the form

(2.7)
$$\Delta_{jh} = \sum_{l} b_{l} (T_{jh}^{l} - T_{jh}^{-l})/2,$$

where the summation is over a finite set of $l \ (l \ge 0)$ and b_l 's are real constants. We put

(2.8)
$$s_j(\omega) = \sum_l b_l \sin l\omega_j \quad (j = 1, 2, ..., n),$$
$$s(\omega) = (s_1(\omega), s_2(\omega), ..., s_n(\omega)),$$

and assume that for some positive integer $r s_i(\omega)$ can be written as follows:

(2.9)
$$s_j(\omega) = \omega_j + O(|\omega_j|^{r+1}) \quad (|\omega_j| \le \pi).$$

From (2.9) it follows that for all $u \in \mathcal{S}$

$$\Delta_{jh}u(x) = hD_ju(x) + O(h^{r+1})$$
 as $h \to 0$ $(j = 1, 2, ..., n)$.

For example the following difference operators are well known:

(2.10)
$$F_h(x) = C_h + \lambda P_h,$$

(2.11) $M_h(x) = I + \lambda P_h(C_h + \lambda P_h/2),$

where

(2.12)
$$P_{h} = \sum_{j=1}^{n} A_{j}(x) \Delta_{jh}, \quad C_{h} = (1/n) \sum_{j=1}^{n} (T_{jh} + T_{jh}^{-1})/2,$$
$$\Delta_{jh} = (T_{jh} - T_{jh}^{-1})/2 \qquad (j = 1, 2, ..., n).$$

The schemes (2.2) with operators (2.10) and (2.11) are called Friedrichs' scheme and the modified Lax-Wendroff scheme respectively.

We say that the difference scheme (2.2) approximates (1.1) with accuracy of order p [13, 15] if all smooth solutions u of (2.1) satisfy

$$(2.13) |u(x, t+k) - S_h(x, h)u(x, t)| = O(h^{p+1}) (h \to 0).$$

In the sequel we consider only the schemes with $p \ge 1$.

The difference scheme is said to be stable in the sense of Lax-Richtmyer if for any T > 0 there exists a constant M(T) such that

(2.14)
$$||S_h^{v}u|| \leq M(T) ||u||$$

for all $u \in L_2$ and for all h > 0 and integers $v \ge 0$ satisfying $0 \le vk \le T$, where M(T) is a function of T but is independent of h. Since S_h is a family of bounded linear operators in L_2 depending on h, we have to investigate the boundedness of powers of such families of operators.

Let \mathcal{H}_h be the set of all families of bounded linear operators H_h that maps L_2 into itself and depends on a parameter h > 0 and such that

(2.15)
$$||H_h u|| \le c(h) ||u||$$
 for all $u \in L_2$, $h > 0$,

where $c(\mu)$ is a continuous function on $[0, \infty)$.

For two families K_h and L_h of \mathscr{H}_h we use the notation $K_h \equiv L_h$ if there exists a constant c such that

(2.16)
$$||(K_h - L_h)u|| \le ch||u||$$
 for all $u \in L_2$, $h > 0$.

Then we have the following

THEOREM 2.1. Let $L_h \in \mathscr{H}_h$ and suppose there exist a constant c_0 and a norm $||| \cdot |||$ equivalent to the L_2 -norm such that

(2.17)
$$|||L_h u||| \le (1+c_0 h) |||u|||$$
 for all $u \in L_2$, $h > 0$.

Then for any T > 0 there exists a constant M(T) such that

(2.18)
$$||L_h^v u|| \le M(T) ||u||$$
 for all $u \in L_2$, $0 \le vk \le T$.

PROOF. By the assumption there exist positive constants c_1 and c_2 such that

Hisayoshi Shintani and Kenji Tomoeda

(2.19)
$$c_1 ||u|| \le ||u||| \le c_2 ||u||$$
 for all $u \in L_2$.

From (2.17) it follows that

 $|||L_h^{\mathbf{y}}u||| \le (1+c_0h)^{\mathbf{v}} |||u|||$ for all $u \in L_2$, h > 0,

so that by (2.19) we have

$$c_1 \|L_h^{\mathsf{y}} u\| \leq \|L_h^{\mathsf{y}} u\| \leq c_3 \|\|u\| \leq c_2 c_3 \|\|u\|,$$

where $c_3 = \exp(c_0 T/\lambda)$. From this (2.18) follows with $M = c_2 c_3/c_1$.

COROLLARY 2.1. For any $S_h \in \mathcal{H}_h$ let $L_h \in \mathcal{H}_h$ be a family such that $L_h \equiv S_h$ and which satisfies the assumption of the theorem. Then for any T > 0 there exists a constant M(T) such that

$$(2.20) ||S_h^v u|| \le M(T) ||u|| for all u \in L_2, 0 \le vk \le T.$$

PROOF. Since for some constant c_4

$$||(L_h - S_h)u|| \le c_4 h ||u||$$
 for all $u \in L_2$, $h > 0$,

by (2.17) and (2.19) we have

$$|||S_{h}u||| \leq |||L_{h}u||| + |||(S_{h} - L_{h})u|||$$
$$\leq |||L_{h}u||| + c_{2}c_{4}h||u||$$
$$\leq (1 + c_{5}h) |||u|||,$$

where $c_5 = c_0 + c_2 c_4/c_1$. Hence (2.17) is satisfied and (2.20) follows from the theorem.

By Theorem 2.1 and its corollary, in proving the stability of the scheme (2.2), the problem is to find a norm $\|\|\cdot\|\|$ and a family $L_h \in \mathscr{H}_h$ such that $L_h \equiv S_h(x, h)$ in order to establish (2.17).

Now we study the algebraic structure of \mathcal{H}_h . For A_h , $B_h \in \mathcal{H}_h$ and $\alpha \in C$ let $A_h + B_h$, $A_h B_h$ and αA_h be defined by

$$(A_h + B_h)u = A_hu + B_hu, \quad (A_hB_h)u = A_h(B_hu), \quad (\alpha A_h)u = \alpha(A_hu).$$

Then \mathscr{H}_h is an algebra over \mathbb{C} with unit element I_h . Since the adjoint A_h^* of a family A_h also belongs to \mathscr{H}_h , the operation * is an involution in \mathscr{H}_h and \mathscr{H}_h is an algebra with involution [2].

3. One-parameter families of operators

3.1. Definitions

We introduce the set \mathscr{K} consisting of all $N \times N$ matrix functions $p(x, \omega)$ defined on $R_x^n \times R_{\omega}^n$ with the properties:

1) $p(x, \omega)$ can be written as

$$p(x, \omega) = p_0(x, \omega) + p_{\infty}(\omega),$$

where $p_0(x, \omega)$ and $p_{\infty}(\omega)$ are bounded and measurable on $R_x^n \times R_{\omega}^n$ and on R_{ω}^n respectively, and $\lim_{|x| \to \infty} p_0(x, \omega) = 0$ for each $\omega \in R^n$;

2) $p_0(x, \omega)$ is integrable as a function of x for each $\omega \in \mathbb{R}^n$;

3) The Fourier transform $\hat{p}_0(\chi, \omega)$ of $p_0(x, \omega)$ is integrable as a function of χ for each $\omega \in \mathbb{R}^n$ and $\operatorname{ess}_{\dot{\omega}} \sup |\hat{p}_0(\chi, \omega)|$ is integrable.

(Two elements of \mathscr{K} are identified if they coincide almost everywhere.)

The element $p(x, \omega)$ of \mathscr{H} has the Fourier transform $\hat{p}(\chi, \omega)$ in the sense of distributions, which can be written as follows:

(3.1)
$$\hat{p}(\chi, \omega) = \hat{p}_0(\chi, \omega) + \delta(\chi) p_{\infty}(\omega),$$

where $\delta(\chi)$ is the delta function. We define $\|\hat{p}\|_F$ by

(3.2)
$$\|\hat{p}\|_{F} = \int \operatorname{ess}_{\omega} \sup |\hat{p}_{0}(\chi, \omega)| d\chi + \operatorname{ess}_{\omega} \sup |p_{\omega}(\omega)|.$$

In the following for simplicity we often omit x, ω and χ from $p(x, \omega)$, $\hat{p}(\chi, \omega)$, u(x), $u(\omega)$, etc., when no confusion can arise.

We introduce into \mathscr{K} matrix addition, matrix multiplication, scalar multiplication and conjugate transposition. Then we have

LEMMA 3.1. If $p, q \in \mathcal{K}$ and $\alpha \in \mathbb{C}$, then $p+q, pq, \alpha p, p^* \in \mathcal{K}$ and

(3.3)
$$\|\widehat{p+q}\|_F \leq \|\widehat{p}\|_F + \|\widehat{q}\|_F, \quad \|\widehat{\alpha p}\|_F = |\alpha| \|\widehat{p}\|_F, \quad \|\widehat{p^*}\|_F = \|\widehat{p}\|_F,$$

(3.4) $\|\hat{pq}\|_F \leq \|\hat{p}\|_F \|\hat{q}\|_F.$

PROOF. It suffices to show that $pq \in \mathscr{K}$ and (3.4) holds. Put d = pq. Then d can be written as $d = d_0 + d_{\infty}$, where

$$d_0 = p_0 q_0 + p_0 q_\infty + p_\infty q_0, \quad d_\infty = p_\infty q_\infty.$$

By definition d satisfies conditions 1) and 2) of \mathscr{K} , and $\hat{d}_0(\chi, \omega)$ can be written as

(3.5)
$$\hat{d}_0(\chi, \omega) = \hat{p}_0 * \hat{q}_0 + \hat{p}_0 q_\infty + p_\infty \hat{q}_0.$$

Since

(3.6)
$$|\hat{d}_0(\chi, \omega)| \leq |\hat{p}_0 * \hat{q}_0| + |\hat{p}_0| |q_{\infty}| + |p_{\infty}| |\hat{q}_0|,$$

integrating (3.6) with respect to χ and applying Young's Theorem, we have

$$\begin{split} \int |\hat{d}_{0}(\chi,\,\omega)|d\chi &\leq \int |\hat{p}_{0}(\chi,\,\omega)|d\chi \int |\hat{q}_{0}(\chi,\,\omega)|d\chi \\ &+ |q_{\infty}(\omega)| \int |\hat{p}_{0}(\chi,\,\omega)|d\chi + |p_{\infty}(\omega)| \int |\hat{q}_{0}(\chi,\,\omega)|d\chi. \end{split}$$

Hence $\hat{d}_0(\chi, \omega)$ is integrable as a function of χ for each ω .

Taking the essential suprema of both sides of (3.6) over R_{ω}^{n} and integrating them with respect to χ , we have

$$\|\hat{d}_0\|_F \leq \|\hat{p}_0\|_F \|\hat{q}_0\|_F + (\mathrm{ess}_{\hat{\omega}} \sup |q_{\hat{\omega}}|) \|\hat{p}_0\|_F + (\mathrm{ess}_{\hat{\omega}} \sup |p_{\hat{\omega}}|) \|\hat{q}_0\|_F.$$

Therefore d_0 satisfies condition 3) of \mathcal{K} and the proof is complete.

By this lemma \mathscr{K} forms an algebra with involution over C.

To define a family of operators associated with $p \in \mathcal{K}$, we show the following

LEMMA 3.2. Let $p \in \mathscr{K}$ and $u \in \mathscr{S}$. Then

(3.7)
$$\left\|\int \hat{p}(\xi-\xi',\,h\xi')\hat{u}(\xi')d\xi'\right\| \leq \|\hat{p}\|_F\|\hat{u}\| \quad for \quad h>0,$$

and for almost all x

(3.8)
$$\text{l.i.m. } \kappa^{-1} \int e^{ix \cdot \xi} \int \hat{p}(\xi - \xi', h\xi') \hat{u}(\xi') d\xi' d\xi$$
$$= \kappa^{-1} \int e^{ix \cdot \xi} p(x, h\xi) \hat{u}(\xi) d\xi \quad \text{for} \quad h > 0$$

PROOF. For simplicity put

$$r_0(\chi) = \operatorname{ess}_{\omega} \sup |\hat{p}_0(\chi, \omega)|, \quad r_{\infty} = \operatorname{ess}_{\omega} \sup |p_{\infty}(\omega)|,$$
$$v(\xi, h) = \int \hat{p}(\xi - \xi', h\xi') \hat{u}(\xi') d\xi'.$$

Then for almost all ξ

$$(3.9) |v(\xi, h)| \leq r_{\infty}|\hat{u}(\xi)| + \int r_0(\xi - \xi')|\hat{u}(\xi')|d\xi'.$$

Integrating (3.9) with respect to ξ and changing the order of integration, we have

(3.10)
$$\int |v(\xi, h)| d\xi \leq \|\hat{p}\|_F \int |\hat{u}(\xi)| d\xi \quad \text{for} \quad h > 0.$$

Since by Young's Theorem

$$\left\|\int r_0(\xi-\xi')\,|\,\hat{u}(\xi')\,|d\xi'\,\right\| \leq \int r_0(\chi)d\chi\|\,\hat{u}\,\|\,,$$

from (3.9) it follows that

$$\|v\| \leq r_{\infty} \|\hat{u}\| + \int r_{0}(\chi) d\chi \|\hat{u}\| = \|\hat{p}\|_{F} \|\hat{u}\|,$$

which shows (3.7).

By (3.7) and (3.10) $v(\xi, h)$ belongs to L_1 and to L_2 as a function of ξ for each fixed h > 0. Therefore the inverse Fourier transform of $v(\xi, h)$ in L_1 and that in L_2 coincide almost everywhere on R_x^n and

l.i.m.
$$\kappa^{-1} \int e^{i\mathbf{x}\cdot\boldsymbol{\xi}} v(\boldsymbol{\xi},\,h) d\boldsymbol{\xi} = \kappa^{-1} \int e^{i\mathbf{x}\cdot\boldsymbol{\xi}} v(\boldsymbol{\xi},\,h) d\boldsymbol{\xi}$$

for almost all x. By the change of order of integration we have for almost all x

$$\kappa^{-1} \int e^{ix \cdot \xi} v(\xi, h) d\xi = \kappa^{-1} \int e^{ix \cdot \xi} p(x, h\xi) \hat{u}(\xi) d\xi.$$

Thus (3.8) holds and the proof is complete.

With each $p \in \mathscr{K}$ we associate a one-parameter family of operators P_h by the formula:

(3.11)
$$P_{h}u(x) = \lim \kappa^{-1} \int e^{ix \cdot \xi} \int \hat{p}(\xi - \xi', h\xi') \hat{u}(\xi') d\xi' d\xi$$
for all $u \in \mathcal{S}, h > 0.$

Then by (3.7) P_h is a family of bounded linear operators from \mathscr{S} into L_2 . Hence it can be extended to the closure $\overline{\mathscr{S}} = L_2$ with preservation of norm and the extension is unique. Denoting this extension of P_h again by P_h , we call P_h the family (of operators) associated with p and denote this mapping by ϕ i.e. $P_h = \phi(p)$. Unless otherwise stated, we denote by Q_h , \tilde{L}_h , \overline{W}_h , etc. the families associated with q, \tilde{l} , w^{-1} , etc. respectively.

We note that by (3.8) $P_h u$ ($u \in \mathcal{S}$) can be rewritten as follows:

(3.12)
$$P_h u(x) = \kappa^{-1} \int e^{ix \cdot \xi} p(x, h\xi) \hat{u}(\xi) d\xi \quad \text{for all} \quad u \in \mathcal{S}, \quad h > 0.$$

Let $\mathscr{K}_h = \phi(\mathscr{K})$. Then we have

LEMMA 3.3. The mapping ϕ is one-to-one.

PROOF. Suppose for some $p \in \mathcal{K}$

$$P_h v = 0$$
 for all $v \in \mathscr{S}$.

Then by (3.12) for almost all x

$$\int e^{ix \cdot \xi} p(x, h\xi) \hat{v}(\xi) d\xi = 0 \quad \text{for all} \quad v \in \mathcal{S}, \quad h > 0.$$

Since for each $w(\xi) \in \mathscr{S}$ the inverse Fourier transform of $w(\xi)$ belongs to \mathscr{S} , it follows that for almost all x

$$\int e^{ix \cdot \xi} p(x, h\xi) w(\xi) d\xi = 0 \quad \text{for all} \quad w \in \mathcal{S}, \quad h > 0.$$

Put $r(\xi) = \prod_{i=1}^{n} (1 + \xi_i^2)^{-1}$. Then for almost all x

$$\int e^{ix \cdot \xi} p(x, h\xi) r(\xi) u(\xi) d\xi = 0 \quad \text{for all} \quad u \in \mathcal{S},$$

because $r(\xi)u(\xi) \in \mathscr{S}$. Since $p(x, \omega)$ is bounded, $p(x, h\xi)r(\xi)$ belongs to L_1 as a function of ξ for almost all x. Hence for almost all (x, ξ)

$$p(x, h\xi) = 0 \quad \text{for} \quad h > 0,$$

so that $p(x, \omega) = 0$ a.e., which completes the proof.

For $\phi(p)$, $\phi(q) \in \mathcal{K}_h$ and $\alpha \in C$ let

$$\phi(p) + \phi(q) = \phi(p+q), \quad \phi(p) \circ \phi(q) = \phi(pq),$$
$$\phi(p)^* = \phi(p^*), \quad \alpha \phi(p) = \phi(\alpha p).$$

Then \mathscr{K}_h forms a unitary algebra over C with respect to the operations + and \circ , and the operation * is an involution in \mathscr{K}_h . It is readily seen that \mathscr{K}_h is an algebra with involution and the mappings ϕ and ϕ^{-1} are morphisms [1].

3.2. Products and adjoints

To study the relations between the products P_hQ_h and $P_h\circ Q_h$ we introduce the following two conditions.

CONDITION I. 1) $p \in \mathscr{K}$;

2) $\hat{p}_0(\chi, \omega)$ and $p_{\infty}(\omega)$ are absolutely continuous with respect to ω_j (j=1, 2, ..., n) and $\partial_j \hat{p}_0(\chi, \omega)$ and $\partial_j p_{\infty}(\omega)$ are measurable in $R_{\chi}^n \times R_{\omega}^n$ and in R_{ω}^n respec-

tively;

3) ess $\sup_{\omega} |\partial_j \hat{p}_0(\chi, \omega)|$ (j=1, 2, ..., n) are integrable and ess $\sup_{\omega} |\partial_j p_{\omega}(\omega)|$ (j=1, 2, ..., n) are finite.

CONDITION II. $q \in \mathscr{K}$ and $ess_{\omega} sup(|\chi| |\hat{q}_0(\chi, \omega)|)$ is integrable. We have

THEOREM 3.1. Let p satisfy Condition I and q satisfy Condition II. Then

$$P_h Q_h \equiv P_h^{\circ} Q_h.$$

PROOF. By continuity of the L_2 -norm it suffices to prove the theorem in the case $u \in \mathscr{S}$. From the definition of $P_h Q_h$ it follows that

$$\begin{split} \widehat{P}_h Q_h \widehat{u}(\xi) &= \widehat{P}_h(Q_h \widehat{u})(\xi) \\ &= \iint \widehat{p}_0(\xi - \eta, h\eta) \widehat{q}_0(\eta - \xi', h\xi') \widehat{u}(\xi') d\xi' d\eta \\ &+ \iint p_\infty(h\xi) \widehat{q}_0(\xi - \xi', h\xi') \widehat{u}(\xi') d\xi' + w(\xi) \,, \end{split}$$

where

$$w(\xi) = \int \hat{p}_0(\xi - \xi', h\xi') q_{\infty}(h\xi') \hat{u}(\xi') d\xi' + p_{\infty}(h\xi) q_{\infty}(h\xi) \hat{u}(\xi).$$

Changing the order of integration and setting $t = \eta - \xi'$, we have

(3.14)
$$\widehat{P_{h}Q_{h}u}(\xi) = \iint \hat{p}_{0}(\chi - t, \omega + ht)\hat{q}_{0}(t, \omega)\hat{u}(\xi')dtd\xi' + \int p_{\infty}(\omega + h\chi)\hat{q}_{0}(\chi, \omega)\hat{u}(\xi')d\xi' + w(\xi),$$

where $\chi = \xi - \xi'$, $\omega = h\xi'$.

Since $P_h \circ Q_h$ is a family associated with pq,

(3.15)
$$\widehat{P_{h} \circ Q_{h} u}(\xi) = \iint \widehat{p}_{0}(\chi - t, \omega) \widehat{q}_{0}(t, \omega) \widehat{u}(\xi') dt d\xi' + \int p_{\infty}(\omega) \widehat{q}_{0}(\chi, \omega) \widehat{u}(\xi') d\xi' + w(\xi)$$

where $\chi = \xi - \xi'$, $\omega = h\xi'$. Comparison of (3.14) and (3.15) shows that the proof is complete by the first part of Lemma 3.2, if

(3.16)
$$\int \operatorname{ess}_{\omega} \sup | \int \{ \hat{p}_0(\chi - t, \, \omega + ht) - \hat{p}_0(\chi - t, \, \omega) \} \hat{q}_0(t, \, \omega) dt | d\chi = O(h) \, ,$$

Hisayoshi SHINTANI and Kenji TOMOEDA

(3.17)
$$\int \operatorname{ess}_{\omega} \sup |\{p_{\infty}(\omega + h\chi) - p_{\infty}(\omega)\}\hat{q}_{0}(\chi, \omega)|d\chi = O(h).$$

Since $p_0(\chi, \omega)$ is absolutely continuous with respect to ω_j , we have

$$\begin{split} |\{\hat{p}_{0}(\chi - t, \omega + ht) - \hat{p}_{0}(\chi - t, \omega)\}\hat{q}_{0}(t, \omega)| \\ &= |\sum_{j=1}^{n} \{\hat{p}_{0}(\chi - t, \omega_{1}, ..., \omega_{j-1}, \omega_{j} + \theta_{j}, \omega_{j+1} + \theta_{j+1}, ..., \omega_{n} + \theta_{n}) \\ &- \hat{p}_{0}(\chi - t, \omega_{1}, ..., \omega_{j}, \omega_{j+1} + \theta_{j+1}, ..., \omega_{n} + \theta_{n})\}\hat{q}_{0}(t, \omega)| \\ &= |\sum_{j=1}^{n} \int_{0}^{\theta_{j}} \partial_{j} \hat{p}_{0}(\chi - t, \omega_{1}, ..., \omega_{j-1}, \omega_{j} + \zeta_{j}, \omega_{j+1} + \theta_{j+1}, ..., \omega_{n} + \theta_{n})d\zeta_{j}\hat{q}_{0}(t, \omega)|, \end{split}$$

where $\theta_j = ht_j$. Taking the essential suprema of both sides over R_{ω}^n and integrating them with respect to χ , we have

$$\iint \operatorname{ess}_{\omega} \sup |\{\hat{p}_{0}(\chi - t, \omega + ht) - \hat{p}_{0}(\chi - t, \omega)\}\hat{q}_{0}(t, \omega)|d\chi dt$$
$$\leq \iint \sum_{j=1}^{n} \operatorname{ess}_{\omega} \sup (|\partial_{j}\hat{p}_{0}(\chi - t, \omega)|)h|t_{j}| \operatorname{ess}_{\omega} \sup (|\hat{q}_{0}(t, \omega)|)d\chi dt$$

Hence (3.16) follows by I-3) and II.¹⁾ Similarly we have (3.17).

From the proof of this theorem we have

COROLLARY 3.1. If a(x), $b(\omega)$, $p(x, \omega) \in \mathcal{K}$, then

$$P_h B_h = P_h \circ B_h$$

To study the relations between the adjoint P_h^* of P_h and the family P_h^* we introduce

CONDITION III. 1) $p \in \mathcal{K}$;

2) $\hat{p}_0(\chi, \omega)$ is absolutely continuous with respect to ω_j (j=1, 2, ..., n) and $\partial_j \hat{p}_0(\chi, \omega)$ (j=1, 2, ..., n) are measurable in $R^n_{\chi} \times R^n_{\omega}$;

3) ess $\sup_{\omega} \sup(|\chi_j| |\partial_j \hat{p}_0(\chi, \omega)|)$ (j = 1, 2, ..., n) are integrable.

THEOREM 3.2. Let $p \in \mathcal{K}$. Then

(3.20)
$$P_h^* u(x) = \text{l.i.m.} \, \kappa^{-1} \int e^{ix \cdot \xi} \int \widehat{p^*}(\xi - \xi', h\xi) \widehat{u}(\xi') d\xi' d\xi$$
for all $u \in \mathcal{S}, h > 0.$

¹⁾ The term Condition is often omitted when no confusion can arise.

If p satisfies Condition III, then

$$(3.21) P_h^* \equiv P_h^*.$$

PROOF. Since $\widehat{p^*}(\xi - \xi', h\xi) = \widehat{p^*}(\xi - \xi', h\xi' + h(\xi - \xi'))$, by the same argument as in the proof of Lemma 3.2 we have for $w \in \mathscr{S}$

(3.22)
$$\left\| \int \widehat{p^*}(\xi - \xi', h\xi) \widehat{w}(\xi') d\xi' \right\| \leq \| \widehat{p^*} \|_F \| \widehat{w} \|.$$

For $u, w \in \mathcal{S}$

$$(u, P_h^*w) = (P_h u, w) = (\widehat{P}_h u, \widehat{w})$$
$$= \int \left\{ \int \widehat{p}(\xi - \xi', h\xi') \widehat{u}(\xi') d\xi' \right\}^* \widehat{w}(\xi) d\xi$$
$$= \int \int \widehat{u}^*(\xi') \widehat{p}^*(\xi - \xi', h\xi') \widehat{w}(\xi) d\xi' d\xi$$
$$= \int \int \widehat{u}^*(\xi') \widehat{p}^*(\xi' - \xi, h\xi') \widehat{w}(\xi) d\xi d\xi'.$$

From this (3.20) follows by (3.22).

It suffices to prove (3.21) in the case $u \in \mathscr{S}$. From (3.20) and the definition of P_h^{\sharp} it follows that

(3.23)
$$\widehat{P_h^*u}(\xi) - \widehat{P_h^*u}(\xi) = \int \{\widehat{p_0^*}(\chi, \omega + h\chi) - \widehat{p_0^*}(\chi, \omega)\} \widehat{u}(\xi') d\xi',$$

where $\chi = \xi - \xi'$ and $\omega = h\xi'$. By III-2) we have

$$\begin{aligned} |\widehat{p_0^*}(\chi,\,\omega+h\chi) - \widehat{p_0^*}(\chi,\,\omega)| \\ &= |\sum_{j=1}^n \int_0^{\theta_j} \partial_j \widehat{p_0^*}(\chi,\,\omega_1,\ldots,\,\omega_{j-1},\,\omega_j + \zeta_j,\,\omega_{j+1} + \theta_{j+1},\ldots,\,\omega_n + \theta_n) d\zeta_j|\,, \end{aligned}$$

where $\theta_j = h\chi_j$. Taking the essential suprema of both sides over R_{ω}^n and integrating them with respect to χ , we find

$$\int \operatorname{ess}_{\omega} \sup |\widehat{p_0^*}(\chi, \,\omega + h\chi) - \widehat{p_0^*}(\chi, \,\omega)| d\chi \leq h \sum_{j=1}^n \int \operatorname{ess}_{\omega} \sup (|\chi_j| \,|\partial_j \widehat{p_0^*}(\chi, \,\omega)|) d\chi$$

Hence (3.21) holds by III-3) and Lemma 3.2.

From (3.23) we have

COROLLARY 3.2. If $k(\omega) \in \mathcal{K}$, then

(3.24)
$$K_h^* = K_h^*$$
.

3.3. Construction of a new norm

We construct a norm which is equivalent to the L_2 -norm and is useful for establishing (2.17).

Let ε and $R \ (R \ge \varepsilon)$ be positive numbers and let $S(R, \varepsilon) = \{x \mid |x| < R + \varepsilon\}$. Let $x^{(i)} \ (i=1, 2,..., s)$ be all the lattice-points $(\varepsilon \eta_1, \varepsilon \eta_2,..., \varepsilon \eta_n)$ contained in $S(R, \varepsilon) \ (\eta_j = m_j/\sqrt{n}; m_j = 0, \pm 1, \pm 2,...; j = 1, 2,..., n)$ and let

 $V_0 = \{x \mid |x| > R\}, \quad V_i = \{x \mid |x - x^{(i)}| < \varepsilon\} \quad (i = 1, 2, ..., s).$

Then we can construct a partition of unity $\{\alpha_i^2(x)\}_{i=0,1,\dots,s}$ with the properties:

- 1) $\alpha_i(x) \geq 0, \ \alpha_i(x) \in C^{\infty}, \ \operatorname{supp} \alpha_i(x) \subset V_i \ (i = 0, 1, ..., s);$
- 2) $\sum_{i=0}^{s} \alpha_i^2(x) = 1;$

3) $\alpha_0(x)$ and all its partial derivatives are bounded uniformly with respect to R for each ε .

We introduce the following

CONDITION N. 1) $g \in \mathscr{K}$ and $D_j g(x, \omega)$ (j=1, 2, ..., n) are bounded on $R_x^n \times R_{\omega}^n$ and continuous on R_x^n for each ω ; $D_j g(x, \omega)$ (j=1, 2, ..., n) are integrable as functions of x for each ω ; $D_j g(\chi, \omega)$ (j=1, 2, ..., n) are integrable as functions of χ for each ω and ess $\sup_{\alpha} |D_j g(\chi, \omega)|$ (j=1, 2, ..., n) are integrable;

$$2) \quad \lim_{R\to\infty} \|\widehat{\alpha_0 g_0}\|_F = 0.$$

We have

THEOREM 3.3. Suppose

1) $g(x, \omega)$ satisfies Condition N;

2) $g(x, \omega) \ge eI$ for some constant e > 0.

Then for sufficiently large R and small ε there exist positive constants d_1 and d_2 such that

(3.25)
$$d_1^2 \|u\|^2 \leq \sum_{i=0}^s \operatorname{Re}(G_h \alpha_i u, \alpha_i u) \leq d_2^2 \|u\|^2$$

for all $u \in L_2$, h > 0,

where d_i (j=1, 2) are independent of u and h.

This theorem enables us to introduce the norm

(3.26)
$$||u||_{G_h} = \{\sum_{i=0}^s \operatorname{Re}(G_h \alpha_i u, \alpha_i u)\}^{1/2}$$
 for all $u \in L_2$,

and by (3.25) we have

(3.27)
$$d_1 \|u\| \le \|u\|_{G_h} \le d_2 \|u\|.$$

LEMMA 3.4. If p and q satisfy Condition N, so also do p+q, pq and p^* .

PROOF. It suffices to prove the lemma in the case of pq. Put d = pq. Then d satisfies Condition N-1). Since

$$d_0 = p_0 q_0 + p_0 q_\infty + p_\infty q_0,$$

it follows that

$$\widehat{\alpha_0 d_0}(\chi, \omega) = \int \widehat{\alpha_0 p_0}(\chi - t, \omega) \widehat{q}_0(t, \omega) dt$$
$$+ \widehat{\alpha_0 p_0}(\chi, \omega) q_{\infty}(\omega) + p_{\infty}(\omega) \widehat{\alpha_0 q_0}(\chi, \omega).$$

Taking the essential suprema of both sides over R_{ω}^{n} and integrating them with respect to χ , we have by Young's Theorem

$$\|\widehat{\alpha_0d_0}\|_F \leq \|\widehat{\alpha_0p_0}\|_F \|\widehat{q}_0\|_F + \|\widehat{\alpha_0p_0}\|_F \|q_\infty\|_F + \|p_\infty\|_F \|\widehat{\alpha_0q_0}\|_F,$$

the right side of which tends to zero as $R \to \infty$ by N-2). Hence $\|\alpha_0 d_0\|_F \to 0$ as $R \to \infty$ and pq satisfies Condition N-2).

3.4. Lax-Nirenberg Theorem

We have the following analogue of Lax-Nirenberg Theorem [10] which plays an important role in establishing (2.17).

THEOREM 3.4. Suppose $p \in \mathcal{K}$ satisfies the conditions:

1) $\partial_j \hat{p}_0(\chi, \omega)$ and $\partial_j p_{\infty}(\omega)$ (j=1, 2, ..., n) are continuous on \mathbb{R}^n_{ω} for each χ and absolutely continuous with respect to ω_k (k=1, 2, ..., n);

2) $\partial_k \partial_j \hat{p}_0(\chi, \omega)$ and $\partial_k \partial_j p_{\omega}(\omega)$ (j, k=1, 2, ..., n) are measurable in \mathbb{R}^n_{χ} $\times \mathbb{R}^n_{\omega}$ and in \mathbb{R}^n_{ω} respectively; $\mathrm{ess}_{\omega} \sup(|\partial_k \partial_j \hat{p}_0(\chi, \omega)|)$ (j, k=1, 2, ..., n) are integrable and $\mathrm{ess}_{\omega} \sup(|\partial_k \partial_j p_{\omega}(\omega)|)$ (j, k=1, 2, ..., n) are finite;

3) ess $\sup_{\omega} \sup(|\chi|^2 |\hat{p}_0(\chi, \omega)|)$ is integrable;

4)
$$p(x, \omega) \geq 0.$$

Then there exists a positive constant c independent of u and h such that

(3.28) $\operatorname{Re}(P_h u, u) \ge -ch ||u||^2$ for all $u \in L_2$, h > 0.

4. Powers of families of operators

4.1. The family of operators A_h

In this section $s(\omega)$ denotes a real-valued vector function with the properties:

1) $s_l(\omega)$, $\partial_j s_l(\omega)$ and $\partial_k \partial_j s_l(\omega)$ (j, k, l=1, 2, ..., n) are bounded and continuous on \mathbb{R}^n ;

2) Zeros of $|s(\omega)|$ are isolated points.

(The function $s(\omega)$ given in 2.2 has these properties.)

Let $Z = \{\omega | |s(\omega)| = 0\}$. Then $R_{\omega}^n - Z$ is an open set by continuity of $|s(\omega)|$ and by properties 1) and 2) $|s(\omega)|$ satisfies Condition I. Let Λ_h be the family associated with $|s(\omega)|I$. Then by Corollary 3.2 we have

$$\Lambda_h = \Lambda_h^* = \Lambda_h^*.$$

Let $p(x, \omega)$ be an element of \mathscr{K} such that $p(x, \omega)/|s(\omega)|$ is bounded on $R_x^n \times (R_{\omega}^n - Z)$. Then we seek sufficient conditions under which P_h can be written as $P_h = Q_h \circ \Lambda_h$ for some $Q_h \in \mathscr{K}_h$. For any constant α let

$$q_{\alpha}(x, \omega) = \begin{cases} p(x, \omega)/|s(\omega)| & \text{for } \omega \in \mathbb{R}^n - \mathbb{Z}, \\ \alpha I & \text{for } \omega \in \mathbb{Z}, \end{cases}$$

and suppose $q_{\alpha}(x, \omega) \in \mathcal{K}$. Then

$$\begin{aligned} |\widehat{Q_{\alpha h} u}(\xi) - \widehat{Q_{\beta h} u}(\xi)| &= \left| \int \{ \widehat{q_{\alpha}}(\xi - \xi', h\xi') - \widehat{q_{\beta}}(\xi - \xi', h\xi') \} \widehat{u}(\xi') d\xi' \right| \\ &\leq |q_{\alpha \infty}(h\xi) - q_{\beta \infty}(h\xi)| |\widehat{u}(\xi)| \quad \text{for all} \quad u \in \mathscr{S}, \end{aligned}$$

where $Q_{\alpha h}$ and $Q_{\beta h}$ are the families associated with q_{α} and q_{β} ($\beta \neq \alpha$) respectively. Since Z is a set of measure zero, for all $u \in \mathcal{S}$ we have for almost all ξ

$$|q_{\alpha\infty}(h\xi) - q_{\beta\infty}(h\xi)| |\hat{u}(\xi)| = 0.$$

Hence Q_{xh} and $Q_{\beta h}$ can be identified. In the following we identify $q_{\alpha}(x, \omega)$ and $q_{\beta}(x, \omega)$ and denote them by $p(x, \omega)/|s(\omega)|$. Then we have $P_h = P_{1h} \circ A_h$, where P_{1h} is the family associated with p/|s|.

When $e(\omega)$ is a scalar function with isolated zeros such that $e(\omega)I \in \mathcal{K}$, we can define $p(x, \omega)/e(\omega)$ similarly by replacing $|s(\omega)|$ by $e(\omega)$.

In particular let $r(\omega)$ be a scalar function such that $r(\omega)I \in \mathscr{K}$ and for some constant c_0

$$|r(\omega)| \leq c_0 |s(\omega)|$$
 for all $\omega \in \mathbb{R}^n$.

Then $r(\omega)/|s(\omega)| \in \mathcal{X}$ and $R_h = R_{1h} \circ A_h$, where R_h and R_{1h} are the families associ-

ated with rI and (r/|s|)I respectively.

To study the relation between $P_h Q_h \Lambda_h$ and $P_h \circ Q_h \circ \Lambda_h$ and that between $(P_h \Lambda_h)^*$ and $P_h^* \circ \Lambda_h$, we introduce the following conditions:

CONDITION I'. 1) $p \in \mathscr{K}$;

2) $\hat{p}_0(\chi, \omega)$ is bounded on $R_{\chi}^n \times (R_{\omega}^n - Z)$;

3) $\partial_j l_0(\chi, \omega)$ and $\partial_j l_{\omega}(\omega)$ (j=1, 2, ..., n) are bounded on $R_{\chi}^n \times (R_{\omega}^n - Z)$ and continuous on $R_{\omega}^n - Z$ for each χ , where $l_0(\chi, \omega) = \hat{p}_0|s|$, $l_{\omega}(\omega) = p_{\omega}|s|$;

4) ess sup $|\partial_j l_0|$ (j=1, 2,..., n) are integrable.

CONDITION III'. 1), 2) the same as I'-1, I'-2) respectively;

3) $\partial_j l_0(\chi, \omega)$ (j=1, 2, ..., n) are bounded on $R_{\chi}^n \times (R_{\omega}^n - Z)$ and continuous on $R_{\omega}^n - Z$ for each χ ;

4) ess $\sup_{\omega} (|\chi_j| |\partial_j l_0(\chi, \omega)|) (j=1, 2, ..., n)$ are integrable. We have

LEMMA 4.1. (i) If p satisfies Condition I', then p|s| satisfies Condition I. (ii) If p satisfies Condition III', then p|s| satisfies Condition III. Next we prove

LEMMA 4.2. (i) If p satisfies Condition I' and q satisfies Condition II, then

$$(4.1) P_h Q_h \Lambda_h \equiv P_h \circ Q_h \circ \Lambda_h.$$

(ii) If p satisfies Condition III', then

$$(4.2) (P_h \Lambda_h)^* \equiv P_h^* \circ \Lambda_h.$$

PROOF. The assertion (ii) follows from Lemma 4.1 and Theorem 3.2. By Theorem 3.1 and its corollary

$$\Lambda_h \circ Q_h \equiv \Lambda_h Q_h, \quad Q_h \Lambda_h = Q_h \circ \Lambda_h, \quad P_h \Lambda_h = P_h \circ \Lambda_h.$$

As $\Lambda_h \circ Q_h = Q_h \circ \Lambda_h$, we have $Q_h \Lambda_h \equiv \Lambda_h Q_h$, so that

$$P_h Q_h \Lambda_h \equiv P_h \Lambda_h Q_h = (P_h \circ \Lambda_h) Q_h.$$

Since p|s| satisfies Condition I by Lemma 4.1, by Theorem 3.1 we have

$$(P_h \circ \Lambda_h) Q_h \equiv (P_h \circ \Lambda_h) \circ Q_h.$$

Hence

$$P_h Q_h \Lambda_h \equiv P_h \circ \Lambda_h \circ Q_h = P_h \circ Q_h \circ \Lambda_h$$

and the proof is complete.

Now we introduce the following conditions:

CONDITION IV. $p \in \mathscr{K}$ and ess $\sup_{\omega} (|\chi|^2 |\hat{p}_0(\chi, \omega)|)$ is integrable.

CONDITION V. 1) p satisfies Condition I';

2) $\partial_k m_{j0}(\chi, \omega)$ and $\partial_i m_{j\infty}(\omega)$ (j, k=1, 2, ..., n) are bounded on $R^n_{\chi} \times (R^n_{\omega} - Z)$ and continuous on $R^n_{\omega} - Z$ for each χ , where $m_{j0}(\chi, \omega) = (\partial_j l_0) |s|$, $m_{j\infty}(\omega) = (\partial_j l_{\omega}) |s|$, $l_0 = \hat{p}_0 |s|$ and $l_{\omega} = p_{\omega} |s|$;

3) ess sup $(|\partial_k m_{j0}(\chi, \omega)|)$ (j, k=1, 2, ..., n) are integrable.

Condition IV implies Condition II and we have

LEMMA 4.3. If p satisfies Conditions IV and V, then $p(x, \omega)|s(\omega)|^2$ satisfies conditions 1), 2) and 3) of Theorem 3.4.

4.2. Subalgebras \mathcal{M} and \mathcal{L} of \mathcal{K}

Let \mathscr{M} be the set of all elements of \mathscr{K} that satisfy Conditions I', II and III' and let the set \mathscr{L} consist of all elements of \mathscr{M} that satisfy Conditions IV and V. $(\mathscr{M} \text{ and } \mathscr{L} \text{ depend on } s(\omega).)$ For instance $|s(\omega)|I$ and $(s_j(\omega)/|s(\omega)|)I$ (j=1, 2, ..., n) belong to \mathscr{M} and \mathscr{L} .

LEMMA 4.4. (i) If p and q satisfy Condition II, so also do p+q, pq and p^* .

(ii) If $p, q \in \mathcal{M}$, then p+q, pq, $p^* \in \mathcal{M}$. (iii) If $p, q \in \mathcal{L}$, then p+q, pq, $p^* \in \mathcal{L}$. We show

LEMMA 4.5. Let $g(x, \omega)$ satisfy Conditions I' and II, and let

(4.3)
$$l(x, \omega) = c(\omega)I + q(x, \omega)|s(\omega)|,$$

where $q(x, \omega) \in \mathcal{M}$ and $c(\omega)$ is a scalar function satisfying Condition I. Then

$$L_h^* G_h L_h \equiv L_h^* \circ G_h \circ L_h.$$

PROOF. L_h can be written as $L_h = C_h + Q_h \circ A_h$, where $C_h = \phi(cI)$. By Corollary 3.2 and Lemma 4.2 we have

 $C_h^* = C_h^*, \qquad (Q_h \circ \Lambda_h)^* \equiv Q_h^* \circ \Lambda_h.$

Therefore $L_h^* \equiv L_h^*$, and

$$(4.5) L_h^* G_h L_h \equiv L_h^* G_h L_h.$$

By Corollary 3.1 and Lemma 4.2 we have

$$G_h C_h = G_h \circ C_h, \qquad G_h Q_h \Lambda_h \equiv G_h \circ Q_h \circ \Lambda_h.$$

Hence $G_h L_h \equiv G_h \circ L_h$ and by (4.5)

$$(4.6) L_h^*G_hL_h \equiv L_h^*(G_h \circ L_h).$$

Since gl satisfies Condition II by Lemma 4.4 and l^* satisfies Condition I, by Theorem 3.1, we have

(4.7)
$$L_h^{\sharp}(G_h \circ L_h) \equiv L_h^{\sharp} \circ (G_h \circ L_h).$$

Hence (4.4) follows from (4.6) and (4.7).

COROLLARY 4.1. Under the assumption of Lemma 4.5 let

$$g(x, \omega) = w^*(x, \omega)w(x, \omega),$$

where $w, w^{-1} \in \mathcal{K}$. Then

(4.8)
$$G_h - L_h^* G_h L_h \equiv G_h - L_h^* \circ G_h \circ L_h = W_h^* \circ (I_h - \tilde{L}_h^* \circ \tilde{L}_h) \circ W_{h^*}$$

(4.9)
$$g - l^*gl = w^*(I - \tilde{l}^*\tilde{l})w, \quad \tilde{l} = wlw^{-1}.$$

PROOF. Since

$$\overline{W}_h \circ W_h = W_h^{\sharp} \circ \overline{W}_h^{\sharp} = I_h, \qquad G_h = W_h^{\sharp} \circ W_h,$$

we have from (4.4)

$$L_{h}^{*}G_{h}L_{h} \equiv L_{h}^{\sharp} \circ G_{h} \circ L_{h} = W_{h}^{\sharp} \circ \overline{W}_{h}^{\sharp} \circ L_{h}^{\sharp} \circ W_{h}^{\sharp} \circ U_{h} \circ L_{h} \circ \overline{W}_{h} \circ W_{h}$$
$$= W_{h}^{\sharp} \circ \widetilde{L}_{h}^{\sharp} \circ \widetilde{L}_{h} \circ W_{h}.$$

Hence (4.8) holds and we have (4.9) by matrix calculation.

4.3. Integrability of Fourier transforms

Our next step is to obtain sufficient conditions under which an $N \times N$ matrix function $p(x, \omega)$ belongs to \mathcal{K} , \mathcal{M} or \mathcal{L} . To this end we introduce

CONDITION VI. 1) $p(x, \omega)$ can be written as

$$p(x, \omega) = p_0(x, \omega) + p_{\infty}(\omega),$$

where $p_0(x, \omega)$ and $p_{\infty}(\omega)$ are bounded and measurable on $R_x^n \times R_{\omega}^n$ and on R_{ω}^n respectively, and $\lim_{\substack{|x|\to\infty\\ 0}} p_0(x, \omega) = 0$ for each $\omega \in \mathbb{R}^n$; 2) $D_l^m p_0(x, \omega)$ (l=1, 2, ..., n; m=0, 1, ..., n+3) are continuous on \mathbb{R}_x^n

 $\times (R_{\omega}^{n}-Z)$ and continuous on R_{x}^{n} for each $\omega \in Z$; sup $(|D_{l}^{m}p_{0}(x, \omega)|)$ (l=1, 2, ...,

 $n; m=0, 1, \dots, n+3$) are bounded and integrable;

3) $D_l^q \partial_j p_0(x, \omega)$ and $\partial_j p_{\infty}(\omega)$ (j, l=1, 2, ..., n; q=0, 1, ..., n+2) are continuous on $R_x^n \times (R_{\omega}^n - Z)$;

4) $\sup_{\omega \notin Z} (|D_l^q \partial_j p_0(x, \omega)| |s(\omega)|) (j, l=1, 2, ..., n; q=0, 1, ..., n+2)$ are bounded and integrable; $\sup_{\omega \notin Z} (|\partial_j p_{\infty}(\omega)| |s(\omega)|) (j=1, 2, ..., n)$ are finite;

5) $D_i^r \partial_k \partial_j p_0(x, \omega)$ and $\partial_k \partial_j p_{\infty}(\omega)$ (j, k, l=1, 2, ..., n; r=0, 1, ..., n+1) are continuous on $R_x^n \times (R_\omega^n - Z)$;

6) $\sup_{\substack{\omega \notin \mathbb{Z} \\ \omega \neq z}} (|D_i^* \partial_k \partial_j p_0(x, \omega)| |s(\omega)|^2) (j, k, l=1, 2, ..., n; r=0, 1, ..., n+1)$ are bounded and integrable; $\sup_{\substack{\omega \in \mathbb{Z} \\ \omega \neq z}} (|\partial_k \partial_j p_{\infty}(\omega)| |s(\omega)|^2) (j, k=1, 2, ..., n)$ are finite.

We have the following results.

LEMMA 4.6. (i) If p satisfies Conditions VI-1) and VI-2), then p satisfies Conditions II and IV.

(ii) If p satisfies Conditions VI-1)-VI-4), then $p \in \mathcal{M}$.

(iii) If p satisfies Condition VI, then $p \in \mathcal{L}$.

COROLLARY 4.2. Let a(x) be an $N \times N$ matrix such that

$$a(x) = a_0(x) + a_\infty,$$

where $\lim_{|x|\to\infty} a_0(x)=0$. Suppose $D_l^m a_0(x)$ (l=1, 2, ..., n; m=0, 1, ..., n+1+p; p=0, 1, 2) are bounded and continuous on \mathbb{R}^n and are integrable. Then $|\chi|^p |\hat{a}_0(\chi)|$ (p=0, 1, 2) are integrable.

LEMMA 4.7. If $g(x, \omega)$ satisfies Conditions VI-1) and VI-2), then it satisfies Condition N.

4.4. Powers of families of operators

To prove the boundedness of L_h^v $(0 \le vk \le T)$, in view of Theorem 2.1, it suffices to show that L_h satisfies (2.17). We show first the following

THEOREM 4.1. Let $g(x, \omega) \in \mathscr{L}$ satisfy conditions of Theorem 3.3 and let

$$(4.10) l(x, \omega) = c(\omega)I + q(x, \omega)|s(\omega)| + r(x, \omega)|s(\omega)|^2,$$

where $q, r \in \mathscr{L}$ and $c(\omega)$ is a real-valued scalar function which is bounded and continuous together with the first and second partial derivatives. Suppose

1)
$$q^*g + gq = 0$$
 for all $\omega \in \mathbb{R}^n - \mathbb{Z}$;

2)
$$1-c^2(\omega) = |s(\omega)|^2 a(\omega) + b(\omega);$$

3)
$$g-l^*gl \ge bg;$$

4)
$$b(\omega) = \sum_{j=1}^{m} b_j^2(\omega)$$
,

where $a(\omega)$ and $b_j(\omega)$ (j=1, 2, ..., m) are real-valued scalar functions such that $b_j(\omega)$ (j=1, 2, ..., m) satisfy Condition I and $a(\omega)I \in \mathscr{L}$. Then for some $c_0 \ge 0$

$$(4.11) ||L_h u||_{G_h}^2 \leq (1+c_0h) ||u||_{G_h}^2 for all u \in L_2, h > 0,$$

where $\|\cdot\|_{G_h}$ is the norm given by (3.26).

PROOF. By Lemma 4.5 we have

$$(4.12) L_h^* G_h L_h \equiv L_h^* \circ G_h \circ L_h.$$

By conditions 1) and 2)

(4.13)
$$g - l^*gl = (ag - p)|s|^2 + bg,$$

where

$$p = (q^*gq + r^*gc + cgr) + (q^*gr + r^*gq)|s| + r^*gr|s|^2.$$

From condition 3) it follows that

$$(4.14) (ag-p)|s|^2 \ge 0.$$

Since $ag - p \in \mathcal{L}$, by Lemma 4.3 and Theorem 3.4 we have for some $c_1 \ge 0$

(4.15) $\operatorname{Re}((A_h \circ G_h - P_h) \circ A_h^2 u, u) \ge -c_1 h ||u||^2$ for all $u \in L_2$, h > 0,

where $A_h = \phi(aI)$.

Let $\{\alpha_i^2(x)\}_{i=0,1,...,s}$ be the partition of unity given in 3.3 and let $\Omega = \{x | |x| > R + \varepsilon\}$. Then $\alpha_0(x) = 1$ on Ω , so that $\beta_0(x) = \alpha_0(x) - 1 = 0$ on Ω . Since $\beta_0(x)$ and $\alpha_j(x)$ (j=1, 2,..., s) are smooth functions with compact supports, $|\chi|^k |\hat{\beta}_0(\chi)|$ and $|\chi|^k |\hat{\alpha}_j(\chi)|$ (k=0, 1; j=1, 2,..., s) are integrable. Hence $\alpha_i(x)$ (i=0, 1,..., s) satisfy Condition II.

Let $B_h = \phi(bI)$, $B_{jh} = \phi(b_jI)$ (j=1, 2, ..., m) and $\alpha_i = \phi(\alpha_iI)$ (i=0, 1, ..., s). Then by Theorem 3.1 $\alpha_i B_{jh} \equiv B_{jh} \alpha_i$ and $G_h B_{jh} \equiv B_{jh} G_h$. Since $B_{jh}^* = B_{jh}$ by Corollary 3.2, for some c_2 , $c_3 \ge 0$ we have

$$\operatorname{Re}\left((G_{h}\circ B_{h})\alpha_{i}u, \alpha_{i}u\right) \geq \operatorname{Re}\sum_{j=1}^{m}(B_{jh}G_{h}B_{jh}\alpha_{i}u, \alpha_{i}u) - c_{2}h\|u\|^{2}$$
$$= \operatorname{Re}\sum_{j=1}^{m}(G_{h}B_{jh}\alpha_{i}u, B_{jh}\alpha_{i}u) - c_{2}h\|u\|^{2}$$
$$\geq \operatorname{Re}\sum_{j=1}^{m}(G_{h}\alpha_{i}B_{jh}u, \alpha_{i}B_{jh}u) - c_{3}h\|u\|^{2}.$$

Hence

(4.16) $\sum_{i=0}^{s} \operatorname{Re}((G_h \circ B_h) \alpha_i u, \alpha_i u)$

Hisayoshi Shintani and Kenji Tomoeda

$$\geq \sum_{j=1}^{m} \sum_{i=0}^{s} \operatorname{Re}(G_{h}\alpha_{i}B_{jh}u, \alpha_{i}B_{jh}u) - c_{4}h \|u\|^{2}$$

$$\geq \sum_{j=1}^{m} d_{1}^{2} \|B_{jh}u\|^{2} - c_{4}h \|u\|^{2} \geq -c_{4}h \|u\|^{2},$$

where d_1 is given by (3.25) and $c_4 = (s+1)c_3$.

Since $L_h \alpha_i \equiv \alpha_i L_h$ by Theorem 3.1, we have for some $c_5 \ge 0$

$$(4.17) \quad |(G_h\alpha_i L_h u, \alpha_i L_h u) - (G_h L_h \alpha_i u, L_h \alpha_i u)|$$

$$\leq |(G_h(\alpha_i L_h - L_h \alpha_i) u, \alpha_i L_h u)| + |(G_h L_h \alpha_i u, (\alpha_i L_h - L_h \alpha_i) u)| \leq c_5 h ||u||^2.$$

From (4.12) for some $c_6 \ge 0$

(4.18)
$$|(G_h L_h u, L_h u) - (L_h^* \circ G_h \circ L_h u, u)| \leq c_6 h ||u||^2.$$

Since by definition

$$\|L_h u\|_{G_h}^2 = \sum_{i=0}^s \operatorname{Re}(G_h \alpha_i L_h u, \alpha_i L_h u),$$

by (4.17) and (4.18) there is a constant $c_7 \ge 0$ such that

(4.19)
$$\|L_h u\|_{G_h}^2 \leq \sum_{i=0}^s \operatorname{Re}((L_h^* \circ G_h \circ L_h) \alpha_i u, \alpha_i u) + c_7 h \|u\|^2.$$

By (4.13) we have

(4.20)
$$(G_h - L_h^{\sharp} \circ G_h \circ L_h)u = (A_h \circ G_h - P_h) \circ A_h^2 u + B_h \circ G_h u$$

Hence by (4.15), (4.16), (4.19) and (4.20)

(4.21)
$$\|u\|_{G_h}^2 - \|L_h u\|_{G_h}^2 \ge \sum_{i=0}^{s} \operatorname{Re} \left((G_h - L_h^{\sharp} \circ G_h \circ L_h) \alpha_i u, \alpha_i u \right) - c_7 h \|u\|^2$$

$$\ge -c_8 h \|u\|^2,$$

where $c_8 = c_1 + c_4 + c_7$. By (3.27) we have (4.11) with $c_0 = c_8/d_1^2$ and the proof is complete.

We note that the theorem remains valid even if condition 4) is replaced by the condition

$$\sum_{i=0}^{s} \operatorname{Re}((G_{h} \circ B_{h})\alpha_{i}u, \alpha_{i}u) \geq -ch ||u||^{2} \quad \text{for all} \quad u \in L_{2}, \quad h > 0,$$

where c is a non-negative constant.

THEOREM 4.2. Let $g(x, \omega) \in \mathcal{M}$ satisfy conditions of Theorem 3.3 and let

(4.22)
$$l(x, \omega) = c(\omega)I + q(x, \omega)|s(\omega)|,$$

(4.23)
$$g(x, \omega) - l^*(x, \omega)g(x, \omega)l(x, \omega) = |e(\omega)|^2 r(x, \omega),$$

where $q \in \mathcal{M}$ and $c(\omega)$ and $e(\omega)$ are scalar functions satisfying Condition I.

Suppose

1) $r(x, \omega)$ satisfies Conditions II and N;

2) $r(x, \omega) \ge \beta I$ for some $\beta > 0$. Then for some $c_0 \ge 0$

$$(4.24) ||L_h u||_{G_h}^2 \leq (1+c_0 h) ||u||_{G_h}^2 for all u \in L_2, h > 0.$$

PROOF. By Theorem 3.3 there exist positive constants d_j , ε_j (j=1, 2), ε and R such that

(4.25)
$$d_1^2 \|u\|^2 \leq \sum_{i=0}^s \operatorname{Re}(G_h \alpha_i u, \alpha_i u) \leq d_2^2 \|u\|^2,$$

(4.26)
$$\varepsilon_1^2 \|u\|^2 \leq \sum_{i=0}^s \operatorname{Re}(R_h \alpha_i u, \alpha_i u) \leq \varepsilon_2^2 \|u\|^2.$$

By Lemma 4.5 we have

$$(4.27) L_h^* G_h L_h \equiv L_h^* \circ G_h \circ L_h.$$

By the same argument as in the proof of Theorem 4.1 there is a constant $c_1 \ge 0$ such that

(4.28)
$$\|L_h u\|_{G_h}^2 \leq \sum_{i=0}^{s} \operatorname{Re}((L_h^{\sharp} \circ G_h \circ L_h) \alpha_i u, \alpha_i u) + c_1 h \|u\|^2.$$

By Corollary 3.2 for $E_h = \phi(eI)$ we have

$$(4.29) E_h^* = E_h^*$$

and by Theorem 3.1 and its corollary

(4.30)
$$E_h^{\sharp} \circ E_h \circ R_h = (E_h^{\sharp} \circ R_h) \circ E_h = (E_h^{\sharp} \circ R_h) E_h \equiv E_h^{\sharp} R_h E_h.$$

Since by (4.23)

$$G_h - L_h^{\sharp} \circ G_h \circ L_h = E_h^{\sharp} \circ E_h \circ R_h,$$

by (4.29) and (4.30) we have

$$(4.31) G_h - L_h^{\sharp} \circ G_h \circ L_h \equiv E_h^* R_h E_h$$

Hence by (4.28) and (4.31) for some $c_2 \ge 0$

$$\|u\|_{G_{h}}^{2} - \|L_{h}u\|_{G_{h}}^{2} \ge \sum_{i=0}^{s} \operatorname{Re}\left((G_{h} - L_{h}^{*} \circ G_{h} \circ L_{h})\alpha_{i}u, \alpha_{i}u\right) - c_{1}h\|u\|^{2}$$
$$\ge \sum_{i=0}^{s} \operatorname{Re}\left(E_{h}^{*}R_{h}E_{h}\alpha_{i}u, \alpha_{i}u\right) - c_{2}h\|u\|^{2}$$
$$= \sum_{i=0}^{s} \operatorname{Re}\left(R_{h}E_{h}\alpha_{i}u, E_{h}\alpha_{i}u\right) - c_{2}h\|u\|^{2}.$$

Since $E_h \alpha_i \equiv \alpha_i E_h$, we have for some $c_3 \ge 0$

$$\|u\|_{G_h}^2 - \|L_h u\|_{G_h}^2 \ge \sum_{i=0}^s \operatorname{Re}(R_h \alpha_i E_h u, \alpha_i E_h u) - c_3 h \|u\|^2 - c_2 h \|u\|^2,$$

so that by (4.26) with $c_4 = c_2 + c_3$

$$\|u\|_{G_h}^2 - \|L_h u\|_{G_h}^2 \ge \varepsilon_1^2 \|E_h u\|^2 - c_4 h \|u\|^2 \ge -c_4 h \|u\|^2.$$

Thus (4.24) holds by (4.25) with $c_0 = c_4/d_1^2$.

5. Two algebras of difference operators

5.1. Algebra \mathcal{F}_h

Let \mathscr{A}_0 be the set of all $N \times N$ matrix functions a(x) defined on \mathbb{R}^n with the properties:

1) a(x) can be written as

$$a(x) = a_0(x) + a_\infty,$$

where $\lim_{|x|\to\infty} a_0(x) = 0;$

2) $a_0(x)$ is bounded and integrable:

3) $|\chi|^p |\hat{a}_0(\chi)|$ (p=0, 1, 2) are integrable.

(Two elements of \mathcal{A}_0 are identified if they coincide almost everywhere.)

We denote by α an *n*-tuple $(\alpha_1, \alpha_2, ..., \alpha_n)$ of integers, i.e. $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$. Let \mathscr{A} be the set of all matrices $a(x, \omega)$ such that $a(x, \omega) = \sum_{\alpha} a_{\alpha}(x)e^{i\alpha \cdot \omega}$, where $a_{\alpha} \in \mathscr{A}_0$ and the summation is over a finite set of α . It is clear that $a(x, \omega)$ satisfies Conditions I, II and III. Let

(5.1)
$$a(x, \omega) = \sum_{\alpha} a_{\alpha}(x) e^{i\alpha \cdot \omega}, \quad b(x, \omega) = \sum_{\beta} b_{\beta}(x) e^{i\beta \cdot \omega}.$$

Then we have

(5.2)
$$a(x, \omega) + b(x, \omega) = \sum_{\gamma} (a_{\gamma}(x) + b_{\gamma}(x))e^{i\gamma \cdot \omega},$$

(5.3)
$$a(x, \omega)b(x, \omega) = \sum_{\gamma} (\sum_{\alpha+\beta=\gamma} a_{\alpha}(x)b_{\beta}(x))e^{i\gamma\cdot\omega},$$

(5.4)
$$a^*(x, \omega) = \sum_{\alpha} a^*_{\alpha}(x) e^{-i\alpha \cdot \omega}.$$

Hence \mathscr{A} is a subalgebra of \mathscr{K} with involution.

By (2.6) T_h^{α} is a family of bounded linear operators mapping L_2 into itself. Since for $a(x) \in \mathcal{A}_0$

$$||a(x)T_h^{\alpha}u(x)|| \leq (\operatorname{ess} \sup |a(x)|) ||u||,$$

the family $a(x)T_h^{\alpha}$ belongs to \mathcal{H}_h . We define a mapping ψ from \mathscr{A} into \mathcal{H}_h by

$$\psi(\sum_{\alpha} a_{\alpha}(x)e^{i\alpha\cdot\omega}) = \sum_{\alpha} a_{\alpha}(x)T_{h}^{\alpha},$$

and let $\mathscr{A}_h = \psi(\mathscr{A})$.

For
$$\sum_{\alpha} a_{\alpha}(x) e^{i\alpha \cdot \omega} \in \mathscr{A}$$
 let $A_{h} = \phi(\sum_{\alpha} a_{\alpha}(x) e^{i\alpha \cdot \omega})$. Then for $u \in \mathscr{S}$
 $\kappa \int e^{ix \cdot \xi} \sum_{\alpha} a_{\alpha}(x) T_{h}^{\alpha} u(x) dx$
 $= \int \sum_{\alpha} \widehat{a}_{\alpha 0}(\xi - \xi') e^{i\alpha \cdot h\xi'} \widehat{u}(\xi') d\xi' + \sum_{\alpha} a_{\alpha \infty} e^{i\alpha \cdot h\xi} \widehat{u}(\xi)$
 $= \int \sum_{\alpha} \widehat{a}_{\alpha}(\xi - \xi') e^{i\alpha \cdot h\xi'} \widehat{u}(\xi') d\xi' = \widehat{A_{h}u}(\xi)$ a.e.,

so that for $u \in \mathcal{S}$ we have in L_2

(5.5)
$$\sum_{\alpha} a_{\alpha}(x) T^{\alpha}_{h} u(x) = A_{h} u(x).$$

By the uniqueness of the extension of operators (5.5) holds for all $u \in L_2$, so that $\sum_{\alpha} a_{\alpha}(x) T_h^{\alpha}$ and A_h can be identified. Hence ψ is the restriction of ϕ to \mathscr{A} and is a one-to-one mapping from \mathscr{A} onto \mathscr{A}_h . We call $\sum_{\alpha} a_{\alpha}(x) e^{i\alpha \cdot \omega}$ the symbol of $\sum_{\alpha} a_{\alpha}(x) T_h^{\alpha}$. Let $A_h, B_h \in \mathscr{A}_h$ and let

$$A_h = \sum_{\alpha} a_{\alpha}(x) T_h^{\alpha}, \qquad B_h = \sum_{\beta} b_{\beta}(x) T_h^{\beta}.$$

Then their symbols $a(x, \omega)$ and $b(x, \omega)$ are given by (5.1). Since $\mathscr{A}_h \subset \mathscr{H}_h$, $A_h + B_h$, $A_h \circ B_h$ and A_h^* can be defined in \mathscr{H}_h and they are the families associated with a+b, ab and a^* respectively. By (5.2)–(5.4) we have

(5.6)
$$A_{h} + B_{h} = \sum_{\gamma} (a_{\gamma}(x) + b_{\gamma}(x)) T_{h}^{\gamma},$$

(5.7) $A_h \circ B_h = \sum_{\gamma} (\sum_{\alpha + \beta = \gamma} a_\alpha(x) b_\beta(x)) T_h^{\gamma},$

(5.8)
$$A_h^* = \sum_{\alpha} a_{\alpha}^*(x) T_h^{-\alpha}.$$

Hence \mathscr{A}_h is a subalgebra of \mathscr{K}_h with involution and it follows that ψ and ψ^{-1} are morphisms.

LEMMA 5.1. Let $F_{jh} \in \mathscr{A}_h$ (j=1, 2, ..., r) and let

$$F_h = F_{1h}F_{2h}\cdots F_{rh}, \qquad L_h = F_{1h}\circ F_{2h}\circ\cdots\circ F_{rh}.$$

Then $F_h \equiv L_h$.

PROOF. We have

$$F_{h} - L_{h} = \sum_{j=1}^{r-1} (F_{0h} \cdots F_{j-1h}) \{F_{jh}(F_{j+1h} \circ \cdots \circ F_{rh}) - F_{jh} \circ (F_{j+1h} \circ \cdots \circ F_{rh})\} \quad (F_{0h} = I_{h}).$$

The symbol $f_j(x, \omega)$ of F_{jh} satisfies Conditions I and II, because $f_j \in \mathscr{A}$. By Lemma 4.4 $f_{j+1}(x, \omega)f_{j+2}(x, \omega)\cdots f_r(x, \omega)$ (j=1, 2, ..., r-1) satisfy Condition II.

Hence by Theorem 3.1

$$F_{jh}(F_{j+1h} \circ \cdots \circ F_{rh}) \equiv F_{jh} \circ (F_{j+1h} \circ \cdots \circ F_{rh}) \qquad (1 \le j < r)$$

and so we have $F_h \equiv L_h$, which completes the proof.

Let \mathscr{F}_h be the subalgebra of \mathscr{H}_h generated by \mathscr{A}_h . Then $F_h \in \mathscr{F}_h$ can be expressed as

$$F_h = \sum_{\mathbf{r}} F_{1h}^{(\mathbf{r})} F_{2h}^{(\mathbf{r})} \cdots F_{kh}^{(\mathbf{r})} \qquad (F_{jh}^{(\mathbf{r})} \in \mathscr{A}_h).$$

Corresponding to this we put

$$L_{h} = \sum_{r} F_{1h}^{(r)} \circ F_{2h}^{(r)} \circ \cdots \circ F_{kh}^{(r)},$$
$$l(x, \omega) = \sum_{r} f_{1}^{(r)} f_{2}^{(r)} \cdots f_{k}^{(r)},$$

where $f_j^{(r)}(x, \omega)$ is the symbol of $F_{jh}^{(r)}$. Then $L_h \in \mathscr{A}_h$, $F_h \equiv L_h$ and $l(x, \omega)$ is the symbol of L_h . In the following we call $l(x, \omega)$ a symbol belonging to F_h .

5.2. Algebra \mathscr{G}_h

We consider the case where coefficient matrices of T_h^{α} depend not only on x but also on h.

Let \mathscr{B}_0 be the set of all $N \times N$ matrix functions $b(x, \mu)$ defined on $R_x^n \times [0, \infty)$ with the properties:

- 1) $b(x, 0) \in \mathscr{A}_0;$
- 2) $b(x, \mu)$ can be written as

$$b(x, \mu) = b_0(x, \mu) + b_{\infty}(\mu),$$

where $\lim b_0(x, \mu) = 0$ for each μ ;

- 3) For each μ $b_0(x, \mu)$ is bounded on R_x^n and integrable;
- 4) $\hat{b}_0(\chi, \mu)$ is integrable for each μ ;
- 5) For some $c \ge 0$

$$\begin{aligned} \int |\hat{b}_0(\chi,\,\mu) - \hat{b}_0(\chi,\,0)| d\chi &\leq c\mu, \\ |b_\infty(\mu) - b_\infty(0)| &\leq c\mu \quad \text{for all} \quad \mu \geq 0. \end{aligned}$$

For instance $\Delta_{j\mu}a(x)$ (j=1, 2, ..., n) belong to \mathscr{B}_0 for $a(x) \in \mathscr{A}_0$.

LEMMA 5.2. Let $b(x, \mu) \in \mathscr{B}_0$ and let B_h be the family associated with $b(x, 0)e^{i\alpha \cdot \omega}$. Then $b(x, h)T_h^{\alpha} \in \mathscr{H}_h$ and

$$(5.9) b(x, h)T_h^{\alpha} \equiv B_h.$$

PROOF. Let $u(x) \in \mathcal{S}$. Then since

$$||b(x, h)T_{h}^{\alpha}u||^{2} \leq (\mathrm{ess} \sup |b(x, h)|)^{2} ||u||^{2},$$

 $b(x, h)T_h^{\alpha}u(x)$ belongs to L_2 for each fixed h and its Fourier transform can be written as follows:

l.i.m.
$$\kappa \int e^{-ix \cdot \xi} b(x, h) T^{\alpha}_{h} u(x) dx$$

= $\int \hat{b}_{0}(\xi - \xi', h) e^{i\alpha \cdot h\xi'} \hat{u}(\xi') d\xi' + b_{\infty}(h) e^{i\alpha \cdot h\xi} \hat{u}(\xi)$ a.e..

Hence

$$\|b(x, h)T_{h}^{\alpha}u - B_{h}u\| \leq \left\| \int \{\hat{b}_{0}(\xi - \xi', h) - \hat{b}_{0}(\xi - \xi', 0)\} e^{i\alpha \cdot h\xi'} \hat{u}(\xi') d\xi' \right\| \\ + |b_{\infty}(h) - b_{\infty}(0)| \|\hat{u}\|.$$

By Young's Theorem and condition 5) we have

$$||b(x, h)T_{h}^{\alpha}u - B_{h}u|| \leq 2ch||u||,$$

which implies (5.9) if $b(x, h)T_{h}^{\alpha} \in \mathcal{H}_{h}$. Since

$$||b(x, h)T_{h}^{\alpha}u|| \leq ||B_{h}u|| + 2ch||u||,$$

 $b(x, h)T_h^{\alpha}$ belongs to \mathcal{H}_h and the proof is complete.

Let \mathscr{B}_h be the set of all finite sums of families of the form $\sum_{\alpha} b_{\alpha}(x, h) T_h^{\alpha}$ $(b_{\alpha}(x, \mu) \in \mathscr{B}_0)$ and let \mathscr{G}_h be the subalgebra of \mathscr{H}_h generated by \mathscr{B}_h . It is clear that $\mathscr{A}_0 \subset \mathscr{B}_0$ and $\mathscr{F}_h \subset \mathscr{G}_h$.

Let $E_h \in \mathcal{G}_h$. Then E_h can be written as

$$E_h = \sum_{r} E_{1h}^{(r)} E_{2h}^{(r)} \cdots E_{kh}^{(r)} \qquad (E_{jh}^{(r)} \in \mathscr{B}_h),$$

where

$$E_{jh}^{(r)} = \sum_{\alpha} e_{j\alpha}^{(r)}(x, h) T_{h}^{\alpha} \qquad (e_{j\alpha}^{(r)}(x, \mu) \in \mathscr{B}_{0}).$$

Corresponding to these we put

$$F_{jh}^{(r)} = \sum_{\alpha} e_{j\alpha}^{(r)}(x, 0) T_{h}^{\alpha}, \qquad F_{h} = \sum_{r} F_{1h}^{(r)} F_{2h}^{(r)} \cdots F_{kh}^{(r)}$$

Then $F_{jh}^{(r)} \in \mathscr{A}_h$ by the definition of \mathscr{B}_0 and $E_{jh}^{(r)} \equiv F_{jh}^{(r)}$ by Lemma 5.2. Hence $F_h \in \mathscr{F}_h$ and $E_h \equiv F_h$. Thus we have

THEOREM 5.1. Let $S_h(x, h)$ be the difference operator (2.4) with

Hisayoshi SHINTANI and Kenji TOMOEDA

(5.10) $c_{\alpha m_j}(x,\mu) \in \mathscr{B}_0 \quad (j=1, 2, ..., \nu).$

Then

 $S_h(x, h) \in \mathcal{G}_h, \qquad S_h(x, 0) \in \mathcal{F}_h.$

Let L_h be the family associated with a symbol belonging to $S_h(x, 0)$. Then

 $L_h \in \mathcal{A}_h, \qquad S_h(x, h) \equiv S_h(x, 0) \equiv L_h.$

By this theorem and Corollary 2.1, in proving the stability of the scheme (2.2) under the condition (5.10) the problem is to establish (2.17) for L_h .

Let

$$s(x, \omega) = \sum_{m} \prod_{i=1}^{v} c_{mi}(x, \omega),$$

where

$$c_{m_j}(x,\,\omega) = \sum_{\alpha} c_{\alpha m_j}(x,\,0) e^{i\,\alpha\cdot\omega}, \qquad c_{\alpha m_j}(x,\,\mu) \in \mathscr{B}_0$$

Then $s(x, \omega)$ is a symbol belonging to $S_h(x, 0)$. For instance let

(5.11)
$$f(x, \omega; \lambda) = c(\omega)I + i\lambda p(x, \omega),$$

(5.12)
$$m(x, \omega; \lambda) = I + i\lambda p(x, \omega) [c(\omega)I + i\lambda p(x, \omega)/2],$$

where

(5.13)
$$p(x, \omega) = \sum_{j=1}^{n} A_j(x) s_j(\omega), \quad c(\omega) = (\sum_{j=1}^{n} \cos \omega_j)/n,$$

(5.14)
$$s_j(\omega) = \sin \omega_j, \quad A_j(x) \in \mathscr{A}_0 \quad (j = 1, 2, ..., n).$$

Then $f(x, \omega; \lambda)$ and $m(x, \omega; \lambda)$ are symbols belonging to F_h and M_h given by (2.10) and (2.11) respectively.

6. Stability of difference schemes

6.1. Assumptions and lemmas

In this section we study the stability of the scheme (2.2). Let

(6.1)
$$A(x, \omega) = \sum_{j=1}^{n} A_j(x) \omega_j$$

and let Δ_{jh} (j=1, 2, ..., n) be the difference operators such that $s_j(\omega)$ (j=1, 2, ..., n) satisfy (2.9). Suppose the following conditions are satisfied:

CONDITION A. $A_j(x)$ (j=1, 2, ..., n) are bounded and continuous on R_x^n and can be written as

$$A_{j}(x) = A_{j0}(x) + A_{j\infty}$$
 $(j = 1, 2, ..., n),$

where

$$\lim_{|x|\to\infty} A_{j0}(x) = 0 \qquad (j = 1, 2, ..., n).$$

CONDITION B. $D_l^m A_{j0}(x)$ (l=1, 2, ..., n; m=0, 1, ..., n+3) are bounded, continuous and integrable on R_n^n .

CONDITION C. 1) Eigenvalues of $A(x, \omega')$ are all real and their multiplicities are independent of x and ω' ;

2) There exists a constant $\delta > 0$ independent of x and ω' such that

$$|\lambda_i(x, \omega') - \lambda_j(x, \omega')| \ge \delta \qquad (i \neq j; i, j = 1, 2, ..., s),$$

where $\lambda_i(x, \omega')$ (i=1, 2, ..., s) are all the distinct eigenvalues of $A(x, \omega')$; 3) Elementary divisors of $A(x, \omega')$ are all linear.

By Corollary 4.2 $A_j(x)$ (j=1, 2, ..., n) belong to \mathscr{A}_0 . Let

$$(6.2) P_h = \sum_{j=1}^n A_j(x) \Delta_{jh},$$

(6.3)
$$p(x, \omega) = \sum_{j=1}^{n} A_j(x) s_j(\omega),$$

(6.4)
$$p_z(x, \omega) = \sum_{i=1}^n A_i(x) s_i(\omega) / |s(\omega)|.$$

Then $P_h \in \mathscr{A}_h$ and $ip(x, \omega)$ is the symbol of P_h . By Lemmas 4.6 and 4.7 $p_z(x, \omega)$ belongs to \mathscr{L} and satisfies Condition N. We have the following two lemmas.

LEMMA 6.1. There exists an element $g(x, \omega)$ of \mathcal{L} satisfying the conditions of Theorem 3.3 such that

(6.5)
$$\{g(x, \omega)p_z(x, \omega)\}^* = g(x, \omega)p_z(x, \omega) \quad \text{for} \quad \omega \in \mathbb{R}^n - \mathbb{Z}.$$

LEMMA 6.2. There exist elements $w(x, \omega)$ and $w^{-1}(x, \omega)$ of \mathscr{L} satisfying Condition N such that

(6.6)
$$g(x, \omega) = w^*(x, \omega)w(x, \omega).$$

For $a \in \mathscr{K}$ we denote waw^{-1} by \tilde{a} . By these lemmas \tilde{p}_z and \tilde{p} are hermitian matrices on $R_x^n \times (R_{\omega}^n - Z)$ and on $R_x^n \times R_{\omega}^n$ respectively. By Lemma 3.4 \tilde{p}_z satisfies Condition N and by Lemma 4.4 it belongs to \mathscr{L} .

In the following we assume that $S_h(x, h) \in \mathcal{G}_h$. Then $S_h(x, 0) \in \mathcal{F}_h$ and a symbol belonging to $S_h(x, 0)$ is an element of \mathcal{A} .

From the results obtained in Sections 2, 4 and 5 we can conclude that if a symbol belonging to $S_h(x, 0)$ satisfies conditions of Theorem 4.1 or 4.2, then the

scheme (2.2) is stable by Theorem 2.1 and its corollary.

Let $P[\lambda; \mathcal{L}]$ be the set of all polynomials in λ of the form

$$a(x, \omega; \lambda) = \sum_{j=0}^{m} \lambda^{j} a_{j}(x, \omega), \quad a_{j}(x, \omega) \in \mathcal{L} \qquad (j = 0, 1, ..., m),$$

and denote by $P[\lambda; p]$ the set of all polynomials in λ and $p(x, \omega)$. The set $P[\lambda; \mathcal{M}]$ is defined similarly. For a scalar function $t(\omega)$ we use the notation

 $a(x, \omega; \lambda)/t(\omega) = \sum_{i=0}^{m} \lambda^{i} a_{i}/t \in \mathscr{K}$ (or \mathscr{L}, \mathscr{M})

if $a_i(x, \omega)/t(\omega) \in \mathcal{K}$ (or \mathcal{L}, \mathcal{M}) (j=0, 1, ..., m).

6.2. Special schemes

We have the following [17]

THEOREM 6.1. Friedrichs' scheme is stable, if $\lambda \rho(p_z(x, \omega)) \leq 1/\sqrt{n}$. The modified Lax-Wendroff scheme is stable if $\lambda \rho(p_z(x, \omega)) \leq 2/\sqrt{n}$.

PROOF. For Friedrichs' scheme by (5.11) $f(x, \omega; \lambda)$ can be rewritten in \mathscr{K} as

$$f(x, \omega; \lambda) = c(\omega)I + i\lambda p_z(x, \omega) |s(\omega)|,$$

which is of the form (4.10). By the fact $p_z \in \mathscr{L}$ and by Lemma 6.1 the first part of the assumptions and condition 1) of Theorem 4.1 are satisfied.

From (5.13) and (5.14) it follows that

$$1-c^2(\omega) = n^{-1}|s(\omega)|^2 + b(\omega), \quad b(\omega) = \sum_{j>k} b_{jk}^2(\omega),$$

 $b_{jk}(\omega) = (\cos \omega_j - \cos \omega_k)/n.$

Hence conditions 2) and 4) of Theorem 4.1 are satisfied.

By Corollary 4.1 we have

$$g - f^*gf = w^*(n^{-1}I - \lambda^2 \tilde{p}_z^2) |s|^2 w + bg.$$

Since $\lambda \rho(\tilde{p}_z) \leq 1/\sqrt{n}$, we have $g - f^*gf \geq bg$ and condition 3) of Theorem 4.1 is satisfied. Hence Friedrichs' scheme is stable.

By (5.12) $m(x, \omega; \lambda)$ can be rewritten in \mathscr{K} as

$$m(x, \omega; \lambda) = I + i\lambda p_z c|s| - \lambda^2 p_z^2 |s|^2/2.$$

Since $p_z^2 \in \mathscr{L}$ by Lemma 4.4, the assumptions of Theorem 4.1 are satisfied except condition 3).

By Corollary 4.1 we have

$$g - m^* gm = w^* (\lambda \tilde{p})^2 \left[(n^{-1}I - \lambda^2 \tilde{p}_z^2/4) |s|^2 + b \right] w.$$

Since $\lambda \rho(\tilde{p}_z) \leq 2/\sqrt{n}$, we have $g - m^* g m \geq 0$. Hence the modified Lax-Wendroff scheme is stable.

6.3. Stability theorems

We consider the schemes (2.2) with accuracy of order $r \ge 1$ and state stability conditions in terms of a symbol $l(x, \omega; \lambda)$ belonging to $S_h(x, 0)$. Suppose $s(\omega)$ satisfies (2.9) and let

$$d = r + k, \ k = \begin{cases} 1 & \text{if } r \text{ is odd,} \\ 2 & \text{if } r \text{ is even,} \end{cases} \quad y(x, \ \omega; \ \lambda) = \sum_{j=2}^{r} (i\lambda p_j)^j |s|^{j-2} / j!.$$

Then since p_z , $|s|I \in \mathcal{L}$, by Lemma 4.4 $y \in \mathcal{L}$.

We denote by λ_0 , c_1 and c_2 positive constants and by $t(\omega)$ a scalar function such that $t(\omega)I \in \mathcal{K}$.

THEOREM 6.2. Let

(6.7)
$$l(x, \omega; \lambda) = \sum_{j=0}^{r} (i\lambda p)^j / j!,$$

where r=4m-1 or $4m \ (m \ge 1)$. Then the scheme (2.2) is stable for sufficiently small λ .

PROOF. *l* can be rewritten in \mathscr{K} as

$$l(x, \omega; \lambda) = I + i\lambda p_z |s| + y |s|^2,$$

and the assumptions of Theorem 4.1 are satisfied except condition 3).

We have

$$g - l^*gl = c_2 w^* (\lambda \tilde{p})^d (I - (\lambda \tilde{p})^2 \tilde{q}) w,$$

where $c_2 = 2/(r!d)$ and $q \in P[\lambda; p]$. Hence there exists λ_0 such that $g - l^*gl \ge 0$ for $\lambda \le \lambda_0$. Thus the scheme (2.2) is stable for $\lambda \le \lambda_0$.

THEOREM 6.3. Let

(6.8)
$$l(x, \omega; \lambda) = \sum_{j=0}^{r} (i\lambda p)^j / j! - (\lambda p)^m v(\lambda p)^m,$$

where $r \ge 2m$ $(m \ge 1)$ and $v(x, \omega; \lambda) \in P[\lambda; \mathcal{L}]$. Suppose

1)
$$|s(\omega)|^{\sigma} \leq c_1 t(\omega);$$

2)
$$v_1(x, \omega; \lambda) = v/t \in \mathscr{K};$$

3) $u(x, \omega; \lambda) \ge c_2 t(\omega) I$ for $\lambda \le \lambda_0$,

where $\sigma = d - 2m$ and $u = \tilde{v}^* + \tilde{v} - \tilde{v}^* (\lambda \tilde{p})^{2m} \tilde{v}$. Then the scheme (2.2) is stable for sufficiently small λ .

PROOF. l can be rewritten in \mathscr{K} as

(6.9)
$$l(x, \omega; \lambda) = I + f_1 |s| + f_2 |s|^2,$$

where

$$f_1 = i\lambda p_z, \quad f_2 = y - \lambda^{2m} p_z^m v p_z^m |s|^{2m-2}.$$

By Lemma 4.4 $f_1, f_2 \in \mathscr{L}$.

It suffices to show that condition 3) of Theorem 4.1 is satisfied. We have

$$g - l^*gl = w^*(\lambda \tilde{p})^m [u + \lambda q_2 + (\lambda \tilde{p})^\sigma \tilde{q}_3] (\lambda \tilde{p})^m w,$$

where $q_3 \in P[\lambda; p]$,

(6.10)
$$q_2 = \tilde{v}^* \tilde{q}_1 + \tilde{q}_1^* \tilde{v}, \quad q_1 = \sum_{j=1}^r (ip)^j \lambda^{j-1} / j!.$$

By condition 1) we can define $e(\omega) = |s(\omega)|^{\sigma}/t(\omega)$ as in 4.1 and it follows that $e(\omega)I \in \mathscr{K}$ and

$$g - l^*gl = w^*(\lambda \tilde{p})^m t[c_2 I + \lambda q_{21} + (\lambda \tilde{p}_z)^\sigma \tilde{q}_3 e] (\lambda \tilde{p})^m w$$
$$+ w^*(\lambda \tilde{p})^m (u - c_2 t I) (\lambda \tilde{p})^m w,$$

where

$$q_{21} = \tilde{v}_1^* \tilde{q}_1 + \tilde{q}_1^* \tilde{v}_1, \qquad \sigma \ge 2.$$

Hence by condition 3) there exists λ_1 ($0 < \lambda_1 \leq \lambda_0$) such that $g - l^*gl \geq 0$ for $\lambda \leq \lambda_1$. Thus the scheme is stable for $\lambda \leq \lambda_1$.

THEOREM 6.4. Let

(6.11)
$$l(x, \omega; \lambda) = \sum_{j=0}^{r} (i\lambda p)^{j} / j! - (i\lambda p)^{2m+1} a - (\lambda p)^{m+1} v (\lambda p)^{m+1},$$

where $r \ge 2m+2$ $(m \ge 0)$, $v(x, \omega; \lambda) \in P[\lambda; \mathcal{L}]$ and $a(\omega)$ is a real-valued scalar function such that $a(\omega)I \in \mathcal{L}$ and $(a(\omega)/t(\omega))I \in \mathcal{K}$. Suppose conditions 1), 2) and 3) of Theorem 6.3 are satisfied, where $\sigma = d - 2m - 2$,

$$u = \tilde{v} + \tilde{v}^* + (-1)^m 2aI - \tilde{b}^* (\lambda \tilde{p})^{2m} \tilde{b}, \quad b = (-1)^m (ia) + \lambda pv.$$

Then the scheme (2.2) is stable for sufficiently small λ .

PROOF. *l* can be rewritten in \mathscr{K} as (6.9), where

$$f_1 = i\lambda p_z(1-a), \quad f_2 = y - (\lambda p_z)v(\lambda p_z) \quad \text{if} \quad m = 0,$$

$$f_1 = i\lambda p_z, \quad f_2 = y - (\lambda p_z)^m b(\lambda p_z)^{m+1} |s|^{2m-1} \quad \text{if} \quad m \ge 1.$$

By Lemma 4.4 $f_1, f_2 \in \mathscr{L}$. We have

$$g-l^*gl = w^*(\lambda \tilde{p})^{m+1} [u+i\lambda q_3 + (\lambda \tilde{p})^{\sigma} \tilde{q}_4] (\lambda \tilde{p})^{m+1} w,$$

where $\sigma \ge 2$, $q_4 \in P[\lambda; p]$,

$$q_3 = q_2^* \tilde{p} - \tilde{p} q_2, \quad q_2 = \tilde{v} - i \tilde{q}_1^* \tilde{b}, \quad q_1 = \sum_{j=0}^{r-2} (i \lambda p)^j / (j+2)!.$$

By condition 1) we can define $e(\omega) = |s(\omega)|^{\sigma}/t(\omega)$ and we have $e(\omega)I \in \mathcal{K}$,

$$g - l^*gl = w^*(\lambda \tilde{p})^{m+1}t[c_2I + i\lambda q_{31} + (\lambda \tilde{p}_z)^{\sigma} \tilde{q}_4 e](\lambda \tilde{p})^{m+1}w$$
$$+ w^*(\lambda \tilde{p})^{m+1}(u - c_2tI)(\lambda \tilde{p})^{m+1}w,$$

where

$$q_{31} = q_{21}^* \tilde{p} - \tilde{p}q_{21}, \quad q_{21} = \tilde{v}_1 - i\tilde{q}_1^* \tilde{b}_{11},$$

$$b_1 = (-1)^m (ia_1) + \lambda p v_1, \quad a_1 = a/t.$$

Hence by condition 3) there exists λ_1 ($0 < \lambda_1 \leq \lambda_0$) such that $g - l^*gl \geq 0$ for $\lambda \leq \lambda_1$. Thus by Theorem 4.1 the scheme is stable for $\lambda \leq \lambda_1$.

COROLLARY 6.1. Let

(6.12)
$$l(x, \omega; \lambda) = \sum_{i=0}^{r} (i\lambda p)^{i} / j! - (i\lambda p)^{r-1} e,$$

where r=4m+1 or 4m+2 $(m \ge 1)$, $e(\omega)$ is a scalar function such that $|s(\omega)|^2 \le c_1 e(\omega)$ for some $c_1 > 0$ and $e(\omega)$, $\partial_j e(\omega)$ and $\partial_k \partial_j e(\omega)$ (j, k=1, 2, ..., n) are bounded and continuous on \mathbb{R}^n_{ω} . Then the scheme (2.2) is stable for sufficiently small λ .

THEOREM 6.5. Let

(6.13)
$$l(x, \omega; \lambda) = \sum_{j=0}^{r} (i\lambda p)^j / j! - \lambda^{2m} v,$$

where $r \ge 2m$ ($m \ge 0$, $r \ge 1$),

$$\begin{split} v(x,\,\omega;\,\lambda) &= a + \lambda^{\alpha} b \qquad (\alpha \ge 0), \\ a(x,\,\omega;\,\lambda) &\in P[\lambda;\,\mathscr{L}], \quad b(x,\,\omega;\,\lambda) \in P[\lambda;\,\mathscr{L}], \\ a_1(x,\,\omega;\,\lambda) &= a/|s|^2 \in \mathscr{L}, \quad b_1(x,\,\omega;\,\lambda) = b/|s| \in \mathscr{L}. \end{split}$$

Suppose

1)
$$\tilde{b}^* + \tilde{b} = 0;$$

2)
$$|s(\omega)|^{d-2} \leq c_1 t(\omega);$$

3)
$$a_2(x, \omega; \lambda) = a_1/t \in \mathscr{K}, \quad b_2(x, \omega; \lambda) = b_1/t \in \mathscr{K};$$

4)
$$u(x, \omega; \lambda) \ge c_2 t |s|^2 I$$
 for $\lambda \le \lambda_0$,

where $u = \tilde{a}^* + \tilde{a} - \lambda^{2m} \tilde{v}^* \tilde{v}$. Then the scheme (2.2) is stable for sufficiently small λ .

PROOF. *l* can be rewritten in \mathscr{K} as (6.9), where

$$f_1 = i\lambda p_z - \lambda^\beta b_1$$
, $f_2 = y - \lambda^{2m}a_1$, $\beta = 2m + \alpha A$

By Lemma 4.4 $f_1, f_2 \in \mathscr{L}$. By (6.5) and condition 1) we have

$$f_1^*g + gf_1 = 0.$$

Hence the assumptions of Theorem 4.1 are satisfied except condition 3).

We have

$$g-l^*gl=\lambda^{2m}w^*(u+\lambda q_2+\lambda^{\sigma}\tilde{p}^d\tilde{q}_3)w,$$

where $\sigma = d - 2m \ge 2$, $q_3 \in P[\lambda; p]$ and q_2 is given by (6.10). By condition 2) we can define $e(\omega) = |s(\omega)|^{d-2}/t(\omega)$ and $e(\omega)I \in \mathcal{K}$. Put

$$q_{21} = q_2/(t|s|^2), \quad q_{11} = q_1/|s|, \quad q_4 = \tilde{a}_2^* \tilde{q}_1 + \lambda^{\alpha} \tilde{b}_2^* \tilde{q}_{11}.$$

.....

Then

$$\begin{aligned} q_{21}(x,\,\omega;\,\lambda) &= q_4 + q_4^* \in \mathscr{K}, \\ g - l^*gl &= \lambda^{2m} w^* t |s|^2 (c_2 I + \lambda q_{21} + \lambda^\sigma \tilde{p}_z^d e \tilde{q}_3) w \\ &+ \lambda^{2m} w^* (u - c_2 t |s|^2 I) w \end{aligned}$$

and by condition 4) there exists $\lambda_1 (0 < \lambda_1 \leq \lambda_0)$ such that $g - l^*gl \geq 0$ for $\lambda \leq \lambda_1$. Thus the scheme is stable for $\lambda \leq \lambda_1$.

THEOREM 6.6. Let

(6.14)
$$l(x, \omega; \lambda) = \sum_{j=0}^{r} (i\lambda p)^j / j! - \lambda^{\alpha} v,$$

where

$$\begin{split} v(x,\,\omega;\,\lambda) &= mI + \lambda^{\beta}a + \lambda^{\gamma}b \qquad (\beta,\,\gamma \ge 0), \\ m(\omega;\,\lambda) &= \sum_{j=0}^{\mu} \lambda^{j} m_{j}(\omega)I, \quad \gamma \ge \alpha \ge 0, \\ a(x,\,\omega;\,\lambda) \in P[\lambda;\,\mathcal{M}], \quad b(x,\,\omega;\,\lambda) \in P[\lambda;\,\mathcal{M}], \\ a_{1}(x,\,\omega;\,\lambda) &= a/|s| \in \mathcal{M}, \quad b_{1}(x,\,\omega;\,\lambda) = b/|s| \in \mathcal{M}, \end{split}$$

 $m_i(\omega)$ $(j=0, 1, ..., \mu)$ are scalar functions satisfying Condition I. Suppose

- 1) $\tilde{b}^* + \tilde{b} = 0;$
- 2) $t(\omega)$ satisfies Condition I;
- 3) $|s(\omega)|^{d} \leq c_{1}t^{2}(\omega), \quad |m_{j}(\omega)| \leq c_{1}t^{2}(\omega) \quad (j = 0, 1, ..., \mu);$

4) $a_2(x, \omega; \lambda) = a/t^2 \in \mathcal{K}, b_2(x, \omega; \lambda) = b|s|/t^2 \in \mathcal{K} \text{ and } a_2, b_1 \text{ and } b_2$ satisfy Conditions N and II;

5) $u(x, \omega; \lambda) \ge c_2 t^2 I$ for $\lambda \le \lambda_0$,

where $u = (m^* + m)I + \lambda^{\beta}(\tilde{a}^* + \tilde{a}) - \lambda^{\alpha} \tilde{v}^* \tilde{v}$. Then the scheme (2.2) is stable for sufficiently small λ .

PROOF. *l* can be rewritten in \mathcal{K} as

$$l(x, \omega; \lambda) = c(\omega; \lambda)I + f|s|,$$

where

$$c(\omega; \lambda) = I - \lambda^{\alpha} m, \quad f = i\lambda p_z + y|s| - \lambda^{\alpha} (\lambda^{\beta} a_1 + \lambda^{\gamma} b_1)$$

By Lemma 4.4 $f \in \mathcal{M}$ and $c(\omega; \lambda)$ satisfies Condition I. By (6.5) and condition 1) we have

$$g-l^*gl=\lambda^{\alpha}w^*(u+\lambda q_2+\lambda^{\sigma}\tilde{p}^d\tilde{q}_3)w,$$

where $\sigma = d - \alpha \ge 1$, $q_3 \in P[\lambda; p]$ and q_2 is given by (6.10).

By condition 3) we can define

$$e_1(\omega) = |s(\omega)|^d / t^2(\omega), \quad e_2(\omega; \lambda) = \sum_{j=0}^{\mu} \lambda^j m_j(\omega) / t^2(\omega)$$

and $e_i I \in \mathcal{K}$ (j=1, 2). Put

$$\begin{aligned} q_{21} &= q_2/t^2, \quad v_1 = e_2 I + \lambda^{\beta} a_2, \quad q_{11} = q_1/|s|, \\ q_4 &= \tilde{v}_1^* \tilde{q}_1 + \lambda^{\gamma} \tilde{b}_2^* \tilde{q}_{11}. \end{aligned}$$

Then $q_{21}(x, \omega; \lambda) = q_4 + q_4^* \in \mathscr{K}$ and we have

$$g-l^*gl=\lambda^{\alpha}t^2(\omega)r(x,\,\omega;\,\lambda),$$

where

$$\begin{aligned} r(x,\,\omega;\,\lambda) &= w^*(u_1 - c_2 I)w + w^*(c_2 I + \lambda q_{21} + \lambda^\sigma \tilde{p}_2^d \tilde{q}_3 e_1)w, \\ u_1(x,\,\omega;\,\lambda) &= \tilde{v}_1^* + \tilde{v}_1 - \lambda^\alpha (\tilde{v}_1^* \tilde{v} + \lambda^\gamma \tilde{b}^* \tilde{v}_1 + \lambda^{2\gamma} \tilde{b}_1^* \tilde{b}_2). \end{aligned}$$

By condition 4) v_1 and v satisfy Conditions N and II, so that r satisfies the same conditions. Since by condition 5)

$$u_1(x, \omega; \lambda) \ge c_2 I$$
 for $\lambda \le \lambda_0$,

there exist $c_3 > 0$ and λ_1 ($0 < \lambda_1 \leq \lambda_0$) such that

$$r(x, \omega) \ge c_3 w^* w \ge c_3 eI$$
 for $\lambda \le \lambda_1$.

Hence conditions 1) and 2) of Theorem 4.2 are satisfied and the scheme is stable for $\lambda \leq \lambda_1$.

6.4. Case of a regularly hyperbolic system

In this section we assume that $A_j(x)$ (j=1, 2,..., n) are real matrices and that (1.1) is a regularly hyperbolic system, that is, eigenvalues of $A(x, \omega')$ are all real and distinct (s=N in Condition C) [19].

THEOREM 6.7. For a regularly hyperbolic system with real coefficients let

(6.15)
$$l(x, \omega; \lambda) = I + i\lambda p(x, \omega) + \lambda^2 q(x, \omega; \lambda) |s(\omega)|^2,$$

where q is a polynomial in λ with coefficients satisfying Condition VI. Suppose

(6.16)
$$\rho(l(x,\,\omega;\,\lambda)) \leq 1 \quad for \ \lambda \leq \lambda_0.$$

Then the scheme (2.2) is stable for sufficiently small λ .

To prove the theorem we need the following

LEMMA 6.3. Under the assumptions of the theorem there exist λ_1 ($0 < \lambda_1 \leq \lambda_0$) and a nonsingular matrix $u(x, \omega; \lambda)$ such that

- i) u and u^{-1} belong to \mathscr{L} for each λ $(0 < \lambda \leq \lambda_1)$;
- ii) $g(x, \omega; \lambda) = u^*u$ satisfies Condition N for each λ ($0 < \lambda \leq \lambda_1$);
- iii) For some $e_1 > 0$

 $g(x, \omega; \lambda) \ge e_1 I$ for $\lambda \le \lambda_1$;

iv) $u(p_z - i\lambda q|s|)u^{-1} = d + \lambda |s|f$ for $\omega \in \mathbb{R}^n - \mathbb{Z}$, $\lambda \leq \lambda_1$,

where $d(x, \omega; \lambda)$ and $f(x, \omega; \lambda)$ are diagonal matrices belonging to \mathcal{L} and d is a real matrix.

PROOF OF THEOREM 6.7. By Lemma 4.5 and its corollary,

$$\begin{split} G_h - L_h^* G_h L_h &\equiv G_h - L_h^* \circ G_h \circ L_h \\ &= U_h^* \circ (I_h - \tilde{L}_h^* \circ \tilde{L}_h) \circ U_h, \end{split}$$

where $\hat{l}(x, \omega; \lambda) = u l u^{-1}$. We have in \mathscr{K}

$$I - \tilde{l}^* \tilde{l} = \lambda^2 |s|^2 [i(f^* - f) - (d + \lambda |s| f^*)(d + \lambda |s| f)],$$

which satisfies conditions 1), 2) and 3) of Theorem 3.4 for $\lambda \leq \lambda_1$ by Lemma 4.3. Since \tilde{l} is a diagonal matrix by Lemma 6.3, from (6.16) it follows that

$$I - \tilde{l}^* \tilde{l} \ge (1 - \rho(l))I \ge 0$$
 for $\lambda \le \lambda_1$.

Hence $u^*(I - \tilde{l}^*\tilde{l})u$ satisfies all conditions of Theorem 3.4 and we have for some $c_1 \ge 0$

$$\operatorname{Re}\left((G_{h}-L_{h}^{*}\circ G_{h}\circ L_{h})\alpha_{i}v, \alpha_{i}v\right)$$

=
$$\operatorname{Re}\left((U_{h}^{*}\circ (I_{h}-\tilde{L}_{h}^{*}\circ \tilde{L}_{h})\circ U_{h})\alpha_{i}v, \alpha_{i}v\right) \geq -c_{1}h\|\alpha_{i}v\|^{2}$$

for all $v \in L_{2}, h > 0.$

By the same argument as in the proof of Theorem 4.1 we have for some $c_2 \ge 0$

$$\|v\|_{G_h}^2 - \|L_h v\|_{G_h}^2 \ge \sum_{i=0}^s \operatorname{Re}((G_h - L_h^{\sharp} \circ G_h \circ L_h)\alpha_i v, \alpha_i v) - c_2 h \|v\|^2,$$

so that

$$\|v\|_{G_h}^2 - \|L_h v\|_{G_h}^2 \ge -(c_1 + c_2)h\|v\|^2.$$

Hence for some $c_0 \ge 0$

$$\|L_h v\|_{G_h}^2 \leq (1 + c_0 h) \|v\|_{G_h}^2,$$

and by Corollary 2.1 the scheme is stable for $\lambda \leq \lambda_1$.

7. Examples of schemes

In this section Conditions A, B and C are assumed. To construct difference schemes with accuracy of order r, we assume that $A_j(x)$ (j=1, 2, ..., n) are bounded and continuous together with their partial derivatives up to the r-th order, where r=3 in examples 2 and 3 and r=4 in examples 4 and 5.

We introduce the following difference operators:

$$\begin{split} \mathcal{A}_{1j} &= (T_j - T_j^{-1})/2, \quad \mathcal{A}_{2j} = [8(T_j - T_j^{-1}) - (T_j^2 - T_j^{-2})]/12, \\ \delta_j &= (T_j + T_j^{-1} - 2I)/4 \qquad (j = 1, 2, ..., n), \\ P_{mh}(x) &= \sum_{j=1}^n A_j(x) \mathcal{A}_{mj} \qquad (m = 1, 2), \end{split}$$

Hisayoshi Shintani and Kenji Tomoeda

$$F_{mh}(x, h) = \sum_{j \neq k} A_j \Delta_{mj} (A_k \Delta_{mk}) + \sum_{j=1}^n A_j (\Delta_{mj} A_j) \Delta_{mj},$$

$$K_{1h}(x, h) = F_{1h} + 4 \sum_{j=1}^n A_j^2 \delta_j,$$

$$K_{2h}(x, h) = F_{2h} + 4 \sum_{j=1}^n A_j^2 \delta_j (1 - \delta_j/3),$$

$$Q_h(x, h) = F_{2h} + \sum_{j=1}^n A_j^2 \Delta_{1j}^2 (1 - 4\delta_j/3).$$

Since by Corollary 4.2 $A_j(x) \in \mathscr{A}_0$ and $\Delta_{mj}A_j(x) \in \mathscr{B}_0$ (j = 1, 2, ..., n; m = 1, 2), $P_{mh}(x)$ (m = 1, 2) belong to \mathscr{A}_h and $F_{mh}(x, h)$, $K_{mh}(x, h)$ (m = 1, 2) and $Q_h(x, h)$ belong to \mathscr{G}_h .

In connection with these operators we define the following functions:

(7.1)

$$\begin{aligned} \alpha_j(\omega) &= \sin \omega_j, \quad \beta_j(\omega) = \sin^2 (\omega_j/2), \\ s_j(\omega) &= \alpha_j (1 + 2\beta_j/3) \quad (j = 1, 2, ..., n), \\ p_1(x, \omega) &= \sum_{j=1}^n A_j \alpha_j, \quad p_2(x, \omega) = \sum_{j=1}^n A_j s_j, \end{aligned}$$

(7.2)
$$n_1(x, \omega) = 4\sum_{j=1}^n A_j^2 \beta_j^2, \quad n_2(x, \omega) = (16/9) \sum_{j=1}^n A_j^2 (2+\beta_j) \beta_j^3,$$

(7.3)
$$f(x, \omega) = (4/9) \sum_{j=1}^{n} A_j^2 \alpha_j^2 \beta_j^2,$$

(7.4)
$$k_m(x, \omega) = -p_m^2 - n_m \quad (m = 1, 2), \quad q(x, \omega) = -p_2^2 + f,$$

(7.5)
$$r_1(x, \omega) = (2/3) \sum_{j=1}^n A_j \alpha_j \beta_j, \quad r_{j+1}(x, \omega) = p_2 r_j + r_1 p_1^j \qquad (j = 1, 2).$$

Matrices $ip_m(x, \omega)$, $k_m(x, \omega)$ (m=1, 2) and $q(x, \omega)$ are symbols belonging to $P_{mh}(x)$, $K_{mh}(x, 0)$ (m=1, 2) and $Q_h(x, 0)$ respectively. By Lemmas 4.6 and 4.7 p_m , n_m , k_m (m=1, 2), r_j (j=1, 2, 3), f and q belong to \mathscr{L} and satisfy Condition N.

Put

$$\begin{aligned} |\alpha| &= (\sum_{j=1}^{n} \alpha_j^2)^{1/2}, \quad |\beta| &= (\sum_{j=1}^{n} \beta_j^2)^{1/2}, \\ \sigma(\omega) &= (\sum_{j=1}^{n} \beta_j^3)^{1/2}, \quad \tau(\omega) &= \sum_{j=1}^{n} \beta_j. \end{aligned}$$

Then we have

$$(7.6) |\alpha| \leq |s| \leq 5|\alpha|/3,$$

 $|\alpha|^2 \leq 4\sqrt{n|\beta|}, \quad |\beta| \leq \tau, \quad |\beta|^3 \leq \sqrt{n\sigma^2}, \quad 9|s|^2/100 \leq \sqrt{n|\beta|}.$

From these it follows that

(7.7)
$$(\alpha_j/|s|)I \quad (j = 1, 2, ..., n), \qquad (|\alpha|/|s|)I \in \mathscr{L},$$

(7.8) $(\alpha_j/|\alpha|)I, (\beta_j/|\beta|)I (j = 1, 2, ..., n), (|s|/|\alpha|)I, (|\alpha|^2/|\beta|)I,$

 $(|\beta|/\tau)I, (|\beta|^3/\sigma^2)I, (|s|^2/|\beta|)I, (|s|^2/\tau)I \in \mathscr{K}.$

Hence by (7.1) - (7.8)

(7.9)
$$p_m/|s| \ (m = 1, 2), \ r_j/|s|^j \ (j = 1, 2, 3), \ f/|s|^2 \in \mathscr{L},$$

(7.10)
$$n_m/|\beta|^{m+1} \ (m = 1, 2), \ r_j/(|\alpha|^j |\beta|) \ (j = 1, 2, 3), \ f/(|\alpha|^2 |\beta|^2) \in \mathcal{K},$$

and they satisfy Conditions N and II. It is clear that $|\beta(\omega)|$ and $\sigma(\omega)$ satisfy Condition I and

$$r_i(x, \omega) = p_2^j - p_1^j$$
 $(j = 1, 2, 3).$

For simplicity we put $\mu = 1/n$. For a difference operator $S_h(x, h)$ let $l(x, \omega; \lambda)$ be a symbol belonging to $S_h(x, 0)$ and let $M(x, \omega; \lambda)$ denote a hermitian element of \mathcal{K} .

EXAMPLE 1. Let

(7.11)
$$S_h(x) = \sum_{j=0}^{r} (\lambda P_{2h})^j / j!,$$

where r=3 or 4. Then $l(x, \omega; \lambda)$ can be written as (6.7). By Theorem 6.2 the scheme (2.2) with the operator (7.11) is stable if $\lambda \rho(p_z) \leq \sqrt{3d}/\sqrt{n}$ in the case r=3 and is so if $\lambda \rho(p_z) \leq 2\sqrt{2d}/\sqrt{n}$ in the case r=4, where $p_z = p_2/|s|$, $d = (2/25)\sqrt{40}\sqrt{6-15}$.

EXAMPLE 2. Let

(7.12)
$$S_h(x) = I - E_h + \lambda P_{2h} + \lambda^2 P_{2h} P_{1h}/2 + \lambda^3 P_{1h}^3/6$$

where $E_h = \mu^2 \sum_{j=1}^n \Delta_{1j}^2 \sum_{k=1}^n \delta_k$. Then $l(x, \omega; \lambda)$ can be written in \mathscr{K} as

(7.13)
$$l(x, \omega; \lambda) = \sum_{j=0}^{3} (i\lambda p_2)^j / j! - v,$$

where

$$v(x, \omega; \lambda) = eI - \lambda^2 p_2 r_1 / 2 - i\lambda^3 r_3 / 6,$$

$$e(\omega) = \mu^2 |\alpha|^2 t, \qquad t = \tau.$$

By (7.7)-(7.10) $v/|s|^2 \in \mathscr{L}$ and $v/(t|s|^2) \in \mathscr{K}$. Since $\mu^2 |\alpha|^2 t \leq 1$, by (7.6) we have for some λ_0 and M

$$u = \tilde{v}^* + \tilde{v} - \tilde{v}^* \tilde{v}$$

= $t|s|^2 [\mu^2 (2 - \mu^2 |\alpha|^2 t) (|\alpha|/|s|)^2 I - \lambda^2 M] \ge 0$ for $\lambda \le \lambda_0$.

Application of Theorem 6.5 with $a(x, \omega; \lambda) = v$, $b(x, \omega; \lambda) = 0$, r=3 and m=0

shows that the scheme (2.2) with the operator (7.12) is stable for sufficiently small λ .

EXAMPLE 3. Let

(7.14)
$$S_h(x, h) = I - C_h + \lambda P_{2h} + \lambda^2 P_{1h}^2 / 2 + \lambda^3 K_{1h} P_{1h} / 6,$$

where $C_h = \mu \sum_{j=1}^{n} \delta_j^2$. Then we have (7.13), where

$$v(x, \omega; \lambda) = cI + \lambda^2 a, \quad c(\omega) = \mu \sum_{j=1}^n \beta_j^2,$$
$$a(x, \omega; \lambda) = -r_2/2 + i\lambda(n_1p_1 - r_3)/6.$$

Put $t = |\beta|$. Then by (7.7)-(7.10) $a/|s| \in \mathcal{M}$ and a/t^2 satisfies Conditions N and II. Hence for some λ_0 and M we have

$$u = 2cI + \lambda^2 (\tilde{a}^* + \tilde{a}) - \tilde{v}^* \tilde{v}$$
$$= t^2 [\mu (2 - \mu t^2)I - \lambda^2 M] \ge 0 \quad \text{for} \quad \lambda \le \lambda_0.$$

Application of Theorem 6.6 with $m(\omega; \lambda) = c$, $b(x, \omega; \lambda) = 0$ and r = 3 yields the stability of the scheme (2.2) with the operator (7.14) for sufficiently small λ .

EXAMPLE 4. Let

(7.15)
$$S_h(x, h) = I + E_h + \lambda (I + \lambda P_{2h}/2 + \lambda^2 Q_h/6 + \lambda^3 P_{1h}^3/24) P_{2h}$$

where $E_h = \mu^2 \sum_{i=1}^n \Delta_{1i}^2 \sum_{k=1}^n \delta_k^2$. Then we have in \mathscr{K}

(7.16)
$$l(x, \omega; \lambda) = \sum_{j=0}^{4} (i\lambda p_2)^j / j! - v,$$

where

$$v(x, \omega; \lambda) = eI - i\lambda^3 f p_2/6 + \lambda^4 r_3 p_2/24, \qquad e = \mu^2 |\alpha|^2 |\beta|^2.$$

Put $t = |\beta|^2$. Then by (7.7)-(7.10) $v/|s|^2 \in \mathscr{L}$, and $v/(t|s|^2) \in \mathscr{K}$. Hence by (7.6) we have for some λ_0 and M

$$u = \tilde{v}^* + \tilde{v} - \tilde{v}^* \tilde{v}$$

= $t |s|^2 [\mu^2 (2 - \mu^2 |\alpha|^2 t) (|\alpha|/|s|)^2 I - \lambda^2 M] \ge 0$ for $\lambda \le \lambda_0$

Thus the scheme (2.2) with the operator (7.15) is stable for sufficiently small λ by applying Theorem 6.5 with r=4 and m=0.

EXAMPLE 5. Let

(7.17)
$$S_h(x, h) = I + E_h + \lambda (I + \lambda P_{2h}/2 + \lambda^2 K_{2h}/6 + \lambda^3 K_{1h} P_{1h}/24) P_{2h},$$

where $E_h = \mu \sum_{j=1}^n \delta_j^3$. Then we have (7.16), where

$$v(x, \omega; \lambda) = eI + \lambda^3 a, \qquad e = \mu \sigma^2,$$
$$a(x, \omega; \lambda) = [in_2 + \lambda(r_3 - n_1p_1)/4]p_2/6$$

Put $t = \sigma$. Then by (7.7)-(7.10) a/|s| belongs to \mathcal{M} and a/t^2 satisfies Conditions N and II. Hence for some λ_0 and M we have

$$u = 2eI + \lambda^3 (\tilde{a}^* + \tilde{a}) - \tilde{v}^* \tilde{v}$$
$$= t^2 [\mu (2 - \mu t^2)I - \lambda^2 M] \ge 0 \quad \text{for} \quad \lambda \le \lambda_0.$$

By Theorem 6.6 the scheme (2.2) with the operator (7.17) is stable for sufficiently small λ .

8. Proofs

In 8.1-8.5 we denote $ess_{\omega}sup$ by sup for short.

8.1. Proof of Theorem 3.3

Let α_i $(0 \le i \le s)$ be the family associated with $\alpha_i(x)I$. Then $\alpha_i(x)u(x) = (\alpha_i u)(x)$ $(0 \le i \le s)$. Since

$$|\sum_{i=0}^{s} \operatorname{Re}(G_{h}\alpha_{i}u, \alpha_{i}u)| \leq \sum_{i=0}^{s} ||\hat{g}||_{F} ||\alpha_{i}u||^{2} = ||\hat{g}||_{F} ||u||^{2},$$

we have the second inequality of (3.25).

By continuity of the L_2 -norm it suffices to prove the first inequality in the case $u \in \mathscr{S}$. We consider first the case $1 \leq i \leq s$. From (3.12) it follows that

$$(G_{h}\alpha_{i}u, \alpha_{i}u) = (\alpha_{i}G_{h}\alpha_{i}u, u),$$

$$\alpha_{i}G_{h}\alpha_{i}u = \alpha_{i}(x)\kappa^{-1}\int e^{ix\cdot\xi}g(x, h\xi)\widehat{\alpha_{i}u}(\xi)d\xi.$$

Without loss of generality we may assume that $x^{(i)}$ is the origin. By the mean value theorem we have

$$g(x, h\xi) = g(0, h\xi) + \sum_{j} x_{j} \int_{0}^{1} g_{j}(\theta x, h\xi) d\theta,$$

where $g_i(x, \omega) = D_i g(x, \omega)$. Since $g(0, h\xi) \ge eI$ by condition 2), it follows that

(8.1)
$$\operatorname{Re}(G_{h}\alpha_{i}u, \alpha_{i}u) \geq e \|\alpha_{i}u\|^{2} - \sum_{j} |(G'_{jh}\alpha_{i}u, x_{j}\alpha_{i}u)|,$$

where

$$G'_{jh}\alpha_{i}u(x) = \kappa^{-1} \int e^{ix\cdot\xi} \int_{0}^{1} g_{j}(\theta x, h\xi) d\theta \widehat{\alpha_{i}u}(\xi) d\xi.$$

Let $\{\varepsilon_k\}$ be any sequence such that $\varepsilon_k > 0$ and $\varepsilon_k \to 0$ as $k \to \infty$. Then by the boundedness of g_j we have

(8.2)
$$(G'_{jh}\alpha_i u, x_j\alpha_i u) = \lim_{k \to \infty} (w_{jk}, x_j\alpha_i u),$$

where

$$w_{jk}(x) = \kappa^{-1} \int e^{ix \cdot \xi} g_{jk}(x, h\xi) \widehat{\alpha_i u}(\xi) d\xi,$$
$$g_{jk}(x, \omega) = \int_{\varepsilon_k}^1 g_j(\theta x, \omega) d\theta.$$

Since supp $(x_i \alpha_i u) \subset V_i$, we have

$$\|x_j\alpha_i u\| \leq \varepsilon \|\alpha_i u\|.$$

Combining this with the estimate (to be shown later)

(8.3)
$$\|w_{jk}\| \leq c_j \|\alpha_i u\|, \qquad c_j = \int \sup_{\omega} |\hat{g}_j(\chi, \omega)| d\chi,$$

we obtain

$$|(w_{jk}, x_j \alpha_i u)| \leq \varepsilon c_j ||\alpha_i u||^2,$$

which yields by (8.2)

$$|(G'_{jh}\alpha_{i}u, x_{j}\alpha_{i}u)| \leq \varepsilon c_{j} \|\alpha_{i}u\|^{2}.$$

From this and (8.1) with $c = \sum_{j=1}^{n} c_j$ we have

$$\operatorname{Re}(G_{h}\alpha_{i}u, \alpha_{i}u) \geq e \|\alpha_{i}u\|^{2} - c\varepsilon \|\alpha_{i}u\|^{2},$$

so that

(8.4)
$$\sum_{i=1}^{s} \operatorname{Re}(G_{h}\alpha_{i}u, \alpha_{i}u) \geq e \sum_{i=1}^{s} \|\alpha_{i}u\|^{2} - c \varepsilon (\sum_{i=1}^{s} \|\alpha_{i}u\|^{2}).$$

Next we consider the case i=0. Let $G_{\infty h}$ and G_{0h} be the families associated with $g_{\infty}(\omega)$ and $g_0(x, \omega)$ respectively. Then

$$\operatorname{Re}(G_{h}\alpha_{0}u, \alpha_{0}u) = \operatorname{Re}(G_{\infty h}\alpha_{0}u, \alpha_{0}u) + \operatorname{Re}(\alpha_{0}G_{0h}\alpha_{0}u, u)$$
$$(G_{\infty h}\alpha_{0}u, \alpha_{0}u) \ge e \|\alpha_{0}u\|^{2},$$

because $g_{\infty}(\omega) \ge eI$. Since by definition

$$\alpha_0 G_{0h} \alpha_0 u = \alpha_0 (G_{0h}(\alpha_0 u)) = (\alpha_0 G_{0h})(\alpha_0 u)$$

and $\alpha_0 G_{0h} = \alpha_0 \circ G_{0h}$ by Corollary 3.1, we have

$$\alpha_0 G_{0h} \alpha_0 u = (\alpha_0 \circ G_{0h}) (\alpha_0 u).$$

Hence it follows that

$$\operatorname{Re}(G_{h}\alpha_{0}u, \alpha_{0}u) \geq e \|\alpha_{0}u\|^{2} - \|\widehat{\alpha_{0}g_{0}}\|_{F} \|\alpha_{0}u\| \|u\|$$

From this and (8.4) we have

$$\sum_{i=0}^{s} \operatorname{Re}(G_{h}\alpha_{i}u, \alpha_{i}u) \geq e \|u\|^{2} - c\varepsilon \|u\|^{2} - \|\widehat{\alpha_{0}g_{0}}\|_{F} \|u\|^{2}.$$

Now we choose ε small so that $c\varepsilon \leq e/4$, and then choose R large so that $\|\alpha_0 q_0\|_F \leq e/4$. This choice of R is possible by N-2). For such ε and R we have

(8.5)
$$\sum_{i=0}^{s} \operatorname{Re}(G_{h}\alpha_{i}u, \alpha_{i}u) \geq (e/2) ||u||^{2},$$

which is the first inequality of (3.25).

It remains to show (8.3). Since $g_j(x, \omega)$ is continuous and integrable with respect to x for each ω , by the change of order of integration we have

$$\int |g_{jk}(x, \omega)| dx \leq \int_{\varepsilon_k}^1 \int |g_j(\theta x, \omega)| dx d\theta = \int |g_j(x, \omega)| dx \int_{\varepsilon_k}^1 1/|\theta|^n d\theta.$$

Hence $g_{ik}(x, \omega)$ is integrable for each ω , and

(8.6)
$$\hat{g}_{jk}(\chi,\,\omega) = \kappa \int_{\varepsilon_k}^1 \int_{\varepsilon_k} e^{-ix \cdot \chi} g_j(\theta x,\,\omega) dx d\theta$$
$$= \int_{\varepsilon_k}^1 \hat{g}_j(\chi/\theta,\,\omega) / |\theta|^n d\theta.$$

Since $\hat{g}_j(\chi, \omega)$ is integrable for each ω , it follows that

$$\begin{split} \int |\hat{g}_{jk}(\chi,\,\omega)|d\chi &\leq \int \int_{\epsilon_k}^1 |\hat{g}_j(\chi/\theta,\,\omega)|/|\theta|^n d\theta d\chi \\ &= \int_{\epsilon_k}^1 \int |\hat{g}_j(\chi/\theta,\,\omega)|/|\theta|^n d\chi d\theta \\ &\leq \int |\hat{g}_j(\chi,\,\omega)|d\chi. \end{split}$$

Hence $\hat{g}_{jk}(\chi, \omega)$ is integrable for each ω and by N-1) we have from (8.6)

$$\int \sup_{\omega} |\hat{g}_{jk}(\chi, \omega)| d\chi \leq c_j \qquad (j = 1, 2, ..., n).$$

Put

$$v_{jk}(\xi) = \int \widehat{g}_{jk}(\xi - \xi', h\xi') \widehat{\alpha_i u}(\xi') d\xi'.$$

Then by the same argument as in the proof of Lemma 3.2 we have

$$\int |v_{jk}(\xi)| d\xi \leq c_j \int |\widehat{\alpha_i u}(\xi)| d\xi$$
$$\|v_{ik}\| \leq c_i \|\alpha_i u\|.$$

Since $v_{jk} \in L_1 \cap L_2$,

l.i.m.
$$\kappa^{-1} \int e^{ix \cdot \xi} v_{jk}(\xi) d\xi = w_{jk}(x)$$
 a.e..

Thus $||v_{jk}|| = ||w_{jk}||$ and (8.3) holds by (8.7).

8.2. Proof of Theorem 3.4

By continuity of the L_2 -norm it suffices to prove the theorem in the case $u \in \mathscr{S}$. Let σ be a space variable in \mathbb{R}^n , $B_0 = \{\sigma \mid |\sigma| \le 1\}$ and $q(\sigma)$ be a C^{∞} even function such that

- i) $q(\sigma) \ge 0$, $\operatorname{supp} q(\sigma) \subset B_0$;
- ii) $\sqrt{q^2(\sigma)d\sigma} = 1.$

After Vaillancourt [16] we introduce the functions

$$a(x, \omega) = c^{-n} \int p(x, \zeta) e^{2}(\omega, \zeta) d\zeta,$$
$$b(\tilde{\omega}, x, \omega) = c^{-n} \int e(\tilde{\omega}, \zeta) p(x, \zeta) e(\omega, \zeta) d\zeta,$$

where

$$c = h^{1/2}, \quad \zeta = \omega - c\sigma, \quad e(\omega, \zeta) = q(c^{-1}[\omega - \zeta]),$$

As will be shown in the proof of Lemma A, the families of operators A_h and B_h can be defined by

(8.8)
$$A_h u(x) = 1.i.m. \kappa^{-1} \int e^{ix \cdot \xi} \int \hat{a}(\xi - \xi', h\xi') \hat{u}(\xi') d\xi' d\xi,$$

(8.9)
$$B_h u(x) = \text{l.i.m. } \kappa^{-1} \int e^{ix \cdot \xi} \int \hat{b}(h\xi, \xi - \xi', h\xi') \hat{u}(\xi') d\xi' d\xi$$

for all $u \in \mathcal{S}$,

where $\hat{b}(\tilde{\omega}, \chi, \omega)$ is the Fourier transform of $b(\tilde{\omega}, x, \omega)$ with respect to x.

LEMMA A. A_h and B_h are families of bounded linear operators mapping

(8.7)

 \mathcal{S} into L_2 and

- (8.10) $(B_h u, u) \ge 0$ for all $u \in \mathscr{S}$,

By this lemma we have

$$\operatorname{Re}(P_{h}u, u) \ge \operatorname{Re}(P_{h}u, u) - (B_{h}u, u)$$
$$\ge \operatorname{Re}((P_{h} - A_{h})u, u) + ((A_{h} + A_{h}^{*} - 2B_{h})u, u)/2$$
$$\ge - \|P_{h} - A_{h}\| \|u\|^{2} - \|A_{h} + A_{h}^{*} - 2B_{h}\| \|u\|^{2}/2.$$

Hence (3.28) holds by (8.11) and (8.12).

PROOF OF LEMMA A. Let

$$w(\xi) = \int \hat{b}(h\xi, \, \xi - \xi', \, h\xi') \hat{u}(\xi') d\xi'.$$

Then

$$w(\xi) = \int r_0(\xi - \xi', h\xi')\hat{u}(\xi')d\xi' + r_\infty(h\xi)\hat{u}(\xi),$$

where

$$r_{0}(\chi, \omega) = c^{-n} \int e(h\chi + \omega, \zeta) \hat{p}_{0}(\chi, \zeta) e(\omega, \zeta) d\zeta,$$
$$r_{\infty}(\omega) = c^{-n} \int e(\omega, \zeta) p_{\infty}(\zeta) e(\omega, \zeta) d\zeta.$$

By condition i) we have

$$\int \sup_{\omega} |r_0(\chi, \omega)| d\chi \leq L \int \sup_{\omega} |\hat{p}_0(\chi, \omega)| d\chi,$$
$$\sup_{\omega} |r_{\infty}(\omega)| \leq L \sup_{\omega} |p_{\infty}(\omega)|,$$

where $L = \max_{\eta} q^2(\eta) \int_{|\sigma| \le 1} d\sigma$.

By the same argument as in the proof of Lemma 3.2 we have $||w|| \le L ||\hat{p}||_F ||\hat{u}||$. Hence $w \in L_2$, and the formula (8.9) defines a family of bounded linear operators

 B_h . The same reasoning applies also to A_h . We show (8.10). Put Hisayoshi SHINTANI and Kenji TOMOEDA

(8.13)
$$\hat{v}(\xi, \zeta) = e(h\xi, \zeta)\hat{u}(\xi)$$

Then $|\vartheta(\xi, \zeta)|^2$ is integrable for each fixed ζ . Hence there exists the Fourier inverse transform $v(x, \zeta)$ such that $|v(x, \zeta)|^2$ is integrable for each fixed ζ . Since $p(x, \zeta) \ge 0$, it follows that

$$v^*(x, \zeta)p(x, \zeta)v(x, \zeta) \ge 0.$$

Integration of this inequality with respect to x yields by Plancherel's formula

(8.14)
$$\int v^*(x,\,\zeta)p(x,\,\zeta)v(x,\,\zeta)dx$$
$$= \iint \hat{v}^*(\xi,\,\zeta)\hat{p}(\xi-\xi',\,\zeta)\hat{v}(\xi',\,\zeta)d\xi'd\xi \ge 0.$$

Substituting (8.13) into (8.14) and then integrating it with respect to ζ , by the change of order of integration we have $(\hat{u}, w) \ge 0$, which shows (8.10), because $w = \widehat{B_h u}$ by (8.9).

Since

$$a(x, \omega) = \int p(x, \omega - c\sigma)q^2(\sigma)d\sigma,$$

from (8.8) it follows that

(8.15)
$$\widehat{(P_h - A_h)u}(\xi) = \int \{ \hat{p}(\chi, \omega) - \hat{a}(\chi, \omega) \} \hat{u}(\xi') d\xi'$$
$$= \iint \{ \hat{p}(\chi, \omega) - \hat{p}(\chi, \omega - c\sigma) \} q^2(\sigma) d\sigma \hat{u}(\xi') d\xi',$$

where $\chi = \xi - \xi', \ \omega = h\xi'$.

Owing to condition 1) we have by the mean value theorem

(8.16)
$$\hat{p}_0(\chi,\,\omega) - \hat{a}_0(\chi,\,\omega) = c \int \sum_{j=1}^n \sigma_j \int_0^1 \partial_j \hat{p}_0(\chi,\,\omega - \theta c \sigma) q^2(\sigma) d\theta d\sigma.$$

Since $\partial_i \hat{p}_0(\chi, \omega)$ is absolutely continuous with respect to ω_k ,

$$(8.17) \qquad \partial_{j}\hat{p}_{0}(\chi,\,\omega) - \partial_{j}\hat{p}_{0}(\chi,\,\omega - \rho) \\ = \sum_{k=1}^{n} \{\partial_{j}\hat{p}_{0}(\chi,\,\omega_{1},...,\,\omega_{k-1},\,\omega_{k},\,\eta_{k+1},...,\,\eta_{n}) \\ - \partial_{j}\hat{p}_{0}(\chi,\,\omega_{1},...,\,\omega_{k-1},\,\eta_{k},\,\eta_{k+1},...,\,\eta_{n}) \} \\ = \sum_{k=1}^{n} m_{kj}(\chi,\,\eta,\,\omega),$$

where $\rho = \theta c \sigma$, $\eta = \omega - \rho$,

$$m_{kj}(\chi, \eta, \omega) = -\int_0^{\rho_1} \partial_k \partial_j \hat{p}_0(\chi, \omega_1, ..., \omega_{k-1}, \omega_k - t_k, \eta_{k+1}, ..., \eta_n) dt_k.$$

Hence by (8.16) and (8.17)

(8.18)
$$\hat{p}_0(\chi, \omega) - \hat{a}_0(\chi, \omega)$$
$$= c \int \sum_{j=1}^n \sigma_j \int_0^1 \partial_j \hat{p}_0(\chi, \omega) q^2(\sigma) d\theta d\sigma - ck(\chi, \omega),$$

where

$$k(\chi, \omega) = \int \sum_{j=1}^{n} \sigma_j \int_0^1 \sum_k m_{kj}(\chi, \eta, \omega) q^2(\sigma) d\theta d\sigma.$$

The first term on the right side of (8.18) vanishes, because $q^2(\sigma)$ is even. Since $|ck(\chi, \omega)| \leq c \int_0^1 \sum_{j,k} |\sigma_j| |\rho_l| \sup_{\omega} |\partial_k \partial_j \hat{p}_0(\chi, \omega)| q^2(\sigma) d\theta d\sigma$ $\leq h \sum_{j,k} \sup_{\omega} |\partial_k \partial_j \hat{p}_0(\chi, \omega)|$ a.e.,

from (8.18) it follows that

$$|\hat{p}_0(\chi, \omega) - \hat{a}_0(\chi, \omega)| \le h \sum_{j,k} \sup_{\omega} |\partial_k \partial_j \hat{p}_0(\chi, \omega)|$$
 a.e.

Similarly we have

$$|p_{\infty}(\omega) - a_{\infty}(\omega)| \leq h \sum_{j,k} \sup_{\omega} |\partial_k \partial_j p_{\infty}(\omega)|$$
 a.e..

The same argument as in the proof of Lemma 3.2 yields from (8.15)

$$\|\widehat{(P_h-A_h)u}\| \leq Mh\|\hat{u}\|,$$

where

$$M = \sum_{j,k} \left(\int \sup_{\omega} |\partial_k \partial_j \hat{p}_0(\chi, \omega)| d\chi + \sup_{\omega} |\partial_k \partial_j p_{\infty}(\omega)| \right)$$

Hence (8.11) holds.

From (8.8) and (3.20) it follows that

(8.19)
$$\overline{(A_h + A_h^* - 2B_h)u}(\xi)$$
$$= c^{-n} \iint \hat{p}(\chi, \zeta) \{ e(h\chi + \omega, \zeta) - e(\omega, \zeta) \}^2 \hat{u}(\xi') d\zeta d\xi',$$
$$= \iint \hat{p}_0(\chi, \zeta) \{ q(\chi' + \sigma) - q(\sigma) \}^2 \hat{u}(\xi') d\sigma d\xi',$$

where $\chi' = c\chi$, $\chi = \xi - \xi'$, $\omega = h\xi'$, $\zeta = \omega - c\sigma$. By the mean value theorem we have

$$\begin{split} \left| \int \hat{p}_{0}(\chi, \zeta) \left\{ q(\chi' + \sigma) - q(\sigma) \right\}^{2} d\sigma \right| \\ & \leq h \int \left| \hat{p}_{0}(\chi, \zeta) \left\{ \sum_{j} \chi_{j} \frac{\partial q}{\partial \sigma_{j}} \left(\sigma + \theta \chi' \right) \right\}^{2} \right| d\sigma \\ & \leq h K_{1} \sup_{\omega} \left(|\chi|^{2} |\hat{p}_{0}(\chi, \omega)| \right) \quad \text{a.e.}, \end{split}$$

where

$$K_1 = n \max_j \left\{ \max_{\eta} \left(\left| \frac{\partial q}{\partial \eta_j}(\eta) \right|^2 \right) \right\} \int_{|\sigma| \leq 1} d\sigma.$$

From (8.19) it follows as in the proof of (8.11) that

$$\|\overline{(A_h+A_h^*-2B_h)u}\| \leq K_2h\|\hat{u}\|,$$

where $K_2 = \int \sup_{\omega} (|\chi|^2 |\hat{p}_0(\chi, \omega)|) d\chi$. Hence (8.12) holds.

In the following for simplicity we put

$$S_{\omega} = R_{\omega}^{n}, \quad S_{z} = R_{\omega}^{n} - Z, \quad S_{\chi} = R_{\chi}^{n}, \quad S_{x} = R_{x}^{n}, \quad S_{t} = R_{t}^{n}, \quad S_{0} = R_{\omega}^{n} - \{0\}$$

and let

$$S_{ab} = S_a \times S_b, \quad S_{abc} = S_a \times S_b \times S_c,$$

where a, b and c denote ω , z, χ , x, t or 0. We denote by $M[x, \chi, z]$ the set of all bounded and measurable $N \times N$ matrix functions on $S_{x\chi z}$ and denote by $C[\chi, z]$ the set of all bounded and continuous $N \times N$ matrix functions on $S_{\chi z}$. The sets $M[z], M[\chi, z], C[0], C[\chi, 0]$, etc. are also defined in the same manner.

8.3. Proof of Lemma 4.1

We show (i). Let $l(\chi, \omega) = \hat{p}|s|$. Then by I'-1) *l* belongs to \mathscr{K} and satisfies I-1). Let c_j (j=1, 2, 3) be constants such that

$$\begin{aligned} |\partial_j s_k(\omega)| &\le c_1 \quad \text{on} \quad S_{\omega} \quad (j, \, k = 1, \, 2, \dots, \, n), \\ |\partial_j l_0(\chi, \, \omega)| &\le c_2, \quad |\hat{p}_0(\chi, \, \omega)| &\le c_3 \quad \text{on} \quad S_{\gamma z} \quad (j = 1, \, 2, \dots, \, n). \end{aligned}$$

Denote by $L(\tilde{\omega}, \omega)$ the line segment joining the points $\tilde{\omega}$ and ω , where

$$\tilde{\omega} = (\omega_1, \dots, \omega_{j-1}, \tilde{\omega}_j, \omega_{j+1}, \dots, \omega_n), \quad \omega = (\omega_1, \omega_2, \dots, \omega_n)$$

When there lies no point of Z on $L(\tilde{\omega}, \omega)$, by I'-3) we have

(8.20)
$$l_0(\chi, \tilde{\omega}) - l_0(\chi, \omega) = (\tilde{\omega}_j - \omega_j)\partial_j l_0(\chi, \eta),$$

where η is some point on $L(\tilde{\omega}, \omega)$.

When a point $\hat{\omega}$ of Z lies on $L(\tilde{\omega}, \omega)$, we have $|s(\hat{\omega})| = 0$ and

$$l_0(\chi, \tilde{\omega}) - l_0(\chi, \omega) = \hat{p}_0(\chi, \tilde{\omega})(|s(\tilde{\omega})| - |s(\hat{\omega})|) + \hat{p}_0(\chi, \omega)(|s(\hat{\omega})| - |s(\omega)|),$$

where the first (or second) term on the right side vanishes if $\tilde{\omega} \in \mathbb{Z}$ (or $\omega \in \mathbb{Z}$). Hence it follows that

(8.21)
$$|l_0(\chi, \tilde{\omega}) - l_0(\chi, \omega)| \leq c_3(|s(\tilde{\omega}) - s(\tilde{\omega})| + |s(\tilde{\omega}) - s(\omega)|)$$
$$\leq \sqrt{nc_1c_3}(|\tilde{\omega}_j - \tilde{\omega}_j| + |\tilde{\omega}_j - \omega_j|)$$
$$= \sqrt{nc_1c_3}|\tilde{\omega}_j - \omega_j|.$$

From (8.20) and (8.21) we have

$$|l_0(\chi, \tilde{\omega}) - l_0(\chi, \omega)| \leq c_4 |\tilde{\omega}_i - \omega_i| \quad \text{for} \quad \tilde{\omega}, \, \omega \in \mathbb{R}^n,$$

where $c_4 = \max(c_2, \sqrt{nc_1c_3})$. Thus $l_0(\chi, \omega)$ is absolutely continuous with respect to ω_j . Hence l_0 satisfies I-2), because $\partial_j l_0 \in M[\chi, z]$. Similarly l_{∞} satisfies I-2).

From I'-3) and I'-4) it follows that l satisfies I-3).

The assertion (ii) can be shown similarly.

8.4. Proof of Lemma 4.3

Since $\sup_{\omega} (|\chi|^2 |\hat{p}_0|s|^2|)$ is integrable by IV, it suffices to show that conditions 1) and 2) of Theorem 3.4 are satisfied. By I'-1)-I'-3) and V-2) $\partial_j l_0(\chi, \omega)$, $\partial_k m_{j0}(\chi, \omega) \in M[\chi, z]$; $\sup_{\omega} |\partial_j l_0(\chi, \omega)|$, $\sup_{\omega} |\partial_k m_{j0}(\chi, \omega)| \in M[\chi]$ and $\partial_j l_{\infty}(\omega)$, $\partial_k m_{j\infty}(\omega) \in M[z]$.

Let $r_0 = \hat{p}_0 |s|^2$ and $r_{\infty} = p_{\infty} |s|^2$. Then by I'-1) and I'-2) $r_0 \in M[\chi, \omega]$ and $r_{\infty}(\omega) \in M[\omega]$. By I'-3) we have for $\omega \in S_z$

(8.22)
$$\partial_j r_0 = m_{j0} + l_0(\partial_j |s|), \quad \partial_j r_\infty = m_{j\infty} + l_\infty(\partial_j |s|).$$

Since the terms on the right sides are continuous on S_z for each χ , so are $\partial_j r_0$ and $\partial_j r_{\infty}$.

Let $\omega^{(0)}$ be any point of Z. Then $\partial_j r_0(\chi, \omega^{(0)})$ and $\partial_j r_\infty(\omega^{(0)})$ are calculated to be zero. By I'-2) and I'-3) \hat{p}_0 and $\partial_j l_0$ are bounded on $S_{\chi z}$; p_∞ , $\partial_j l_\infty$ and $\partial_j |s|$ are bounded on S_z . Hence the terms on the right sides of (8.22) tend to

zero as $\omega \rightarrow \omega^{(0)}$. Therefore $\partial_j r_0$ and $\partial_j r_{\infty}$ are continuous on S_{ω} for each χ .

By the same argument as in the proof of Lemma 4.1 m_{j0} , $l_0(\partial_j |s|)$, $m_{j\infty}$ and $l_{\infty}(\partial_j |s|)$ are absolutely continuous with respect to ω_k . Hence by (8.22) $\partial_j r_0$ and $\partial_j r_{\infty}$ have the same property and condition 1) is satisfied.

By I'-3) and V-2) we have from (8.22) for $\omega \in S_z$

$$\begin{split} \partial_k \partial_j r_0 &= \partial_k m_{j0} + (\partial_k l_0) (\partial_j |s|) + \hat{p}_0 |s| (\partial_k \partial_j |s|), \\ \partial_k \partial_j r_\infty &= \partial_k m_{j\infty} + (\partial_k l_\infty) (\partial_j |s|) + p_\infty |s| (\partial_k \partial_j |s|), \end{split}$$

and $\partial_k \partial_j r_0 \in M[\chi, z]$, $\partial_k \partial_j r_\infty \in M[z]$, $\sup_{\omega} |\partial_k \partial_j r_0| \in M[\chi]$. By the conditions $\sup_{\omega} |\partial_k \partial_j r_0|$ is integrable and $\sup_{\omega} |\partial_k \partial_j r_\infty|$ is finite, so that condition 2) is satisfied.

8.5. Proof of Lemma 4.4

We prove that if p and q satisfy (a) II (or IV) (b) I' (c) I', II and III' or (d) V, then p+q, pq and p^* satisfy the corresponding conditions. For properties (i) and (ii) of the lemma follow from (a) and (c) respectively; property (iii) follows from (a), (c) and (d). It suffices to show these assertions only for pq.

Put d = pq. Then by Lemma 3.1 $d \in \mathcal{K}$, $d_{\infty} \in M[\omega]$ and $\sup_{\omega} |\hat{d}_0(\chi, \omega)|$ is integrable.

We prove (a). Since

(8.23)
$$\hat{d}_0(\chi, \omega) = \hat{p}_0 * \hat{q}_0 + \hat{p}_0 q_\omega + p_\omega \hat{q}_0, \qquad d_\omega = p_\omega q_\omega,$$

we have

$$(8.24) |\chi| |\hat{d}_{0}| \leq \int |\chi - t| |\hat{p}_{0}(\chi - t, \omega)| |\hat{q}_{0}(t, \omega)| dt + \int |\hat{p}_{0}(\chi - t, \omega)| |t| |\hat{q}_{0}(t, \omega)| dt + |\chi| |\hat{p}_{0}| |q_{\infty}| + |p_{\infty}| |\chi| |\hat{q}_{0}|,$$

$$(8.25) |\chi|^{2} |\hat{d}_{0}| \leq 2 \left\{ \int |\chi - t|^{2} |\hat{p}_{0}(\chi - t, \omega)| |\hat{q}_{0}(t, \omega)| dt + \int |\hat{p}_{0}(\chi - t, \omega)| |t|^{2} |\hat{q}_{0}(t, \omega)| dt \right\} + |\chi|^{2} |\hat{p}_{0}| |q_{\infty}| + |p_{\infty}| |\chi|^{2} |\hat{q}_{0}|.$$

Taking the essential suprema of both sides of (8.24) and (8.25) over S_{ω} and integrating them with respect to χ , we find that $\sup_{\omega} (|\chi|^k |\hat{d}_0(\chi, \omega)|)$ is integrable in the case k=1 (or k=2) if p and q satisfy II (or IV).

We prove (b). Let

$$v_0(\chi, \omega) = \hat{q}_0|s|, v_\infty(\omega) = q_\infty|s|, e_0(\chi, \omega) = \hat{d}_0|s|, e_\infty(\omega) = d_\infty|s|.$$

Then $\partial_j l_0(\chi, \omega)$, $\partial_j v_0(\chi, \omega) \in M[\chi, z]$ and $\partial_j l_{\omega}(\omega)$, $\partial_j v_{\omega} \in C[z]$; $\partial_j l_0(\chi, \omega)$ and $\partial_j v_0(\chi, \omega)$ are measurable on S_{χ} for each $\omega \in S_z$.

It can be shown that if $f(\chi, \omega)$ is measurable on $S_{\chi z}$ and is continuous on S_z for each χ , then $\sup_{\alpha} |f(\chi, \omega)|$ is measurable on S_{χ} and

(8.26)
$$|f(\chi, \omega)| \leq \sup_{\omega} |f(\chi, \omega)|$$
 on $S_{\chi z}$.

Hence by I'-1)-I'-3) $\sup_{\omega} |\hat{p}_0(\chi, \omega)|$, $\sup_{\omega} |\hat{q}_0(\chi, \omega)|$, $\sup_{\omega} |\partial_j l_0(\chi, \omega)|$ and $\sup_{\omega} |\partial_j v_0(\chi, \omega)|$ belong to $M[\chi]$.

Let c_k (k = 1, 2, 3, 4) be constants such that

$$|s(\omega)| \leq c_1 \quad \text{on} \quad S_{\omega},$$

(8.27)
$$|\partial_j|s(\omega)|| \leq c_2 \quad (j = 1, 2, ..., n) \quad \text{on} \quad S_z,$$

$$|\hat{p}_0(\chi, \omega)| \le c_3, \quad |\partial_j l_0(\chi, \omega)| \le c_4 \quad (j = 1, 2, ..., n) \quad \text{on} \quad S_{\chi z}$$

Then by (8.26)

$$|\hat{p}_0(\chi - t, \,\omega)\hat{q}_0(t, \,\omega)| \le c_3 \sup_{\omega} |\hat{q}_0(t, \,\omega)| \qquad \text{for} \quad (t, \,\chi, \,\omega) \in S_{t\chi z}.$$

Integration of both sides with respect to t shows that $\hat{p}_0 * \hat{q}_0$ is bounded on $S_{\chi z}$. By I'-1) and I'-2) $p_{\infty}\hat{q}_0$ and $\hat{p}_0 q_{\infty}$ are bounded on $S_{\chi z}$. Hence I'-2) is satisfied by (8.23).

By (8.23) we have

(8.28)
$$e_0 = l_0 * \hat{q}_0 + l_0 q_\infty + l_\infty \hat{q}_0, \quad e_\infty = l_\infty q_\infty.$$

By I'-1) and I'-2) $l_0(\chi - t, \omega)\hat{q}_0(t, \omega)$ belong to $M[t, \chi, z]$ and is integrable with respect to t for each $(\chi, \omega) \in S_{\chi z}$. By I'-3) we have for $\omega \in S_z$

(8.29)
$$\hat{\partial}_{j}\{l_{0}(\chi-t,\omega)\hat{q}_{0}(t,\omega)\} = (\hat{\partial}_{j}l_{0}(\chi-t,\omega))\hat{q}_{0}(t,\omega) + \hat{p}_{0}(\chi-t,\omega)\hat{\partial}_{j}v_{0}(t,\omega) - \hat{p}_{0}(\chi-t,\omega)\hat{q}_{0}(t,\omega)(\hat{\partial}_{j}|s|),$$

so that by (8.26)

$$|\partial_j \{ l_0(\chi - t, \, \omega) \hat{q}_0(t, \, \omega) \} | \leq \varphi(t),$$

where

$$\varphi(t) = (c_2 c_3 + c_4) \sup_{\omega} |\hat{q}_0(t, \omega)| + c_3 \sup_{\omega} |\partial_j v_0(t, \omega)|$$

which is integrable by I'-1) and I'-4). Hence

(8.30)
$$\partial_j(l_0 * \hat{q}_0) = \int \partial_j \{ l_0(\chi - t, \, \omega) \hat{q}_0(t, \, \omega) \} dt \quad \text{for} \quad (\chi, \, \omega) \in S_{\chi z}$$

 $\partial_j(l_0 * \hat{q}_0) \in M[\chi, z]$ and $\sup_{\omega} p |\partial_j(l_0 * \hat{q}_0)| \in M[\chi]$. By I'-3) and (8.29) $\partial_j\{l_0(\chi - t, \omega)\hat{q}_0(t, \omega)\}$ is continuous on S_z for each (χ, t) and is dominated by $\varphi(t)$, so that $\partial_j(l_0 * \hat{q}_0)$ is continuous on S_z for each χ .

By I'-1)-I'-3) $\partial_j(l_{\infty}\hat{q}_0)$, $\partial_j(l_0q_{\infty}) \in M[\chi, z]$ and $\partial_j(l_{\infty}q_{\infty}) \in M[z]$; they are continuous on S_z for each χ . Hence by (8.28) d satisfies I'-3).

Since d satisfies I'-1) and I'-3), $\sup_{\omega} |\partial_j e_0| \in M[\chi]$. From (8.29) it follows that

(8.31)
$$\sup_{\omega} |\partial_j \{ l_0(\chi - t, \omega) \hat{q}_0(t, \omega) \} | \leq \sup_{\omega} |\partial_j l_0(\chi - t, \omega)| \sup_{\omega} |\hat{q}_0(t, \omega)|$$
$$+ \sup_{\omega} |\hat{p}_0(\chi - t, \omega)| (\sup_{\omega} |\partial_j v_0(t, \omega)| + c_2 \sup_{\omega} |\hat{q}_0(t, \omega)|).$$

By I'-1) and I'-4) the terms on the right side are integrable with respect to χ and t. Hence from (8.30) and (8.31) we have

$$\begin{split} \int \sup_{\omega} |\partial_j (l_0 * \hat{q}_0)| d\chi &\leq \int \sup_{\omega} |\partial_j l_0(\chi, \omega)| d\chi \| \hat{q}_0 \|_F \\ &+ \| \hat{p}_0 \|_F \int \sup_{\omega} |\partial_j v_0(\chi, \omega)| d\chi + c_2 \| \hat{p}_0 \|_F \| \hat{q}_0 \|_F \end{split}$$

and $\sup_{i \to 0} |\partial_j (l_0 * \hat{q}_0)|$ is integrable.

Since

$$\sup_{\omega} |\partial_j (l_{\infty} \hat{q}_0)| \leq \sup_{\omega} |\partial_j l_{\infty}| \sup_{\omega} |\hat{q}_0| + \sup_{\omega} |p_{\infty}| \sup_{\omega} |\partial_j v_0|$$

$$+c_2 \sup |p_{\infty}| \sup |\hat{q}_0|,$$

by I'-1), I'-3) and I'-4) $\sup_{\omega} |\partial_j(l_{\omega}\hat{q}_0)|$ is integrable. Similarly $\sup_{\omega} |\partial_j(l_0q_{\omega})|$ is integrable. Hence by (8.28) $\sup_{\omega} |\partial_j e_0|$ is integrable and I'-4) is satisfied.

We prove (c). By (a) and (b) it suffices to show that d satisfies III'-4). From (8.29) it follows that

$$(8.32) |\chi_{j}||\partial_{j}\{l_{0}(\chi-t,\omega)\hat{q}_{0}(t,\omega)\}| \leq |\chi_{j}-t_{j}||\partial_{j}l_{0}(\chi-t,\omega)||\hat{q}_{0}(t,\omega)| + |\partial_{j}l_{0}(\chi-t,\omega)||t_{j}||\hat{q}_{0}(t,\omega)| + |\chi_{j}-t_{j}||\hat{p}_{0}(\chi-t,\omega)||\partial_{j}v_{0}(t,\omega)| + |\hat{p}_{0}(\chi-t,\omega)||t_{j}||\partial_{j}v_{0}(t,\omega)| + |\chi_{j}-t_{j}||\hat{p}_{0}(\chi-t,\omega)||\hat{q}_{0}(t,\omega)||\partial_{j}|s|| + |\hat{p}_{0}(\chi-t,\omega)||t_{j}||\hat{q}_{0}(t,\omega)||\partial_{j}|s||.$$

Each term of (8.32) is measurable on $S_{t\chi z}$ and its essential supremum over S_{ω} is measurable on $S_{t\chi}$, so that the integrability of $\sup_{\omega} (|\chi_j| |\partial_j (l_0 * \hat{q}_0)|)$ follows from the conditions.

By I', II and III' it can be shown that $\sup_{\omega} (|\chi_j| |\partial_j (l_{\omega} \hat{q}_0)|)$ and $\sup_{\omega} (|\chi_j| |\partial_j (l_0 q_0)|)$ are also integrable. Hence by (8.28) $\sup_{\omega} (|\chi_j| |\partial_j e_0|)$ is integrable and III'-4) is satisfied.

We prove (d). By (b) it suffices to show that d satisfies V-2) and V-3). Let $w_{j0}(\chi, \omega) = (\partial_j v_0) |s|$. Then by V-1) and V-2) $\partial_k m_{j0}(\chi, \omega)$ and $\partial_k w_{j0}(\chi, \omega)$ belong to $M[\chi, z]$ and are measurable on S_{χ} for each $\omega \in S_z$; $\sup_{\omega} |\partial_k m_{j0}(\chi, \omega)|$, $\sup_{\omega} |\partial_k w_{j0}(\chi, \omega)| \in M[\chi]$.

Multiplying both sides of (8.30) by $|s(\omega)|$, we have by (8.29)

(8.33)
$$\{\partial_j(l_0 * \hat{q}_0)\} |s| = m_{j0} * \hat{q}_0 + \hat{p}_0 * w_{j0} - (l_0 * \hat{q}_0) (\partial_j |s|).$$

By the same argument as in the proof of (b) $\partial_k(m_{j0}*\hat{q}_0)$ belongs to $M[\chi, z]$ and is continuous on S_z for each χ ; $\sup_{\omega} |\partial_k(m_{j0}*\hat{q}_0)|$ belongs to $M[\chi]$ and is integrable. Similarly for $\partial_k(\hat{p}_0*w_{j0})$ and $\partial_k\{(l_0*\hat{q}_0)(\partial_j|s|)\}$ we have the same results. Therefore by (8.33) p_0q_0 satisfies V-2) and V-3).

It is readily verified that $p_{\infty}q_0$, p_0q_{∞} and $p_{\infty}q_{\infty}$ satisfy the same conditions. Hence by (8.28) d satisfies V-2) and V-3).

In the following sup does not stand for ess. sup.

8.6. Proof of Lemma 4.6

We prove (i). By VI-1) and VI-2) p satisfies conditions 1) and 2) of \mathcal{K} . Since

(8.34)
$$|\hat{p}_0(\chi, \omega)| \leq \kappa \int \sup_{\omega} |p_0(x, \omega)| dx,$$

by VI-2) $\hat{p}_0(\chi, \omega)$ belongs to $M[\chi, \omega]$; it belongs to $M[\omega]$ for each χ and is continuous on S_{χ} for each ω . Hence ess $\sup_{\alpha} |\hat{p}_0(\chi, \omega)|, \sup_{\alpha} |\hat{p}_0(\chi, \omega)| \in M[\chi]$.

By integration by parts we have for each ω

$$\widehat{D_l^{n+3}p_0}(\chi,\,\omega)=(i\chi_l)^{n+3}\hat{p}_0(\chi,\,\omega)\,,$$

so that

$$\sum_{l=1}^{n} |\widehat{D_{l}^{n+3}p_{0}}(\chi, \omega)| = \sum_{l=1}^{n} |\chi_{l}|^{n+3} |\hat{p}_{0}(\chi, \omega)|.$$

Let d be a positive constant such that $\sum_{l=1}^{n} |\chi_l|^{n+3} \ge d|\chi|^{n+3}$. Then since

$$d|\chi|^{n+3}|\hat{p}_0| \leq \sum_{l=1}^n |\chi_l|^{n+3}|\hat{p}_0| \leq \kappa \sum_{l=1}^n \int |D_l^{n+3}p_0| dx,$$

we have for any fixed A > 0

$$\int_{|\chi| \ge A} \sup_{\omega} \left(|\chi|^k |\hat{p}_0(\chi, \omega)| \right) d\chi \le c \int_{|\chi| \ge A} 1/|\chi|^{n+3-k} d\chi \quad (k = 0, 1, 2),$$

where

$$c = (\kappa/d) \sum_{l=1}^{n} \int \sup_{\omega} |D_l^{n+3} p_0(x, \omega)| dx.$$

Hence $\sup_{\omega} (|\chi|^k |\hat{p}_0(\chi, \omega)|)$ (k = 0, 1, 2) are integrable, because by (8.34)

$$\int_{|\chi| \leq A} \sup_{\omega} (|\chi|^k |\hat{p}_0(\chi, \omega)|) d\chi < \infty$$

Thus p satisfies condition 3) of \mathcal{K} , II and IV.

We prove (ii). Since p belongs to \mathscr{K} and $\hat{p}_0(\chi, \omega)$ is bounded on $S_{\chi z}$ by (i), *p* satisfies I'-1), I'-2), III'-1) and III'-2). By VI-3) and VI-4) ess $\sup_{\omega} \sup_{\omega} (|\widehat{\partial}_j p_0| |s|) \in M[\chi]$ (j = 1, 2, ..., n). By VI-2) $e^{-ix \cdot \chi} p_0(x, \omega) |s(\omega)|$ is measurable on $S_{x\chi z}$ and is integrable with

respect to x for each $(\chi, \omega) \in S_{\chi z}$. By VI-3) we have for $\omega \in S_z$

$$\partial_j(e^{-ix\cdot x}p_0|s|) = e^{-ix\cdot x}(\partial_j p_0)|s| + e^{-ix\cdot x}p_0\partial_j|s|,$$

so that

$$|\partial_j (e^{-ix \cdot x} p_0 |s|)| \le \varphi(x) \quad \text{for} \quad \omega \in S_z,$$

where

$$\varphi(x) = \sup_{\omega \notin Z} \left(\left| \partial_j p_0 \right| \left| s \right| \right) + c_2 \sup_{\omega \notin Z} \left| p_0 \right|$$

and c_2 is given by (8.27). By VI-2) and VI-4) $\varphi(x)$ is integrable. Hence

(8.35)
$$\hat{\partial}_j(\hat{p}_0|s|) = \widehat{\partial_j(p_0|s|)} \quad \text{for} \quad (\chi, \, \omega) \in S_{\chi z},$$

 $\partial_j(\hat{p}_0|s|) \in M[\chi, z]$ and

(8.36)
$$\partial_j(\hat{p}_0|s|) = \widehat{\partial}_j p_0|s| + \hat{p}_0 \partial_j |s| \quad \text{for} \quad (\chi, \, \omega) \in S_{\chi z}.$$

By VI-2) and VI-3) $\partial_j (e^{-ix \cdot x} p_0 |s|)$ is continuous on $S_{\chi z}$ and is dominated by $\varphi(x)$, so that $\partial_j(\hat{p}_0|s|)$ is continuous on $S_{\chi z}$ and p_0 satisfies I'-3) and III'-3). Since by VI-3)

(8.37)
$$\partial_j(p_{\omega}|s|) = (\partial_j p_{\omega})|s| + p_{\omega}\partial_j|s|$$
 for $\omega \in S_z$,

by VI-1), VI-3) and VI-4) p_{∞} , $(\partial_j p_{\infty}) |s| \in C[z]$ and p_{∞} satisfies I'-3). Thus

I'-3) and III'-3) are satisfied.

By integration by parts we have

$$\widehat{D_l^{n+2}\partial_j p_0}(\chi,\,\omega)\,|s(\omega)| = (i\chi_l)^{n+2}\widehat{\partial_j p_0}(\chi,\,\omega)\,|s(\omega)| \qquad \text{for} \quad \omega \in S_z,$$

and $\sup_{\substack{\omega \notin Z \\ \omega \neq z}} (|\chi|^k |\hat{\partial}_j p_0| |s|) \ (k=0, 1)$ are integrable by the same argument as for $\sup_{\omega} (|\chi|^k |\hat{p}_0(\chi, \omega)|)$. Hence by (i) and (8.36) $\sup_{\substack{\omega \notin Z \\ \omega \neq z}} (|\chi|^k |\hat{\partial}_j (\hat{p}_0 |s|)|) \ (k=0, 1)$ are integrable and p satisfies I'-4) and III'-4). Therefore by (i) $p \in \mathcal{M}$.

We prove (iii). By (ii) it suffices to show that V-2) and V-3) are satisfied. By VI-5) and VI-6) ess $\sup_{\omega} (|\widehat{\partial_k \partial_j p_0}| |s|^2)$, $\sup_{\omega \notin Z} (|\widehat{\partial_k \partial_j p_0}| |s|^2) \in M[\chi]$ (j, k=1, 2, ..., n).

Multiplying both sides of (8.36) by $|s(\omega)|$, we have

(8.38)
$$\{\partial_j(\hat{p}_0|s|)\}|s| = \widehat{\partial_j p_0}|s|^2 + \hat{p}_0|s|\partial_j|s| \quad \text{for} \quad \omega \in S_z.$$

By the same argument as in the proof of (8.35)

$$\partial_k (\widehat{\partial_j p_0} | s|^2) = \widehat{\partial_k \{ (\partial_j p_0) | s|^2 \}} \quad \text{for} \quad \omega \in S_z$$

and $\partial_k(\partial_j p_0|s|^2) \in C[\chi, z].$

Since p satisfies V-1), we have for $\omega \in S_z$

$$\partial_k(\hat{p}_0|s|\partial_j|s|) = \{\partial_k(\hat{p}_0|s|)\}\partial_j|s| + \hat{p}_0|s|\partial_k\partial_j|s|,$$

which belongs to $C[\chi, z]$. Hence by (8.38) $\partial_k[\{\partial_j(\hat{p}_0|s|)\}|s|] \in C[\chi, z]$ and p_0 satisfies V-2).

Multiplying both sides of (8.37) by $|s(\omega)|$, we have

(8.39)
$$\{\partial_j(p_{\infty}|s|)\} |s| = (\partial_j p_{\infty}) |s|^2 + p_{\infty}|s|\partial_j|s|.$$

Calculating the partial derivatives of (8.39) with respect to ω_k , by VI-3)-VI-6) we find $\partial_k[\{\partial_i(p_{\infty}|s|)\}|s|] \in C[z]$. Hence p_{∞} satisfies V-2).

From (8.38) it follows for $(\chi, \omega) \in S_{\chi z}$ that

(8.40)
$$\partial_{k}[\{\partial_{j}(\hat{p}_{0}|s|)\}|s|] = \widehat{\partial_{k}\partial_{j}p_{0}}|s|^{2} + 2\widehat{\partial_{j}p_{0}}|s|\partial_{k}|s| + \{\partial_{k}(\hat{p}_{0}|s|)\}\partial_{j}|s| + \hat{p}_{0}|s|\partial_{k}\partial_{j}|s|$$

By the same argument as for $\sup_{\substack{\omega \notin Z \\ w \notin Z}} (\widehat{|\partial_j p_0|} |s|)$ we have the integrability of $\sup_{\substack{\omega \notin Z \\ w \notin Z}} (\widehat{|\partial_k (\hat{p}_0|s|)} |s|)$ is integrable by (ii), so is $\sup_{\substack{\omega \notin Z \\ w \notin Z}} |\partial_k[\{\partial_j (\hat{p}_0|s|)\} |s|]|$ by (8.40) and V-3) is satisfied.

8.7. Proof of Lemma 4.7

By VI-1) and VI-2) $D_l^m g_0(x, \omega) \in M[x, \omega]$ and $\sup_{\omega} D_l^m g_0(x, \omega) \in M[x]$ (l=1, 2, ..., n; m=0, 1, ..., n+3). Hence $\hat{g}_0(\chi, \omega)$, $D_l g_0(\chi, \omega) \in M[\chi, \omega]$; ess. $\sup_{\omega} |\hat{g}_0(\chi, \omega)|$, ess. $\sup_{\omega} |D_l g_0(\chi, \omega)|$, $\sup_{\omega} |\hat{g}_0(\chi, \omega)|$ and $\sup_{\omega} |D_l g_0(\chi, \omega)|$ belong to $M[\chi]$.

By Lemma 4.6 $g \in \mathcal{H}$. Since $D_l g = D_l g_0$, by VI-2) $D_l g(x, \omega)$ is bounded on $S_{x\omega}$, and is continuous and integrable with respect to x for each ω .

From VI-2) it follows as in the proof of Lemma 4.6 that $D_l g(\chi, \omega)$ (l=1, 2, ..., n) are integrable with respect to χ and that $ess \sup_{\omega} \sup_{\omega} |D_l g(\chi, \omega)|$ (l=1, 2, ..., n) are also integrable. Thus g satisfies N-1).

By the same argument as in the proof of Lemma 4.6 we have for any fixed A > 0

$$\begin{split} &\int_{|\chi| \ge A} \sup_{\omega} |\widehat{\alpha_0 g_0}(\chi, \omega)| d\chi \le c_1(R) \int_{|\chi| \ge A} |\chi|^{-n-1} d\chi, \\ &\int_{|\chi| \le A} \sup_{\omega} |\widehat{\alpha_0 g_0}(\chi, \omega)| d\chi \le c_0(R) \int_{|\chi| \le A} 1 d\chi, \end{split}$$

where

$$c_1(R) = (\kappa/d') \sum_{l=1}^n \int \sup_{\omega} |D_l^{n+1}(\alpha_0(x)g_0(x,\,\omega))| dx,$$
$$c_0(R) = \kappa \int \sup_{\omega} |\alpha_0(x)g_0(x,\,\omega)| dx$$

and d' is a positive constant such that $\sum_{l=1}^{n} |\chi_l|^{n+1} \ge d' |\chi|^{n+1}$.

Since the supports of $\sup_{\omega} |\alpha_0(x)g_0(x, \omega)|$ and $\sup_{\omega} |D_l^{n+1}\alpha_0(x)g_0(x, \omega)|$ (l=1, 2, ..., n) are contained in V_0 and $D_l^m\alpha_0(x)$ (m=0, 1, ..., n+1) are bounded uniformly with respect to R, by the integrability of $\sup_{\omega} |D_l^mg_0(x, \omega)|$ we have

$$\lim_{R\to\infty}c_j(R)=0\qquad (j=0,\,1)\,.$$

Hence

$$\lim_{R\to\infty}\int\sup_{\omega}|\widehat{\alpha_0g_0}(\chi,\,\omega)|d\chi=0,$$

and Condition N-2) is satisfied.

8.8. Proof of Lemma 6.1

8.8.1. Preliminary results and proof

Assume that $\lambda_1 < \lambda_2 < \cdots < \lambda_s$ and let p_i $(1 \le i \le s)$ be the multiplicity of λ_i . We denote by $\sup_{\omega'} u(x, \omega')$ the supremum of $u(x, \omega')$ over S^{n-1} . Unless otherwise stated, in this section we denote by j, k, l, m, q and r the integers such that $1 \le j$, k, $l \le n$, $0 \le m \le n+3$, $0 \le q \le n+2$ and $0 \le r \le n+1$. To prove Lemma 6.1 we need the following three lemmas.

LEMMA B. Under Conditions A and C there exists a hermitian matrix $S(x, \omega')$ such that

- (8.41) $S(x, \omega') = S_0(x, \omega') + S_{\infty}(\omega'),$
- (8.42) $S(x, \omega') \ge eI,$

(8.43)
$$\{S(x, \omega')A(x, \omega')\}^* = S(x, \omega')A(x, \omega'),$$

where $S_0(x, \omega') \rightarrow 0$ uniformly with respect to ω' as $|x| \rightarrow \infty$ and e is a positive constant which does not depend on x and ω' .

Let $a(x, \omega)$ be a scalar function defined on S_{x0} . Then we introduce the following

Property D. 1) $a(x, \omega)$ can be written as

$$a(x, \omega) = a_0(x, \omega) + a_{\infty}(\omega),$$

where $\lim a_0(x, \omega) = 0$ for $\omega \in S_0$;

2) $D_{l}^{|x| \to \infty} D_{l}^{\alpha} a_{0}(x, \omega), D_{l}^{\alpha} \partial_{j} a_{0}(x, \omega)$ and $D_{l}^{\alpha} \partial_{k} \partial_{j} a_{0}(x, \omega)$ are continuous on S_{x0} ; $\partial_{j} a_{\infty}(\omega)$ and $\partial_{k} \partial_{j} a_{\infty}(\omega)$ are continuous on S_{0} ;

3) $\sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} (|D_i^m a_0(x, \omega)|), \sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} (|D_i^q \partial_j a_0(x, \omega)| |\omega|) \text{ and } \sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} (|D_i^r \partial_k \partial_j a_0(x, \omega)| |\omega|^2)$ are bounded and integrable; $\sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} (|a_{\infty}(\omega)|), \sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} (|\partial_j a_{\infty}(\omega)| |\omega|) \text{ and } \sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} (|\partial_k \partial_j a_{\infty}(\omega)|.$

LEMMA C. Let $a(x, \omega)$ and $b(x, \omega)$ be scalar functions with property D. Then

- (i) a+b, ab and \bar{a} have property D;
- (ii) If $|b| \ge \alpha$ for some $\alpha > 0$, then a/b has property D;
- (iii) If $a \ge \beta$ for some $\beta > 0$, then \sqrt{a} has property D.

LEMMA D. Under Conditions A, B and C the eigenvalues $\lambda_i(x, \omega/|\omega|)$ (i=1, 2,..., s) of $A(x, \omega/|\omega|)$ ($|\omega| \neq 0$) and the entries of $S(x, \omega/|\omega|)$ have property D. PROOF OF LEMMA 6.1. Let

(8.44)
$$g(x, \omega) = \begin{cases} S(x, s(\omega)/|s(\omega)|) & \text{if } \omega \in S_z, \\ eI & \text{if } \omega \in Z. \end{cases}$$

We show that $g(x, \omega)$ satisfies VI. Since by Lemma D the entries of $S(x, \omega/|\omega|)$ have property D, by D-1) we have

$$S(x, \omega/|\omega|) = S_0(x, \omega/|\omega|) + S_{\infty}(\omega/|\omega|),$$

where $\lim_{|x|\to\infty} S_0(x, \omega/|\omega|) = 0$. Let

(8.45)
$$g_{\infty}(\omega) = \begin{cases} S_{\infty}(s(\omega)/|s(\omega)|) & \text{if } \omega \in S_z, \\ eI & \text{if } \omega \in Z, \end{cases}$$

and put $g_0(x, \omega) = g(x, \omega) - g_{\infty}(\omega)$. Then

(8.46)
$$\lim_{|x|\to\infty} g_0(x,\,\omega) = 0 \quad \text{for} \quad \omega \in \mathbb{R}^n,$$

By D-2) and D-3) $g_0(x, \omega) \in C[x, z]$ and $g_{\infty}(\omega) \in C[z]$. Hence by (8.45) and (8.46) $g_0(x, \omega) \in M[x, \omega]$ and $g_{\infty}(\omega) \in M[\omega]$. Thus g satisfies VI-1).

Since $\sup_{\substack{\omega \neq 0 \\ \omega \neq 0}} |D_i^m S_0(x, \omega/|\omega|)|$ belongs to M[x] and is integrable by D-2) and D-3), $\sup_{\substack{\omega \neq Z \\ \omega \neq Z}} |D_i^m g_0(x, \omega)|$ is bounded and integrable. Hence g satisfies VI-2).

For $\omega \in S_z$ we have

(8.47)
$$D_i^q \partial_j g_0(x, \omega) = \sum_{k=1}^n \{\partial_j s_k(\omega)\} [D_i^q \partial_k S_0(x, \omega/|\omega|)]_{\omega=s(\omega)},$$

(8.48) $\hat{\partial}_{j}g_{\infty}(\omega) = \sum_{k=1}^{n} \{ \hat{\partial}_{j}s_{k}(\omega) \} [\hat{\partial}_{k}S_{\infty}(\omega/|\omega|)]_{\omega=s(\omega)},$

so that by D-2) $D_i^q \partial_j g_0(x, \omega)$ and $\partial_j g_{\infty}(\omega)$ are continuous on S_{xz} and on S_z respectively. Thus g satisfies VI-3).

From (8.47) and (8.48) it follows that for $(x, \omega) \in S_{xz}$

$$\begin{aligned} |D_i^q \partial_j g_0| |s| &\leq c \sum_{k=1}^n \sup_{\omega \neq 0} (|D_i^q \partial_k S_0(x, \omega/|\omega|)| |\omega|), \\ |\partial_j g_{\infty}| |s| &\leq c \sum_{k=1}^n \sup_{\omega \neq 0} (|\partial_k S_{\infty}(\omega/|\omega|)| |\omega|), \end{aligned}$$

where c is a constant such that $|\partial_j s_k(\omega)| \leq c$. Hence by D-3) $\sup_{\substack{\omega \notin \mathbb{Z} \\ \omega \notin \mathbb{Z}}} (|D_i^q \partial_j g_0| |s|)$ is bounded and integrable and $\sup_{\substack{\omega \notin \mathbb{Z} \\ \omega \notin \mathbb{Z}}} (|\partial_j g_{\omega}| |s|)$ is finite. Thus g satisfies VI-4). Similarly it can be shown that g fulfills VI-5) and VI-6).

By Lemma 4.6 $g \in \mathcal{L}$. Since by (8.42) and (8.44)

Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems 367

TTS (1 1)P.

$$g(x,\,\omega)\geq eI\qquad (e>0)\,,$$

by Lemma 4.7 g satisfies the conditions of Theorem 3.3. Finally (6.5) follows from (8.43).

8.8.2. Proof of Lemma B

 $J(1, \dots, n) = Jat(1)$

Let

(8.49)

$$\begin{aligned} d(\lambda, x, \omega) &= \det(\lambda I - A) = \prod_{j=1}^{n} (\lambda - \lambda_j)^{r_j}, \\ d_{\lambda}(\lambda; x, \omega') &= D_{\lambda} d(\lambda; x, \omega') \qquad (D_{\lambda} = \partial/\partial \lambda), \\ A_{\infty}(\omega') &= \sum_{j=1}^{n} A_{j\infty} \omega'_j, \quad d_{\infty}(\lambda; \omega') = \det(\lambda I - A_{\infty}(\omega')), \\ d_{\lambda\infty}(\lambda; \omega') &= D_{\lambda} d_{\infty}(\lambda; \omega'). \end{aligned}$$

4

As λ_i (j = 1, 2, ..., s) are real, we have

(8.50)
$$d_{\lambda}(\lambda; x, \omega') = N \prod_{j=1}^{s} (\lambda - \lambda_j)^{p_j - 1} \prod_{k=1}^{s-1} (\lambda - \mu_k),$$

where $\mu_k(x, \omega')$ (k=1, 2, ..., s-1) are real and $\lambda_k < \mu_k < \lambda_{k+1}$.

By Condition A $A(x, \omega') \rightarrow A_{\infty}(\omega')$ uniformly with respect to ω' as $|x| \rightarrow \infty$. Hence by continuity of eigenvalues of matrices we have the following results:

1) Eigenvalues of $A_{\infty}(\omega')$ are all real and their multiplicities are independent of ω' ;

2)
$$|\lambda_{i\infty}(\omega') - \lambda_{j\infty}(\omega')| \ge \delta$$
 $(i \ne j; i, j = 1, 2, ..., s),$

(8.51)
$$\lambda_j(x, \omega') \longrightarrow \lambda_{j\omega}(\omega') \quad (j = 1, 2, ..., s)$$

uniformly with respect to ω' as $|x| \rightarrow \infty$, where $\lambda_{j\infty}(\omega')$ (j=1, 2, ..., s) are all the distinct eigenvalues of $A_{\infty}(\omega')$ and $\lambda_{1\infty} < \lambda_{2\infty} < \cdots < \lambda_{s\infty}$;

3) $\mu_k(x, \omega') \rightarrow \mu_{k\infty}(\omega')$ (k=1, 2, ..., s-1) uniformly with respect to ω' as $|x| \rightarrow \infty$, where $\mu_{k\infty}(\omega')$ (k=1, 2, ..., s-1) are zeros of $d_{\lambda\infty}(\lambda, \omega')$ such that $\lambda_{k\infty} < \mu_{k\infty} < \lambda_{k+1\infty}$;

4) There exists a constant $\rho > 0$ independent of x and ω' such that

$$|\lambda_j(x, \omega') - \mu_k(x, \omega')| \ge 2\rho$$
 $(j = 1, 2, ..., s; k = 1, 2, ..., s-1).$

Put $\lambda_{j0}(x, \omega') = \lambda_j - \lambda_{j\infty}$ (j = 1, 2, ..., s). Then from (8.51) it follows that

(8.52)
$$\lambda_{j}(x, \omega') = \lambda_{j0}(x, \omega') + \lambda_{j\infty}(\omega'), \quad \lim_{|x| \to \infty} \lambda_{j0}(x, \omega') = 0.$$

Let $D_j(\rho)$ and $D_{j\infty}(\rho)$ (j=1, 2, ..., s) be the open disks on the complex λ -plane with radius ρ and centers at λ_j and $\lambda_{j\infty}$ respectively. Let $E(\lambda; x, \omega')$ and $E_{\infty}(\lambda; \omega')$ be the matrices whose (i, j) entries are (j, i) cofactors of $\lambda I - A(x, \omega')$ and λI

 $-A_{\infty}(\omega')$ respectively. Then $E(\lambda; x, \omega') \rightarrow E_{\infty}(\lambda; \omega')$ uniformly with respect to ω' for each fixed λ as $|x| \rightarrow \infty$.

By C-3) $(\lambda I - A(x, \omega'))^{-1}$ has a simple pole at $\lambda = \lambda_j(x, \omega')$ $(1 \le j \le s)$. Let $C_j(x, \omega')$ be the residue of $(\lambda I - A(x, \omega'))^{-1}$ at $\lambda = \lambda_j$ and let

$$r_j(\lambda; x, \omega') = \prod_{i=1, i \neq j}^s (\lambda - \lambda_i)^{p_i}, \quad r_{j\omega}(\lambda; \omega') = \prod_{i=1, i \neq j}^s (\lambda - \lambda_{i\omega})^{p_i}.$$

Then

$$r_j(\lambda_j; x, \omega') \longrightarrow r_{j\infty}(\lambda_{j\infty}; \omega')$$
 as $|x| \to \infty$

and we have

(8.53)
$$|r_j(\lambda_j; x, \omega')| \ge \delta^{N-p_j}, \quad |r_{j\infty}(\lambda_{j\infty}; \omega')| \ge \delta^{N-p_j}.$$

Since

$$(\lambda I - A(x, \omega'))^{-1} = E(\lambda; x, \omega')/d(\lambda; x, \omega'),$$

 $E(\lambda; x, \omega')$ can be written on $D_j(\rho)$ as

(8.54)
$$E(\lambda; x, \omega') = (\lambda - \lambda_j(x, \omega'))^{p_j - 1} B_j(\lambda; x, \omega'),$$

where the entries of $B_j(\lambda; x, \omega')$ are sums of products of λ , $\lambda_j(x, \omega')$ and entries of $A(x, \omega')$. Hence $B_j(\lambda; x, \omega')$ converges to a matrix, say $B_{j\infty}(\lambda; \omega')$, uniformly with respect to ω' as $|x| \to \infty$ for each fixed λ . It follows that

(8.55)
$$C_j(x, \omega') = B_j(\lambda_j; x, \omega')/r_j(\lambda_j; x, \omega'),$$

(8.56)
$$B_{j\infty}(\lambda_{j\infty}; \omega') = \lim_{|\mathbf{x}| \to \infty} B_j(\lambda_j; \mathbf{x}, \omega'),$$

and by (8.54) we have on $D_{j\infty}(\rho)$

(8.57)
$$E_{\infty}(\lambda; \omega') = (\lambda - \lambda_{j\infty}(\omega'))^{p_j - 1} B_{j\infty}(\lambda; \omega').$$

Let

(8.58)
$$C_{j\infty}(\omega') = B_{j\infty}(\lambda_{j\infty}; \omega')/r_{j\infty}(\lambda_{j\infty}; \omega').$$

Then by (8.53) and (8.56) $C_j(x, \omega') \rightarrow C_{j\infty}(\omega')$ uniformly with respect to ω' as $|x| \rightarrow \infty$. Since

$$(\lambda I - A_{\infty}(\omega'))^{-1} = E_{\infty}(\lambda; \omega')/d_{\infty}(\lambda; \omega'),$$

by (8.57) and (8.58) we have

$$\lim_{\lambda \to \lambda_{j\infty}} (\lambda I - A_{\infty}(\omega'))^{-1} (\lambda - \lambda_{j\infty}) = C_{j\infty}(\omega').$$

Hence $(\lambda I - A_{\infty}(\omega'))^{-1}$ has simple poles at $\lambda = \lambda_{j\infty}$ (j = 1, 2, ..., s).

Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems

We prove (8.41)-(8.43). After Friedrichs [3] we define $S(x, \omega')$ by

$$S(x, \omega') = \sum_{j=1}^{s} \frac{1}{2\pi i} \int_{\Gamma_j} (\lambda I - A^*(x, \omega'))^{-1} (\lambda I - A(x, \omega'))^{-1} \times d_{\lambda}^{-1}(\lambda; x, \omega') d(\lambda; x, \omega') d\lambda,$$

where Γ_j $(1 \le j \le s)$ is the positively oriented path running along the circumference of $D_j(\rho)$. Then it follows that

(8.59)
$$S(x, \omega') = \sum_{j=1}^{s} \lim_{\lambda \to \lambda_j} \{ (\lambda I - A^*)^{-1} (\lambda I - A)^{-1} (\lambda - \lambda_j)^2 d_{\lambda}^{-1} d / (\lambda - \lambda_j) \}$$
$$= \sum_{j=1}^{s} p_j^{-1} C_j^*(x, \omega') C_j(x, \omega').$$

Hence

(8.60)
$$S(x, \omega') \longrightarrow S_{\infty}(\omega') \equiv \sum_{j=1}^{s} p_{j}^{-1} C_{j\infty}^{*}(\omega') C_{j\infty}(\omega')$$

uniformly with respect to ω' as $|x| \to \infty$. Put $S_0(x, \omega') = S(x, \omega') - S_{\infty}(\omega')$. Then (8.41) holds.

We show (8.42). From (8.59) we have $S(x, \omega') \ge 0$. Suppose $S(x, \omega') > 0$ does not hold. Then there exist a point $(\tilde{x}, \tilde{\omega}')$ and a vector $u \ (u \ne 0)$ such that $S(\tilde{x}, \tilde{\omega}')u = 0$, and (8.59) yields

$$C_{j}(\tilde{x}, \tilde{\omega}')u = 0$$
 $(j = 1, 2, ..., s).$

Since in general

$$u = \frac{1}{2\pi i} \sum_{j=1}^{s} \int_{\Gamma_j} (\lambda I - A(x, \omega'))^{-1} d\lambda u,$$

it follows that $u = \sum_{j=1}^{s} C_j(x, \omega')u$, and so we have u = 0, which is a contradiction. Hence

$$S(x, \omega') > 0$$
 for all $x \in \mathbb{R}^n$, $\omega' \in \mathbb{S}^{n-1}$.

By the same argument it follows from continuity of $S_{\infty}(\omega')$ that $S_{\infty}(\omega') \ge \alpha I$ for some $\alpha > 0$.

By (8.60) there is $R_0 > 0$ such that

$$S(x, \omega') \ge (\alpha/2)I$$
 for $|x| \ge R_0$.

By continuity of $S(x, \omega')$ there exists $\beta > 0$ such that

$$S(x, \omega') \ge \beta I$$
 for $|x| \le R_0$ and $\omega' \in S^{n-1}$.

Hence (8.42) holds with $e = \min(\alpha/2, \beta)$.

Finally we have

$$\{S(x, \omega')A(x, \omega')\}^* = A^*(x, \omega')S(x, \omega')$$

= $\sum_{j=1}^s \frac{1}{2\pi i} \left\{ \int_{\Gamma_j} \lambda (\lambda I - A^*)^{-1} (\lambda I - A)^{-1} d_{\lambda}^{-1} d d \lambda - \int_{\Gamma_j} (\lambda I - A^*) (\lambda I - A^*)^{-1} (\lambda I - A)^{-1} d_{\lambda}^{-1} d d \lambda \right\}$
= $S(x, \omega')A(x, \omega'),$

because the second integral vanishes.

8.8.3. Proof of Lemma C

It is clear that a+b and \bar{a} have property D. Let d=ab. Then $d=d_0+d_{\infty}$, where

$$d_0 = a_0 b_0 + a_\infty b_0 + a_0 b_\infty, \quad d_\infty = a_\infty b_\infty.$$

From this it follows that d has property D.

In the case (ii) let $e(x, \omega) = a/b$. Then $e = e_0 + e_{\infty}$, where

$$e_0(x, \omega) = u/v, \quad e_{\infty} = a_{\infty}/b_{\infty},$$
$$u(x, \omega) = a_0 b_{\infty} - b_0 a_{\infty}, \quad v(x, \omega) = b b_{\infty}.$$

By (i) u and v have property D. Since

$$u = u_0, \quad u_{\infty} = 0, \quad |v| \ge \alpha^2, \quad |b_{\infty}| \ge \alpha,$$

it follows that e has property D.

In the case (iii) let $f(x, \omega) = \sqrt{a}$ and $\gamma = \sqrt{\beta}$. Then $f = f_0 + f_{\infty}$, where

$$f_0(x, \omega) = \sqrt{a} - \sqrt{a_{\infty}}, \quad f_{\infty}(\omega) = \sqrt{a_{\infty}}.$$

Since

$$f_{\infty} \ge \gamma, \quad f_{\infty}\partial_{j}f_{\infty} = (\partial_{j}a_{\infty})/2,$$
$$f_{\infty}\partial_{k}\partial_{j}f_{\infty} + (\partial_{k}f_{\infty})(\partial_{j}f_{\infty}) = (\partial_{k}\partial_{j}a_{\infty})/2,$$

 f_{∞} has property D. As $f_0 = a_0/(\sqrt{a} + \sqrt{a_{\infty}})$ and $f \ge \gamma$, f_0 has property D.

8.8.4. Proof of Lemma D

Since by (8.52) $\lambda_i(x, \omega/|\omega|)$ $(1 \le i \le s)$ has property D-1), we show first that it has property D-2). The coefficients of the polynomial $d(\lambda; x, \omega/|\omega|)$ are sums

of products of entries of $A(x, \omega/|\omega|)$, which have property D by Lemma C. Hence $\lambda_i(x, \omega/|\omega|) \in C[x, 0]$. Similarly we have $\lambda_{i\infty}(\omega/|\omega|) \in C[0]$. Put

(8.61)
$$q(\lambda; x, \omega/|\omega|) = D_{\lambda}^{p_i-1} d(\lambda; x, \omega/|\omega|) \qquad (D_{\lambda} = \partial/\partial\lambda),$$

(8.62)
$$q_{\infty}(\lambda; \omega/|\omega|) = D_{\lambda}^{p_i-1} d_{\infty}(\lambda; \omega/|\omega|), \qquad p = N - p_i.$$

Then $q(\lambda_i(x, \omega/|\omega|); x, \omega/|\omega|) = 0$, $q_{\infty}(\lambda_{i\infty}(\omega/|\omega|); \omega/|\omega|) = 0$ and by C-2) we have for $(x, \omega) \in S_{x0}$

$$(8.63) \qquad |D_{\lambda}q(\lambda_i(x,\,\omega/|\omega|);\,x,\,\omega/|\omega|)| = \prod_{k=1,\,k\neq i}^s |\lambda_i - \lambda_k|^{p_k} p_i! \ge p_i! \delta^p > 0,$$

$$(8.64) \qquad |D_{\lambda}q_{\infty}(\lambda_{i\infty}(\omega/|\omega|); \omega/|\omega|)| = \prod_{k=1, k\neq i}^{s} |\lambda_{i\infty} - \lambda_{k\infty}|^{p_{k}} p_{i}! \ge p_{i}!\delta^{p} > 0.$$

Hence by the implicit function theorem $\lambda_i(x, \omega/|\omega|)$ has partial derivatives $D_i\lambda_i$ and $\partial_i\lambda_i$ on S_{x0} , which can be written as

$$(8.65) D_l\lambda_i(x, \omega/|\omega|) = -[D_lq(\lambda; x, \omega/|\omega|)/D_\lambda q(\lambda; x, \omega/|\omega|)]_{\lambda=\lambda_l},$$

(8.66)
$$\partial_j \lambda_i(x, \omega/|\omega|) = -[\partial_j q(\lambda; x, \omega/|\omega|)/D_\lambda q(\lambda; x, \omega/|\omega|)]_{\lambda=\lambda_i}$$

Similarly $\lambda_{i\infty}(\omega/|\omega|)$ has a partial derivative $\partial_j \lambda_{i\infty}(\omega/|\omega|)$ on S_0 , which can be written as

$$(8.67) \qquad \partial_{j}\lambda_{i\infty}(\omega/|\omega|) = -[\partial_{j}q_{\infty}(\lambda; \omega/|\omega|)/D_{\lambda}q_{\infty}(\lambda; \omega/|\omega|)]_{\lambda=\lambda_{i\infty}}.$$

On the other hand by (8.61) and (8.62) $q(\lambda; x, \omega/|\omega|)$ and $q_{\infty}(\lambda; \omega/|\omega|)$ can be written as follows:

(8.68)
$$q(\lambda; x, \omega/|\omega|) = b\lambda^{p+1} + a_0(x, \omega/|\omega|)\lambda^p + \dots + a_p(x, \omega/|\omega|),$$

(8.69)
$$q_{\infty}(\lambda; \omega/|\omega|) = b\lambda^{p+1} + a_{0\infty}(\omega/|\omega|)\lambda^{p} + \dots + a_{p\infty}(\omega/|\omega|),$$

where b = N!/(p+1)!, a_t (t=0, 1,..., p) have property D and can be written as $a_t = a_{t0} + a_{t\infty}$. Hence by (8.63) and (8.65) $D_t \lambda_i(x, \omega/|\omega|) \in C[x, 0]$, because $\lambda_i(x, \omega/|\omega|) \in C[x, 0]$. By consideration of the successive derivatives of (8.65) with respect to $x_t D_t^m \lambda_{i0}(x, \omega/|\omega|)$ belongs to C[x, 0].

Since by (8.66) and (8.67) $\partial_j \lambda_i(x, \omega/|\omega|)$ and $\partial_j \lambda_{i\infty}(\omega/|\omega|)$ are continuous on S_{x0} , so is $\partial_j \lambda_{i0}(x, \omega/|\omega|)$. Calculating the successive derivatives of (8.66) with respect to x_i , we see that $D_l^m \partial_j \lambda_{i0}(x, \omega/|\omega|)$ is continuous on S_{x0} .

By consideration of the derivatives of (8.66) and (8.67) with respect to $\omega_k \partial_k \partial_j \lambda_i(x, \omega/|\omega|)$ and $\partial_k \partial_j \lambda_{i\infty}(\omega/|\omega|)$ are continuous on S_{x0} and on S_0 respectively. Hence $\partial_k \partial_j \lambda_{i0}(x, \omega/|\omega|)$ is continuous on S_{x0} . Similarly $D_i \partial_k \partial_j \lambda_{i0}(x, \omega/|\omega|)$ is continuous on S_{x0} . Thus $\lambda_i(x, \omega/|\omega|)$ has property D-2).

We prove that $\lambda_i(x, \omega/|\omega|)$ has property D-3). Put $q_i(x, \omega) = q(\lambda_{i\infty}(\omega/|\omega|);$

x, $\omega/|\omega|$). Then from (8.61) and (8.49) we have

(8.70)
$$q_i(x, \omega) = \lambda_{i0}(x, \omega/|\omega|)e_i(x, \omega),$$

where

 $e_i(x, \omega) = -\prod_{j=1, j \neq i}^s (\lambda_{i\infty} - \lambda_j)^{p_j} p_i! + \lambda_{i0} \tilde{q}(x, \omega)$

and $\tilde{q}(x, \omega)$ is a sum of products of $\lambda_{i\infty}$ and λ_t (t=1, 2, ..., s) which are bounded on S_{x0} . Hence there exists K > 0 such that

(8.71)
$$|e_i(x, \omega)| \ge (\delta/4)^p$$
 for $|x| \ge K$.

From (8.68) and (8.69) it follows that

(8.72)
$$q_i(x, \omega) = \sum_{t=0}^p a_{t0} \lambda_{i\infty}^{p-t}$$

and from (8.70)–(8.72) we have for $|x| \ge K$

(8.73)
$$|\lambda_{i0}(x, \omega/|\omega|)| \leq (\sum_{t=0}^{p} |a_{t0}| |\lambda_{i\infty}|^{p-t})/(\delta/4)^{p}$$

Since $\lambda_{i0}(x, \omega/|\omega|)$ and $a_{i0}(x, \omega/|\omega|)$ (t=0, 1, ..., p) belong to C[x, 0], $\sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} |\lambda_{i0}(x, \omega/|\omega|)|$ and $\sup_{\substack{\omega\neq 0 \\ |x| \leq K}} |a_{i0}(x, \omega/|\omega|)|$ (t=0, 1, ..., p) belong to M[x]. Put $c_i(x) = \sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} |\lambda_{i0}(x, \omega/|\omega|)|$. Then $\int_{|x| \leq K} c_i(x) dx < \infty$, and by (8.73) $\int_{|x| \geq K} c_i(x) dx < \infty$, because $\int \sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} |a_{i0}(x, \omega/|\omega|)| dx < \infty$ (t=0, 1, ..., p). Hence $c_i(x)$ is integrable. Since $D_i \lambda_{i0}(x, \omega/|\omega|) \in C[x, 0]$, we have $\sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} |D_i \lambda_{i0}(x, \omega/|\omega|)| \in M[x]$. As $\lambda_i(x, \omega/|\omega|)$ is bounded on S_{x0} , by (8.65) and (8.63) $\sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} |D_i \lambda_{i0}(x, \omega/|\omega|)|$ is integrable. By calculating the successive derivatives of (8.65) with respect to x_i , it can be

shown similarly that $\sup_{\omega \neq 0} |D_l^m \lambda_{i0}(x, \omega/|\omega|)|$ is bounded and integrable.

As $a_t(x, \omega/|\omega|)$ (t=0, 1,..., p) have property D, $\{\partial_j a_t(x, \omega/|\omega|)\} |\omega| \in C[x, 0]$ (t=0, 1,..., p) and by (8.66) and (8.63) $\{\partial_j \lambda_i(x, \omega/|\omega|)\} |\omega| \in C[x, 0]$. Similarly $\{\partial_j \lambda_{i\infty}(\omega/|\omega|)\} |\omega| \in C[0]$. Therefore $\sup_{\omega \neq 0} (|\partial_j \lambda_{i0}(x, \omega/|\omega|)| |\omega|) \in M[x]$ and $\sup_{\omega \neq 0} (|\partial_j \lambda_{i0}(x, \omega/|\omega|)| |\omega|) \in M[x]$

From (8.70) we have

(8.74)
$$\partial_j q_i(x, \omega) = (\partial_j \lambda_{i0}) e_i + \lambda_{i0} \partial_j e_i.$$

By D-3) $\sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} (|\partial_j a_{t0}(x, \omega/|\omega|)| |\omega|)$ and $\sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} |a_{t0}(x, \omega/|\omega|)| (t=0, 1, ..., p)$ are integrable. Hence from (8.72) it follows that $\sup_{\substack{\omega\neq 0 \\ \omega\neq 0}} (|\partial_j q_i(x, \omega)| |\omega|)$ is integrable. By (8.73) and (8.74) we have for $|x| \ge K$

$$|\partial_j \lambda_{i0}(x, \omega/|\omega|)| |\omega| \leq \{ |\partial_j q_i| |\omega| + |\lambda_{i0}| |\partial_j e_i| |\omega| \} / (\delta/4)^p,$$

so that $\sup_{\omega \neq 0} (|\partial_j \lambda_{i0}(x, \omega/|\omega|)| |\omega|)$ is integrable.

Calculating the successive derivatives of (8.74) with respect to x_i , we see that $\{D_i^q \partial_j \lambda_{i0}(x, \omega/|\omega|)\} |\omega| \in M[x, 0]$ and that $\sup_{\substack{\omega \neq 0 \\ \omega \neq 0}} (|D_i^q \partial_j \lambda_{i0}(x, \omega/|\omega|)| |\omega|)$ is integrable. Similarly it can be shown that $\sup_{\substack{\omega \neq 0 \\ \omega \neq 0}} (|D_i^r \partial_k \partial_j \lambda_{i0}(x, \omega/|\omega|)| |\omega|^2)$ is bounded and integrable and that $\sup_{\substack{\omega \neq 0 \\ \omega \neq 0}} (|\partial_k \partial_j \lambda_{i\infty}(\omega/|\omega|)| |\omega|^2)$ is finite. Hence $\lambda_i(x, \omega/|\omega|)$ has property D-3).

By (8.55) the entries of $C_i(x, \omega/|\omega|)$ have property D by Lemma C, because the entries of $B_i(\lambda_i; x, \omega/|\omega|)$ and $r_i(\lambda_i; x, \omega/|\omega|)$ are sums of products of $\lambda_i(x, \omega/|\omega|)$ and entries of $A(x, \omega/|\omega|)$. Hence the entries of $S(x, \omega/|\omega|)$ have property D.

8.9. Proof of Lemma 6.2

Let $S(x, \omega/|\omega|) = (s_{ij}(x, \omega))$ and

$$q_k(x, \omega) = \det \begin{bmatrix} s_{11} \cdots s_{1k} \\ \vdots & \vdots \\ s_{k1} \cdots s_{kk} \end{bmatrix} \qquad (k = 1, 2, \dots, N).$$

Since $S(x, \omega/|\omega|)$ is positive definite, it can be written as $S(x, \omega/|\omega|) = W^*W$, where $W(x, \omega) = (w_{ij})$ is an upper triangular matrix and

$$\begin{split} w_{ii} &= d_i = (q_i/q_{i-1})^{1/2} \quad (i = 1, 2, ..., N; q_0 = 1), \\ w_{ij} &= d_i u_{ij} \quad (j > i; i = 1, 2, ..., N-1), \\ u_{ij} &= (s_{ij} - \sum_{k=1}^{i-1} d_k^2 \bar{u}_{ki} u_{kj})/d_i^2. \end{split}$$

Put

$$w(x, \omega) = \begin{cases} W(x, s(\omega)) & \text{for } \omega \in S_z, \\ \sqrt{eI} & \text{for } \omega \in Z. \end{cases}$$

Then $g(x, \omega)$ can be written as (6.6).

As $S(x, \omega/|\omega|) \ge eI$, there exist positive constants c_j (j=1, 2, 3) such that

$$c_1 \leq q_k(x, \omega) \leq c_2, \quad c_3 \leq d_k(x, \omega) \quad (k = 1, 2, ..., N).$$

Since s_{ij} (i, j = 1, 2, ..., N) have property D by Lemma D, it follows that w_{ij} $(j \ge i; i = 1, 2, ..., N)$ have property D and as in the proof of Lemma 6.1 $w(x, \omega)$ satisfies VI.

Since det $w(x, \omega) \ge \min(\sqrt{c_1}, \sqrt{e}) > 0$, $w^{-1}(x, \omega)$ exists and satisfies VI. Hence $w(x, \omega)$ and $w^{-1}(x, \omega)$ belong to \mathscr{L} and fulfill Condition N by Lemmas 4.6 and 4.7.

8.10. Proof of Lemma 6.3

We construct first the matrix u which diagonalizes $p_z - i\lambda q|s|$ for $\omega \in S_z$. By regular hyperbolicity there exist a nonsingular matrix $w(x, \omega)$ and a real diagonal matrix $d(x, \omega)$ with the following

Property E. 1) w, w^{-1} and d satisfy Condition VI;

2) For some constant $e_0 > 0$

(8.75)
$$w^*(x, \omega)w(x, \omega) \ge e_0 I;$$

3) $d = w p_z w^{-1}$ for $\omega \in S_z^{(1)}$.

Put

$$e(x, \omega; \lambda) = w(p_z - i\lambda q|s|)w^{-1}.$$

Then by E-3) we have

(8.76)
$$e(x, \omega; \lambda) = d - \lambda |s|\tilde{q},$$

where $\tilde{q}(x, \omega; \lambda) = iwqw^{-1}$. Let $\tilde{q} = (\tilde{q}_{ij})$ and $d = \text{diag}(d_1, d_2, ..., d_N)$. By the condition of Theorem 6.7 and E-1) \tilde{q}_{ij} (i, j = 1, 2, ..., N) are bounded on $S_{x\omega} \times (0, \lambda_0]$. Hence for some λ_2 $(0 < \lambda_2 \le \lambda_0)$

(8.77)
$$\lambda |s| \sum_{j=1}^{N} |\tilde{q}_{kj}| \leq \delta/4 \quad (k = 1, 2, ..., N) \quad \text{for} \quad \lambda \leq \lambda_2,$$

and by C-2)

(8.78)
$$|d_i - d_j| \ge \delta$$
 for $\omega \in S_z$ $(i \ne j; i, j = 1, 2, ..., N)$

By Gershgorin's Theorem the eigenvalues $\mu_i(x, \omega; \lambda)$ (i=1, 2, ..., N) of $e(x, \omega; \lambda)$ can be numbered so that

$$|\mu_i - d_i| \leq \delta/4$$
 $(i = 1, 2, ..., N)$ for $\omega \in S_z$, $\lambda \leq \lambda_2$.

Therefore they are bounded on $S_{xz} \times (0, \lambda_2]$ and

(8.79)
$$|\mu_i - \mu_j| \ge \delta/2, \quad |\mu_i - d_j| \ge 3\delta/4 \quad \text{for} \quad \omega \in S_z, \quad \lambda \le \lambda_2$$

 $(i \ne j; i, j = 1, 2, ..., N).$

We construct an eigenvector of e corresponding to μ_i $(1 \le i \le N)$.

¹⁾ The construction of $w(x, \omega)$ is given in [11] and it follows as in the proof of Lemma 6.1 that $w(x, \omega)$ has property E.

From (8.76) we have

(8.80)
$$\prod_{j=1}^{N} (d_i - \mu_j) = \det \left\{ (d_i I - d) + \lambda |s|\tilde{q} \right\} = \lambda |s| y_i,$$

where $y_i(x, \omega; \lambda)$ is a sum of products of d_k , $\tilde{q}_{kl}(k, l=1, 2, ..., N)$ and $\lambda |s|$. Let

$$\phi_i(x,\,\omega;\,\lambda)=\prod_{j=1,\,j\neq i}^N (d_i-\mu_j).$$

Since by (8.79) $|\phi_i| \ge (3\delta/4)^{N-1}$ for $\lambda \le \lambda_2$, from (8.80) it follows that

(8.81)
$$d_i - \mu_i = \lambda |s| \varphi_i \quad \text{for} \quad \lambda \leq \lambda_2,$$

where $\varphi_i(x, \omega; \lambda) = y_i / \phi_i$.

Let $\Delta_{ij}(x, \omega; \lambda)$ (j=1, 2, ..., N) be the (i, j) cofactors of the matrix $\mu_i I - e$. Since

$$\mu_i I - e = (\mu_i - d_i)I + (d_i I - d) + \lambda |s|\tilde{q},$$

by (8.81) we have

$$\Delta_{ii} = \varepsilon_i + \lambda |s| v_{ii}, \quad \varepsilon_i(x, \omega; \lambda) = \prod_{j=1, j \neq i}^N (d_i - d_j),$$
$$\Delta_{ij} = \lambda |s| v_{ij} \qquad (j \neq i; j = 1, 2, ..., N),$$

where $v_{ij}(x, \omega; \lambda)$ (j = 1, 2, ..., N) are sums of products of $\lambda |s|, \varphi_i, d_k$ and \tilde{q}_{kl} (k, l = 1, 2, ..., N). Hence for some λ_3 $(0 < \lambda_3 \leq \lambda_2)$

(8.82)
$$\lambda |s| |v_{ii}| \leq \delta^{N-1}/2 \quad \text{for} \quad \lambda \leq \lambda_3.$$

Since by (8.78) $|\varepsilon_i| \ge \delta^{N-1}$, it follows that

(8.83)
$$|\operatorname{Re}(\Delta_{ii})| \ge \delta^{N-1}/2 \quad \text{for} \quad \lambda \le \lambda_3.$$

Hence $(\Delta_{i1}, \Delta_{i2}, ..., \Delta_{iN})^T$ is an eigenvector of *e* corresponding to μ_i .

We normalize this eigenvector and find its expression. Since ε_i is of constant sign, we may assume that $\varepsilon_i > 0$. Then $\varepsilon_i \ge \delta^{N-1}$ and by (8.82) $\operatorname{Re}(\Delta_{ii}) \ge \delta^{N-1}/2$ for $\lambda \le \lambda_3$. Setting $\Delta_i = (\sum_{k=1}^N |\Delta_{ik}|^2)^{1/2}$, we have

(8.84)
$$\Delta_i \ge \delta^{N-1}/2, \quad |\overline{\Delta}_{ii} + \Delta_i| \ge \delta^{N-1} \quad \text{for} \quad \lambda \le \lambda_3.$$

The vector $m_i = (m_{i1}, m_{i2}, ..., m_{iN})^T$ is defined as follows:

(8.85)
$$m_i(x, \omega; \lambda) = 0$$
 for $\omega \in \mathbb{Z}$,

(8.86)
$$m_{ii}(x, \omega; \lambda) = a_i/b_i$$
 for $\omega \in S_{zi}$

(8.87)
$$m_{ij}(x, \omega; \lambda) = v_{ij}/\Delta_i \quad (j \neq i) \quad \text{for } \omega \in S_z,$$

where

Hisayoshi SHINTANI and Kenji TOMOEDA

$$\begin{aligned} a_i(x,\,\omega;\,\lambda) &= \Delta_i(v_{ii} - \bar{v}_{ii}) - \lambda |s|\eta_i, \quad \eta_i = \sum_{k=1,\,k\neq i}^N |v_{ik}|^2, \\ b_i(x,\,\omega;\,\lambda) &= \Delta_i(\bar{\Delta}_{ii} + \Delta_i). \end{aligned}$$

Then

(8.88)
$$\Delta_{ii}/\Delta_i = 1 + \lambda |s| m_{ii} \quad \text{for} \quad \omega \in S_z,$$

(8.89)
$$\Delta_{ij}/\Delta_i = \lambda |s| m_{ij} \quad (j \neq i) \quad \text{for} \quad \omega \in S_z.$$

Hence $\sigma_i + \lambda |s| m_i$ is a normalized eigenvector of *e* corresponding to μ_i , where σ_i is the *i*-th column vector of *I*.

We define matrices $m(x, \omega; \lambda)$, $\Lambda(x, \omega; \lambda)$ and $t(x, \omega; \lambda)$ as follows:

$$m = (m_1, m_2, ..., m_N), \Lambda = \text{diag}(\mu_1, \mu_2, ..., \mu_N),$$

(8.90)
$$t = I + \lambda |s| m \quad \text{for} \quad \lambda \leq \lambda_3.$$

Then

(8.91)
$$et = t\Lambda$$
 for $\omega \in S_z$, $\lambda \leq \lambda_3$.

Since by (8.84)-(8.87) $m(x, \omega; \lambda)$ is bounded on $S_{x\omega} \times (0, \lambda_3]$, we have for some λ_4 ($0 < \lambda_4 \leq \lambda_3$)

$$(8.92) |det t| \ge 1/2 for \lambda \le \lambda_4.$$

Hence t^{-1} exists for $\lambda \leq \lambda_4$ and is bounded on $S_{x\omega} \times (0, \lambda_4]$. From (8.90) and (8.91) it follows that

(8.93)
$$\Lambda = t^{-1}et \quad \text{for} \quad \lambda \leq \lambda_4,$$

(8.94)
$$t^{-1} = I - \lambda |s| t^{-1} m.$$

Therefore for some λ_1 (0 < $\lambda_1 \leq \lambda_4$)

(8.95)
$$(t^{-1})^* t^{-1} \ge (1/2)I \quad \text{for} \quad \lambda \le \lambda_1.$$

Let $u(x, \omega; \lambda) = t^{-1}w$. Then from (8.93)

(8.96)
$$\Lambda = u(p_z - i\lambda q|s|)u^{-1} \quad \text{for} \quad \omega \in S_z, \quad \lambda \leq \lambda_1,$$

so that u transforms $p_z - i\lambda q|s|$ into a diagonal matrix.

We show that u has properties of Lemma 6.3. By (8.75) and (8.95) we have

 $u^*u \ge (e_0/2)I$ for $(x, \omega) \in S_{x\omega}$, $\lambda \le \lambda_1$,

and so u has property iii).

By the argument similar to that in 8.9 t and t^{-1} satisfy VI and belong to \mathcal{L} .

Hence by E-1) and Lemma 4.4 u and u^{-1} belong to \mathscr{L} and by Lemmas 4.7 and 3.4 satisfy conditions of Theorem 3.3.

By (8.76), (8.90), (8.93) and (8.94) we have

(8.97)
$$\Lambda = t^{-1}et = d + \lambda |s|f,$$

where $f = dm - t^{-1}mdt - t^{-1}\tilde{q}t$. Since Λ and d are diagonal, so is f. It is clear that $f \in \mathscr{L}$. Thus by (8.96) and (8.97) u has property iv).

References

- [1] N. Bourbaki, Théories spectrales, Hermann, Paris, 1967.
- [2] D. Dunford and J. T. Schwartz, *Linear operators*, Part I, Interscience, New York, 1958.
- [3] K. O. Friedrichs, *Pseudo-differential operators*, Lecture notes, Courant Inst. Math. Sci., New York Univ., 1968.
- [4] Y. Kametaka, On the stability of finite difference schemes which approximate regularly hyperbolic systems with nearly constant coefficients, Publ. RIMS, Kyoto Univ., Ser. A, 4 (1968), 1–12.
- [5] H.O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math., 17 (1964), 335–353.
- [6] H. Kumano-go, Pseudo differential operators and the uniqueness of the Cauchy problem, Ibid., 22 (1969), 73–129.
- [7] P. D. Lax, On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients, Ibid., 14 (1961), 497–520.
- [8] P. D. Lax and B. Wendroff, On the stability of difference schemes, Ibid., 15 (1962), 363-371.
- [9] P. D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Ibid., 17 (1964), 381-398.
- [10] P. D. Lax and L. Nirenberg, On stability for difference schemes; a sharp form of Gårding's inequality, Ibid., 19 (1966), 473-492.
- [11] S. Mizohata, *The theory of partial differential equations*, Cambridge Univ. Press, Cambridge, 1973.
- [12] B. Parlett, Accuracy and dissipation in difference schemes, Comm. Pure Appl. Math., 19 (1966), 111-123.
- J. Peetre and V. Thomée, On the rate of convergence for discrete initial-value problems, Math. Scand., 21 (1967), 159–176.
- [14] R. D. Richtmyer and K. W. Morton, *Difference methods for initial-value problems*, Interscience, New York, 1967.
- [15] V. Thomée, Stability theory for partial difference operators, SIAM Rev., 11 (1969), 152–195.
- [16] R. Vaillancourt, A strong form of Yamaguti and Nogi's stability theorem for Friedrichs' scheme, Publ. RIMS, Kyoto Univ., 5 (1969), 113–117.
- [17] R. Vaillancourt, On the stability of Friedrichs' scheme and the modified Lax-Wendroff scheme, Math. Comp., 24 (1970), 767–770.
- [18] R. Vaillancourt, A simple proof of Lax-Nirenberg theorems, Comm. Pure Appl. Math., 23 (1970), 151–163.

- [19] M. Yamaguti, Some remarks on the Lax-Wendroff finite-difference scheme for nonsymmetric hyperbolic systems, Math. Comp., 21 (1967), 611-619.
- M. Yamaguti and T. Nogi, An algebra of pseudo difference schemes and its application, Publ. RIMS, Kyoto Univ., Ser A, 3 (1967), 151-166.

Department of Mathematics, Faculty of Science, Hiroshima University