Stability of Difference Schemes for Nonsymmetric
 Linear Hyperbolic Systems with
 Variable Coefficients

Hisayoshi Shintani and Kenji Tomoeda

(Received September 20, 1976)

1. Introduction

Let us consider the Cauchy problem for a hyperbolic system

$$
\begin{array}{cl}
\frac{\partial u}{\partial t}(x, t)=\sum_{j=1}^{n} A_{j}(x) \frac{\partial u}{\partial x_{j}}(x, t) & \left(0 \leqq t \leqq T,-\infty<x_{j}<\infty\right), \\
u(x, 0)=u_{0}(x), & u_{0}(x) \in L_{2}, \tag{1.2}
\end{array}
$$

where $u(x, t)$ and $u_{0}(x)$ are N-vectors and $A_{j}(x)(j=1,2, \ldots, n)$ are $N \times N$ matrices, and assume that this problem is well posed. For the numerical solution of this problem we consider the difference scheme

$$
\begin{gather*}
v(x, t+k)=S_{h}(x, h) v(x, t) \quad\left(0 \leqq t \leqq T,-\infty<x_{j}<\infty\right), \tag{1.3}\\
v(x, 0)=u_{0}(x), \quad k=\lambda h, \tag{1.4}
\end{gather*}
$$

and study the stability of the scheme in the sense of Lax-Richtmyer, where $S_{h}(x, h)$ is a difference operator and h is a space mesh width.

The stability of schemes for symmetric hyperbolic systems was studied by Lax [7], Lax and Wendroff [8, 9], Kreiss [5] and Parlett [12] in the case

$$
\begin{equation*}
S_{h}(x, h)=\sum_{\alpha} c_{\alpha}(x, h) T_{h}^{\alpha}, \tag{1.5}
\end{equation*}
$$

where α is a multi-index, c_{α} is an $N \times N$ matrix and T_{h} is the translation operator.
The stability for nonsymmetric hyperbolic systems was treated first by Yamaguti and Nogi [20]. They defined a family of bounded linear operators in L_{2} associated with an $N \times N$ matrix $k(x, \omega)$ which is homogeneous of degree zero in ω, is independent of x for $|x| \geqq R(R>0)$ and belongs to $C^{\infty}\left(R_{x}^{n} \times\left(R_{\omega}^{n}\right.\right.$ $-\{0\})$). They studied the properties of the algebra of such families and applied the results to the investigation of the stability of Friedrichs' scheme under the assumption: The system (1.1) is regularly hyperbolic and $A_{j}(x)(j=1,2, \ldots, n)$ are independent of x for $|x| \geqq R$ and belong to C^{∞}. Under the same assumption, Vaillancourt $[16,17]$ obtained an improved stability condition for Friedrichs' scheme and a condition for the modified Lax-Wendroff scheme; Kametaka [4]
treated the regularly hyperbolic systems with nearly constant coefficients.
In this paper we are concerned with the nonsymmetric hyperbolic systems that satisfy the conditions: Eigenvalues of $A(x, \xi)=\sum_{j=1}^{n} A_{j}(x) \xi_{j}| | \xi \mid(\xi \neq 0)$ are all real and their multiplicities are independent of x and ξ; elementary divisors of $A(x, \xi)$ are all linear; there exists a constant $\delta>0$ such that

$$
\left|\lambda_{i}(x, \xi)-\lambda_{j}(x, \xi)\right| \geqq \delta \quad(i \neq j ; i, j=1,2, \ldots, n),
$$

where $\lambda_{i}(x, \xi)(i=1,2, \ldots, s)$ are all the distinct eigenvalues of $A(x, \xi)$.
We consider the case where $S_{h}(x, h)$ is a sum of products of operators of the form (1.5). Our proof of stability is based on the following result: If $S_{h}(x, h)$ and $S_{h}(x, 0)$ are the families of bounded linear operators in L_{2} and if there exist positive constants c_{0} and c_{1} and a norm $\|\|\cdot\|\|$ equivalent to the L_{2}-norm $\|\cdot\|$ such that

$$
\begin{gather*}
\left\|S_{h}(x, 0) u\right\| \leqq\left(1+c_{0} h\right)\|u\|, \tag{1.6}\\
\left\|\left(S_{h}(x, h)-S_{h}(x, 0)\right) u\right\| \leqq c_{1} h\|u\| \quad \text { for all } \quad u \in L_{2}, \quad h>0, \tag{1.7}
\end{gather*}
$$

then the scheme (1.3) is stable.
To construct such a norm $\|\|\cdot\|$, after Friedrichs [3] and Kumano-go [6] we introduce a family of bounded linear operators in L_{2} associated with an $N \times N$ matrix $p(x, \omega)$ such that

$$
p(x, \omega)=p_{0}(x, \omega)+p_{\infty}(\omega), \quad \lim _{|x| \rightarrow \infty} p_{0}(x, \omega)=0 \quad \text { for each } \quad \omega \in R^{n}
$$

and the Fourier transform of $p_{0}(x, \omega)$ with respect to x satisfies some conditions. We construct an algebra \mathscr{K}_{h} of such families and show an analogue of LaxNirenberg Theorem [10] for elements of \mathscr{K}_{h} in order to obtain sufficient conditions under which (1.6) holds.

Taking the properties of \mathscr{K}_{h} into consideration, in Section 5 we construct an algebra of difference operators $S_{h}(x, h)$ for which (1.7) holds and in Section 6 the stability of the schemes with elements of this algebra is studied. For instance Vaillancourt's result is valid under the assumption:

$$
A_{j}(x)=A_{j 0}(x)+A_{j \infty}, \lim _{|x| \rightarrow \infty} A_{j 0}(x)=0 \quad(j=1,2, \ldots, n)
$$

and $\left(\partial^{m} / \partial x_{k}^{m}\right) A_{j 0}(x)(j, k=1,2, \ldots, n ; m=0,1, \ldots, n+3)$ are bounded, continuous and integrable.

In Section 7 some examples of the schemes are given. Lemmas and theorems stated without proof are proved in the last section.

2. Notations and preliminaries

2.1. Notations

Let \boldsymbol{C} be the field of complex numbers. Let \bar{c} and c^{*} stand for the conjugate and the conjugate transpose of a matrix c respectively. We denote by $|a|$, $|z|$ and $\rho(a)$ the spectral norm of an $N \times N$ matrix a, the Euclidean norm of an N-vector z and the spectral radius of a respectively. For any hermitian matrices a and b we use the notation $a \geqq b$ if $a-b$ is positive semi-definite.

We denote by R^{n} the real n-space and write it as $R_{x}^{n}, R_{\omega}^{n}$, etc. to specify its space variables. Unless otherwise stated, we denote by $u(x), \varphi(x)$, etc. the N-vector functions defined on R^{n}.

The space $L_{p}(p \geqq 1)$ consists of all measurable functions $u(x)$ in R^{n} such that $|u(x)|^{p}$ is integrable, i.e. $\int|u(x)|^{p} d x<\infty$, where two functions are identified if they coincide almost everywhere. The scalar product and the norm in L_{2} are denoted by (,) and $\|\cdot\|$ respectively.

Let \mathscr{S} be the space of all C^{∞} functions on R^{n} which, together with all their derivatives, decrease faster than any negative power of $|x|$ as $|x| \rightarrow \infty$. We denote by $\hat{u}(\xi)\left(\xi \in R^{n}\right)$ the Fourier transform of $u(x)$. For each $\varphi(x)$ in $\mathscr{S}, \hat{\varphi}(\xi)$ can be written as follows:

$$
\hat{\varphi}(\xi)=\kappa \int e^{-i x \cdot \xi} \varphi(x) d x \quad \text { for all } \quad \varphi \in \mathscr{S},
$$

where

$$
\begin{equation*}
\kappa=(2 \pi)^{-n / 2}, \quad x \cdot \xi=\sum_{j=1}^{n} x_{j} \xi_{j} . \tag{2.1}
\end{equation*}
$$

We denote by $\hat{p}(\xi, \omega)$ the Fourier transform of $p(x, \omega)$ with respect to x and by $a * b(x)$ the convolution $\int a(x-t) b(t) d t$ of two measurable functions $a(x)$ and $b(x)$.

For simplicity we make use of the notations

$$
D_{l}=\frac{\partial}{\partial x_{l}}, \partial_{j}=\frac{\partial}{\partial \omega_{j}} .
$$

We denote by $\sup _{\omega \neq 0} u(x, \omega)$ and $\sup _{\omega \neq z} u(x, \omega)$ the supremum of $u(x, \omega)$ on $R_{\omega}^{n}-\{0\}$ and that on $R_{\omega}^{n}-Z$ for each fixed x in R^{n} respectively.

Let S^{n-1} be the unit spherical surface in R_{ω}^{n}, and let $\omega^{\prime}=\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}, \ldots, \omega_{n}^{\prime}\right)$ denote a point on S^{n-1}. Then we have $\left|\omega^{\prime}\right|=1$.

We say that $l(\chi, \omega)$ is absolutely continuous with respect to ω_{k}, if it is so on any finite closed interval for each fixed χ and $\omega_{j}(j=1,2, \ldots, n ; j \neq k)$. We say that a scalar function $c(x, \omega)$ satisfies conditions imposed on matrix functions, if $c(x, \omega) I$ does.

2.2. The difference approximations

We consider a mesh imposed on (x, t)-space with a spacing of h in each x_{j} direction $(j=1,2, \ldots, n)$ and a spacing of k in the t-direction. The ratio $\lambda=k / h$ is to be kept constant as h varies. We approximate (1.1) and (1.2) by the difference scheme of the form:

$$
\begin{gather*}
v(x, t+k)=S_{h}(x, h) v(x, t) \quad(0 \leqq t \leqq T), \tag{2.2}\\
v(x, 0)=u_{0}(x) \tag{2.3}
\end{gather*}
$$

where

$$
\begin{gather*}
S_{h}(x, h)=\sum_{m} \prod_{j=1}^{v} C_{m_{j}}(x, h, T), \quad m=\left(m_{1}, m_{2}, \ldots, m_{v}\right), \tag{2.4}\\
C_{m_{j}}(x, h, T)=\sum_{\alpha} c_{\alpha m_{j}}(x, h) T_{h}^{\alpha}, \quad \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \tag{2.5}\\
T_{h}^{\alpha}=T_{1 h}^{\alpha_{1}} T_{2 h}^{\alpha \alpha_{2}} \cdots T_{n h}^{\alpha_{n}}, T_{j h} u(x)=u\left(x_{1}, \ldots, x_{j-1}, x_{j}+h, x_{j+1}, \ldots, x_{n}\right), \tag{2.6}
\end{gather*}
$$

$m_{j}\left(m_{j} \geqq 0 ; j=0,1, \ldots, v\right)$ and $\alpha_{j}(j=1,2, \ldots, n)$ are integers and $c_{\alpha m}(x, h)$'s are $N \times N$ matrices.

We approximate the partial differential operator $h D_{j}(1 \leqq j \leqq n)$ by the difference operator $\Delta_{j h}$ of the form

$$
\begin{equation*}
\Delta_{j h}=\sum_{l} b_{l}\left(T_{j h}^{l}-T_{j h}^{-l}\right) / 2 \tag{2.7}
\end{equation*}
$$

where the summation is over a finite set of $l(l \geqq 0)$ and b_{l} 's are real constants. We put

$$
\begin{gather*}
s_{j}(\omega)=\sum_{l} b_{l} \sin l \omega_{j} \quad(j=1,2, \ldots, n), \tag{2.8}\\
s(\omega)=\left(s_{1}(\omega), s_{2}(\omega), \ldots, s_{n}(\omega)\right),
\end{gather*}
$$

and assume that for some positive integer $r s_{j}(\omega)$ can be written as follows:

$$
\begin{equation*}
s_{j}(\omega)=\omega_{j}+O\left(\left|\omega_{j}\right|^{r+1}\right) \quad\left(\left|\omega_{j}\right| \leqq \pi\right) \tag{2.9}
\end{equation*}
$$

From (2.9) it follows that for all $u \in \mathscr{S}$

$$
\Delta_{j h} u(x)=h D_{j} u(x)+O\left(h^{r+1}\right) \quad \text { as } \quad h \rightarrow 0 \quad(j=1,2, \ldots, n) .
$$

For example the following difference operators are well known:

$$
\begin{gather*}
F_{h}(x)=C_{h}+\lambda P_{h}, \tag{2.10}\\
M_{h}(x)=I+\lambda P_{h}\left(C_{h}+\lambda P_{h} / 2\right), \tag{2.11}
\end{gather*}
$$

where

$$
\begin{gather*}
P_{h}=\sum_{j=1}^{n} A_{j}(x) \Delta_{j h}, \quad C_{h}=(1 / n) \sum_{j=1}^{n}\left(T_{j h}+T_{j h}^{-1}\right) / 2 \tag{2.12}\\
\Delta_{j h}=\left(T_{j h}-T_{j h}^{-1}\right) / 2 \quad(j=1,2, \ldots, n)
\end{gather*}
$$

The schemes (2.2) with operators (2.10) and (2.11) are called Friedrichs' scheme and the modified Lax-Wendroff scheme respectively.

We say that the difference scheme (2.2) approximates (1.1) with accuracy of order p [13, 15] if all smooth solutions u of (2.1) satisfy

$$
\begin{equation*}
\left|u(x, t+k)-S_{h}(x, h) u(x, t)\right|=O\left(h^{p+1}\right) \quad(h \rightarrow 0) \tag{2.13}
\end{equation*}
$$

In the sequel we consider only the schemes with $p \geqq 1$.
The difference scheme is said to be stable in the sense of Lax-Richtmyer if for any $T>0$ there exists a constant $M(T)$ such that

$$
\begin{equation*}
\left\|S_{h}^{\nu} u\right\| \leqq M(T)\|u\| \tag{2.14}
\end{equation*}
$$

for all $u \in L_{2}$ and for all $h>0$ and integers $v \geqq 0$ satisfying $0 \leqq v k \leqq T$, where $M(T)$ is a function of T but is independent of h. Since S_{h} is a family of bounded linear operators in L_{2} depending on h, we have to investigate the boundedness of powers of such families of operators.

Let \mathscr{H}_{h} be the set of all families of bounded linear operators H_{h} that maps L_{2} into itself and depends on a parameter $h>0$ and such that

$$
\begin{equation*}
\left\|H_{h} u\right\| \leqq c(h)\|u\| \quad \text { for all } \quad u \in L_{2}, \quad h>0 \tag{2.15}
\end{equation*}
$$

where $c(\mu)$ is a continuous function on $[0, \infty)$.
For two families K_{h} and L_{h} of \mathscr{H}_{h} we use the notation $K_{h} \equiv L_{h}$ if there exists a constant c such that

$$
\begin{equation*}
\left\|\left(K_{h}-L_{h}\right) u\right\| \leqq c h\|u\| \quad \text { for all } \quad u \in L_{2}, \quad h>0 \tag{2.16}
\end{equation*}
$$

Then we have the following
Theorem 2.1. Let $L_{h} \in \mathscr{H}_{h}$ and suppose there exist a constant c_{0} and a norm $||\cdot|| \mid$ equivalent to the L_{2}-norm such that

$$
\begin{equation*}
\left\|L_{h} u\right\| \leqq\left(1+c_{0} h\right)\|u\| \quad \text { for all } \quad u \in L_{2}, \quad h>0 . \tag{2.17}
\end{equation*}
$$

Then for any $T>0$ there exists a constant $M(T)$ such that

$$
\begin{equation*}
\left\|L_{h}^{v} u\right\| \leqq M(T)\|u\| \quad \text { for all } \quad u \in L_{2}, \quad 0 \leqq v k \leqq T \tag{2.18}
\end{equation*}
$$

Proof. By the assumption there exist positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
c_{1}\|u\| \leqq\|u\| \leqq c_{2}\|u\| \quad \text { for all } \quad u \in L_{2} . \tag{2.19}
\end{equation*}
$$

From (2.17) it follows that

$$
\left\|L_{h}^{\nu} u\right\| \leqq\left(1+c_{0} h\right)^{v}\|u\| \quad \text { for all } \quad u \in L_{2}, \quad h>0
$$

so that by (2.19) we have

$$
c_{1}\left\|L_{h}^{v} u\right\| \leqq\left\|L_{h}^{v} u\right\| \leqq c_{3}\|u\|\left\|\leqq c_{2} c_{3}\right\| u \|,
$$

where $c_{3}=\exp \left(c_{0} T / \lambda\right)$. From this (2.18) follows with $M=c_{2} c_{3} / c_{1}$.
Corollary 2.1. For any $S_{h} \in \mathscr{H}_{h}$ let $L_{h} \in \mathscr{H}_{h}$ be a family such that $L_{h} \equiv S_{h}$ and which satisfies the assumption of the theorem. Then for any $T>0$ there exists a constant $M(T)$ such that

$$
\begin{equation*}
\left\|S_{h}^{v} u\right\| \leqq M(T)\|u\| \quad \text { for all } \quad u \in L_{2}, \quad 0 \leqq v k \leqq T . \tag{2.20}
\end{equation*}
$$

Proof. Since for some constant c_{4}

$$
\left\|\left(L_{h}-S_{h}\right) u\right\| \leqq c_{4} h\|u\| \quad \text { for all } \quad u \in L_{2}, \quad h>0
$$

by (2.17) and (2.19) we have

$$
\begin{aligned}
\left\|S_{h} u\right\| \| & \leqq\left\|L_{h} u\right\|+\left\|\left(S_{h}-L_{h}\right) u\right\| \\
& \leqq\left\|L_{h} u\right\|+c_{2} c_{4} h\|u\| \\
& \leqq\left(1+c_{5} h\right)\|u\|,
\end{aligned}
$$

where $c_{5}=c_{0}+c_{2} c_{4} / c_{1}$. Hence (2.17) is satisfied and (2.20) follows from the theorem.

By Theorem 2.1 and its corollary, in proving the stability of the scheme (2.2), the problem is to find a norm $\left\|\|\cdot\|\right.$ and a family $L_{h} \in \mathscr{H}_{h}$ such that $L_{h} \equiv S_{h}(x, h)$ in order to establish (2.17).

Now we study the algebraic structure of \mathscr{H}_{h}. For $A_{h}, B_{h} \in \mathscr{H}_{h}$ and $\alpha \in \boldsymbol{C}$ let $A_{h}+B_{h}, A_{h} B_{h}$ and αA_{h} be defined by

$$
\left(A_{h}+B_{h}\right) u=A_{h} u+B_{h} u, \quad .\left(A_{h} B_{h}\right) u=A_{h}\left(B_{h} u\right), \quad\left(\alpha A_{h}\right) u=\alpha\left(A_{h} u\right) .
$$

Then \mathscr{H}_{h} is an algebra over \boldsymbol{C} with unit element I_{h}. Since the adjoint A_{h}^{*} of a family A_{h} also belongs to \mathscr{H}_{h}, the operation * is an involution in \mathscr{H}_{h} and \mathscr{H}_{h} is an algebra with involution [2].

3. One-parameter families of operators

3.1. Definitions

We introduce the set \mathscr{K} consisting of all $N \times N$ matrix functions $p(x, \omega)$ defined on $R_{x}^{n} \times R_{\omega}^{n}$ with the properties:

1) $p(x, \omega)$ can be written as

$$
p(x, \omega)=p_{0}(x, \omega)+p_{\infty}(\omega),
$$

where $p_{0}(x, \omega)$ and $p_{\infty}(\omega)$ are bounded and measurable on $R_{x}^{n} \times R_{\omega}^{n}$ and on R_{ω}^{n} respectively, and $\lim _{|x| \rightarrow \infty} p_{0}(x, \omega)=0$ for each $\omega \in R^{n}$;
2) $p_{0}(x, \omega)$ is integrable as a function of x for each $\omega \in R^{n}$;
3) The Fourier transform $\hat{p}_{0}(\chi, \omega)$ of $p_{0}(x, \omega)$ is integrable as a function of χ for each $\omega \in R^{n}$ and ess ${ }_{\omega} \sup \left|\hat{p}_{0}(\chi, \omega)\right|$ is integrable.
(Two elements of \mathscr{K} are identified if they coincide almost everywhere.)
The element $p(x, \omega)$ of \mathscr{K} has the Fourier transform $\hat{p}(\chi, \omega)$ in the sense of distributions, which can be written as follows:

$$
\begin{equation*}
\hat{p}(\chi, \omega)=\hat{p}_{0}(\chi, \omega)+\delta(\chi) p_{\infty}(\omega), \tag{3.1}
\end{equation*}
$$

where $\delta(\chi)$ is the delta function. We define $\|\hat{p}\|_{F}$ by

$$
\begin{equation*}
\|\hat{p}\|_{F}=\int \operatorname{ess} \cdot \sup \left|\hat{p}_{0}(\chi, \omega)\right| d \chi+\underset{\omega}{\operatorname{ess}} \cdot \sup \left|p_{\infty}(\omega)\right| \tag{3.2}
\end{equation*}
$$

In the following for simplicity we often omit x, ω and χ from $p(x, \omega), \hat{p}(\chi, \omega)$, $u(x), u(\omega)$, etc., when no confusion can arise.

We introduce into \mathscr{K} matrix addition, matrix multiplication, scalar multiplication and conjugate transposition. Then we have

Lemma 3.1. If $p, q \in \mathscr{K}$ and $\alpha \in \boldsymbol{C}$, then $p+q, p q, \alpha p, p^{*} \in \mathscr{K}$ and

$$
\begin{align*}
& \|\widehat{p+q}\|_{F} \leqq\|\hat{p}\|_{F}+\|\hat{q}\|_{F}, \quad\|\widehat{\alpha p}\|_{F}=|\alpha|\|\hat{p}\|_{F}, \quad\left\|\widehat{p^{*}}\right\|_{F}=\|\hat{p}\|_{F} \tag{3.3}\\
& \|\widehat{p q}\|_{F} \leqq\|\hat{p}\|_{F}\|\hat{q}\|_{F} \tag{3.4}
\end{align*}
$$

Proof. It suffices to show that $p q \in \mathscr{K}$ and (3.4) holds. Put $d=p q$. Then d can be written as $d=d_{0}+d_{\infty}$, where

$$
d_{0}=p_{0} q_{0}+p_{0} q_{\infty}+p_{\infty} q_{0}, \quad d_{\infty}=p_{\infty} q_{\infty}
$$

By definition d satisfies conditions 1) and 2) of \mathscr{K}, and $\hat{d}_{0}(\chi, \omega)$ can be written as

$$
\begin{equation*}
d_{0}(\chi, \omega)=\hat{p}_{0} * \hat{q}_{0}+\hat{p}_{0} q_{\infty}+p_{\infty} \hat{q}_{0} \tag{3.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left|\hat{d}_{0}(\chi, \omega)\right| \leqq\left|\hat{p}_{0} * \hat{q}_{0}\right|+\left|\hat{p}_{0}\right|\left|q_{\infty}\right|+\left|p_{\infty}\right|\left|\hat{q}_{0}\right| \tag{3.6}
\end{equation*}
$$

integrating (3.6) with respect to χ and applying Young's Theorem, we have

$$
\begin{aligned}
\int\left|\hat{d}_{0}(\chi, \omega)\right| d \chi \leqq & \int\left|\hat{p}_{0}(\chi, \omega)\right| d \chi \int\left|\hat{q}_{0}(\chi, \omega)\right| d \chi \\
& +\left|q_{\infty}(\omega)\right| \int\left|\hat{p}_{0}(\chi, \omega)\right| d \chi+\left|p_{\infty}(\omega)\right| \int\left|\hat{q}_{0}(\chi, \omega)\right| d \chi .
\end{aligned}
$$

Hence $\hat{d}_{0}(\chi, \omega)$ is integrable as a function of χ for each ω.
Taking the essential suprema of both sides of (3.6) over R_{ω}^{n} and integrating them with respect to χ, we have

$$
\left\|\hat{d}_{0}\right\|_{F} \leqq\left\|\hat{p}_{0}\right\|_{F}\left\|\hat{q}_{0}\right\|_{F}+\left(\underset{\omega}{\text { ess. } \left.\sup \left|q_{\infty}\right|\right)}\left\|\hat{p}_{0}\right\|_{F}+\left(\underset{\omega}{\text { ess } \left.\cdot \sup \left|p_{\infty}\right|\right)\left\|\hat{q}_{0}\right\|_{F} . ~ . ~}\right.\right.
$$

Therefore d_{0} satisfies condition 3) of \mathscr{K} and the proof is complete.
By this lemma \mathscr{K} forms an algebra with involution over \boldsymbol{C}.
To define a family of operators associated with $p \in \mathscr{K}$, we show the following

Lemma 3.2. Let $p \in \mathscr{K}$ and $u \in \mathscr{S}$. Then

$$
\begin{equation*}
\left\|\int \hat{p}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}\right\| \leqq\|\hat{p}\|_{F}\|\hat{u}\| \quad \text { for } \quad h>0, \tag{3.7}
\end{equation*}
$$

and for almost all x

$$
\begin{align*}
& \text { 1.i.m. } \kappa^{-1} \int e^{i x \cdot \xi} \int \hat{p}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d \xi \tag{3.8}\\
& =\kappa^{-1} \int e^{i x \cdot \xi} p(x, h \xi) \hat{u}(\xi) d \xi \quad \text { for } \quad h>0 .
\end{align*}
$$

Proof. For simplicity put

$$
\begin{gathered}
r_{0}(\chi)=\underset{\omega}{\text { ess. }} \sup \left|\hat{p}_{0}(\chi, \omega)\right|, \quad r_{\infty}=\underset{\omega}{\operatorname{ess} \cdot \sup }\left|p_{\infty}(\omega)\right|, \\
v(\xi, h)=\int \hat{p}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}
\end{gathered}
$$

Then for almost all ξ

$$
\begin{equation*}
|v(\xi, h)| \leqq r_{\infty}|\hat{u}(\xi)|+\int r_{0}\left(\xi-\xi^{\prime}\right)\left|\hat{u}\left(\xi^{\prime}\right)\right| d \xi^{\prime} \tag{3.9}
\end{equation*}
$$

Integrating (3.9) with respect to ξ and changing the order of integration, we have

$$
\begin{equation*}
\int|v(\xi, h)| d \xi \leqq\|\hat{p}\|_{F} \int|\hat{u}(\xi)| d \xi \quad \text { for } \quad h>0 . \tag{3.10}
\end{equation*}
$$

Since by Young's Theorem

$$
\left\|\int r_{0}\left(\xi-\xi^{\prime}\right)\left|\hat{u}\left(\xi^{\prime}\right)\right| d \xi^{\prime}\right\| \leqq \int r_{0}(\chi) d \chi\|\hat{u}\|,
$$

from (3.9) it follows that

$$
\|v\| \leqq r_{\infty}\|\hat{u}\|+\int r_{0}(\chi) d \chi\|\hat{u}\|=\|\hat{p}\|_{F}\|\hat{u}\|
$$

which shows (3.7).
By (3.7) and (3.10) $v(\xi, h)$ belongs to L_{1} and to L_{2} as a function of ξ for each fixed $h>0$. Therefore the inverse Fourier transform of $v(\xi, h)$ in L_{1} and that in L_{2} coincide almost everywhere on R_{x}^{n} and

$$
\text { 1.i.m. } \kappa^{-1} \int e^{i x \cdot \xi} v(\xi, h) d \xi=\kappa^{-1} \int e^{i x \cdot \xi} v(\xi, h) d \xi
$$

for almost all x. By the change of order of integration we have for almost all x

$$
\kappa^{-1} \int e^{i x \cdot \xi} v(\xi, h) d \xi=\kappa^{-1} \int e^{i x \cdot \xi} p(x, h \xi) \hat{u}(\xi) d \xi
$$

Thus (3.8) holds and the proof is complete.
With each $p \in \mathscr{K}$ we associate a one-parameter family of operators P_{h} by the formula:

$$
\begin{align*}
& P_{h} u(x)=\text { 1.i.m. } \kappa^{-1} \int e^{i x \cdot \xi} \int \hat{p}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d \xi \tag{3.11}\\
& \qquad \text { for all } u \in \mathscr{S}, h>0 .
\end{align*}
$$

Then by (3.7) P_{h} is a family of bounded linear operators from \mathscr{S} into L_{2}. Hence it can be extended to the closure $\overline{\mathscr{S}}=L_{2}$ with preservation of norm and the extension is unique. Denoting this extension of P_{h} again by P_{h}, we call P_{h} the family (of operators) associated with p and denote this mapping by ϕ i.e. $P_{h}=\phi(p)$. Unless otherwise stated, we denote by $Q_{h}, \tilde{L}_{h}, \bar{W}_{h}$, etc. the families associated with q, \tilde{l}, w^{-1}, etc. respectively.

We note that by (3.8) $P_{h} u(u \in \mathscr{S})$ can be rewritten as follows:

$$
\begin{align*}
& \text { 2) } \quad P_{h} u(x)=\kappa^{-1} \int e^{i x \cdot \xi} p(x, h \xi) \hat{u}(\xi) d \xi \quad \text { for all } u \in \mathscr{S}, h>0 \text {. } \tag{3.12}\\
& \text { Let } \mathscr{K}_{h}=\phi(\mathscr{K}) \text {. Then we have }
\end{align*}
$$

Lemma 3.3. The mapping ϕ is one-to-one.
Proof. Suppose for some $p \in \mathscr{K}$

$$
P_{h} v=0 \quad \text { for all } \quad v \in \mathscr{S} .
$$

Then by (3.12) for almost all x

$$
\int e^{i x \cdot \xi} p(x, h \xi) \hat{v}(\xi) d \xi=0 \quad \text { for all } \quad v \in \mathscr{S}, \quad h>0
$$

Since for each $w(\xi) \in \mathscr{S}$ the inverse Fourier transform of $w(\xi)$ belongs to \mathscr{S}, it follows that for almost all x

$$
\int e^{i x \cdot \xi} p(x, h \xi) w(\xi) d \xi=0 \quad \text { for all } \quad w \in \mathscr{S}, \quad h>0
$$

Put $r(\xi)=\prod_{j=1}^{n}\left(1+\xi_{j}^{2}\right)^{-1}$. Then for almost all x

$$
\int e^{i x \cdot \xi} p(x, h \xi) r(\xi) u(\xi) d \xi=0 \quad \text { for all } \quad u \in \mathscr{S}
$$

because $r(\xi) u(\xi) \in \mathscr{S}$. Since $p(x, \omega)$ is bounded, $p(x, h \xi) r(\xi)$ belongs to L_{1} as a function of ξ for almost all x. Hence for almost all (x, ξ)

$$
p(x, h \xi)=0 \quad \text { for } \quad h>0
$$

so that $p(x, \omega)=0$ a.e., which completes the proof.
For $\phi(p), \phi(q) \in \mathscr{K}_{h}$ and $\alpha \in \boldsymbol{C}$ let

$$
\begin{aligned}
\phi(p)+\phi(q) & =\phi(p+q), \quad \phi(p) \circ \phi(q)=\phi(p q) \\
\phi(p)^{\#} & =\phi\left(p^{*}\right), \quad \alpha \phi(p)=\phi(x p)
\end{aligned}
$$

Then \mathscr{K}_{h} forms a unitary algebra over \boldsymbol{C} with respect to the operations + and o , and the operation ${ }^{\#}$ is an involution in \mathscr{K}_{h}. It is readily seen that \mathscr{K}_{h} is an algebra with involution and the mappings ϕ and ϕ^{-1} are morphisms [1].

3.2. Products and adjoints

To study the relations between the products $P_{h} Q_{h}$ and $P_{h}{ }^{\circ} Q_{h}$ we introduce the following two conditions.

Condition I. 1) $p \in \mathscr{K}$;
2) $\hat{p}_{0}(\chi, \omega)$ and $p_{\infty}(\omega)$ are absolutely continuous with respect to $\omega_{j}(j=1$, $2, \ldots, n)$ and $\partial_{j} \hat{p}_{0}(\chi, \omega)$ and $\partial_{j} p_{\infty}(\omega)$ are measurable in $R_{\chi}^{n} \times R_{\omega}^{n}$ and in R_{ω}^{n} respec-
tively;
3) $\underset{\omega}{\text { ess. }} \sup \left|\partial_{j} \hat{p}_{0}(\chi, \omega)\right|(j=1,2, \ldots, n)$ are integrable and ess. $\sup \left|\partial_{j} p_{\infty}(\omega)\right|$ $(j=1,2, \ldots, n)$ are finite.

Condition II. $q \in \mathscr{K}$ and ess. $\sup \left(|\chi|\left|\hat{q}_{0}(\chi, \omega)\right|\right)$ is integrable.
We have
Theorem 3.1. Let p satisfy Condition I and q satisfy Condition II. Then

$$
\begin{equation*}
P_{h} Q_{h} \equiv P_{h^{\circ}} Q_{h} . \tag{3.13}
\end{equation*}
$$

Proof. By continuity of the L_{2}-norm it suffices to prove the theorem in the case $u \in \mathscr{S}$. From the definition of $P_{h} Q_{h}$ it follows that

$$
\begin{aligned}
\widehat{P_{h} Q_{h} u}(\xi)= & \widehat{P_{h}\left(Q_{h} u\right)}(\xi) \\
= & \iint \hat{p}_{0}(\xi-\eta, h \eta) \hat{q}_{0}\left(\eta-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d \eta \\
& +\int p_{\infty}(h \xi) \hat{q}_{0}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}+w(\xi),
\end{aligned}
$$

where

$$
w(\xi)=\int \hat{p}_{0}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) q_{\infty}\left(h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}+p_{\infty}(h \xi) q_{\infty}(h \xi) \hat{u}(\xi) .
$$

Changing the order of integration and setting $t=\eta-\xi^{\prime}$, we have

$$
\begin{align*}
\widehat{P_{h} Q_{h} u}(\xi)= & \iint \hat{p}_{0}(\chi-t, \omega+h t) \hat{q}_{0}(t, \omega) \hat{u}\left(\xi^{\prime}\right) d t d \xi^{\prime} \tag{3.14}\\
& +\int p_{\infty}(\omega+h \chi) \hat{q}_{0}(\chi, \omega) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}+w(\xi),
\end{align*}
$$

where $\chi=\xi-\xi^{\prime}, \omega=h \xi^{\prime}$.
Since $P_{h}{ }^{\circ} Q_{h}$ is a family associated with $p q$,

$$
\begin{align*}
\widehat{P_{h^{\circ}} Q_{h} u}(\xi)= & \iint \hat{p}_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega) \hat{u}\left(\xi^{\prime}\right) d t d \xi^{\prime} \tag{3.15}\\
& +\int p_{\infty}(\omega) \hat{q}_{0}(\chi, \omega) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}+w(\xi),
\end{align*}
$$

where $\chi=\xi-\xi^{\prime}, \omega=h \xi^{\prime}$. Comparison of (3.14) and (3.15) shows that the proof is complete by the first part of Lemma 3.2, if

$$
\begin{equation*}
\int \text { ess. } \sup \left|\int\left\{\hat{p}_{0}(\chi-t, \omega+h t)-\hat{p}_{0}(\chi-t, \omega)\right\} \hat{q}_{0}(t, \omega) d t\right| d \chi=O(h) \tag{3.16}
\end{equation*}
$$

$$
\begin{equation*}
\int \operatorname{ess}_{\omega} \cdot \sup \left|\left\{p_{\infty}(\omega+h \chi)-p_{\infty}(\omega)\right\} \hat{q}_{0}(\chi, \omega)\right| d \chi=O(h) \tag{3.17}
\end{equation*}
$$

Since $p_{0}(\chi, \omega)$ is absolutely continuous with respect to ω_{j}, we have

$$
\begin{aligned}
& \left|\left\{\hat{p}_{0}(\chi-t, \omega+h t)-\hat{p}_{0}(\chi-t, \omega)\right\} \hat{q}_{0}(t, \omega)\right| \\
& \quad=\mid \sum_{j=1}^{n}\left\{\hat{p}_{0}\left(\chi-t, \omega_{1}, \ldots, \omega_{j-1}, \omega_{j}+\theta_{j}, \omega_{j+1}+\theta_{j+1}, \ldots, \omega_{n}+\theta_{n}\right)\right. \\
& \left.\quad-\hat{p}_{0}\left(\chi-t, \omega_{1}, \ldots, \omega_{j}, \omega_{j+1}+\theta_{j+1}, \ldots, \omega_{n}+\theta_{n}\right)\right\} \hat{q}_{0}(t, \omega) \mid \\
& =\mid \sum_{j=1}^{n} \int_{0}^{\theta_{j}} \partial_{j} \hat{p}_{0}\left(\chi-t, \omega_{1}, \ldots, \omega_{j-1}, \omega_{j}+\zeta_{j}, \omega_{j+1}+\theta_{j+1}, \ldots,\right. \\
& \left.\quad \omega_{n}+\theta_{n}\right) d \zeta_{j} \hat{q}_{0}(t, \omega) \mid,
\end{aligned}
$$

where $\theta_{j}=h t_{j}$. Taking the essential suprema of both sides over R_{ω}^{n} and integrating them with respect to χ, we have

$$
\begin{aligned}
& \iint \text { ess. }_{\omega} \sup \left|\left\{\hat{p}_{0}(\chi-t, \omega+h t)-\hat{p}_{0}(\chi-t, \omega)\right\} \hat{q}_{0}(t, \omega)\right| d \chi d t \\
& \quad \leqq \iint \sum_{j=1}^{n} \operatorname{ess}_{\omega} \cdot \sup ^{\prime}\left(\left|\partial_{j} \hat{p}_{0}(\chi-t, \omega)\right|\right) h\left|t_{j}\right| \operatorname{ess}_{\omega} \cdot \sup \left(\left|\hat{q}_{0}(t, \omega)\right|\right) d \chi d t .
\end{aligned}
$$

Hence (3.16) follows by I-3) and II. ${ }^{1)}$ Similarly we have (3.17).
From the proof of this theorem we have
Corollary 3.1. If $a(x), b(\omega), p(x, \omega) \in \mathscr{K}$, then

$$
\begin{align*}
& A_{h} P_{h}=A_{h} \circ P_{h}, \tag{3.18}\\
& P_{h} B_{h}=P_{h} \circ B_{h} . \tag{3.19}
\end{align*}
$$

To study the relations between the adjoint P_{h}^{*} of P_{h} and the family $P_{h}^{\#}$ we introduce
Condition III. 1) $p \in \mathscr{K}$;
2) $\hat{p}_{0}(\chi, \omega)$ is absolutely continuous with respect to $\omega_{j}(j=1,2, \ldots, n)$ and $\partial_{j} \hat{p}_{0}(\chi, \omega)(j=1,2, \ldots, n)$ are measurable in $R_{\chi}^{n} \times R_{\omega}^{n}$;
3) ess ${ }_{\omega} \sup \left(\left|\chi_{j}\right|\left|\partial_{j} \hat{p}_{0}(\chi, \omega)\right|\right)(j=1,2, \ldots, n)$ are integrable.

Theorem 3.2. Let $p \in \mathscr{K}$. Then

$$
\begin{align*}
& P_{h}^{*} u(x)=\text { l.i.m. } \kappa^{-1} \int e^{i x \cdot \xi} \int \widehat{p^{*}}\left(\xi-\xi^{\prime}, h \xi\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d \xi \tag{3.20}\\
& \quad \text { for all } u \in \mathscr{S}, \quad h>0 .
\end{align*}
$$

1) The term Condition is often omitted when no confusion can arise.

If p satisfies Condition III, then

$$
\begin{equation*}
P_{h}^{*} \equiv P_{h}^{\#} . \tag{3.21}
\end{equation*}
$$

Proof. Since $\widehat{p^{*}}\left(\xi-\xi^{\prime}, h \xi\right)=\widehat{p^{*}}\left(\xi-\xi^{\prime}, h \xi^{\prime}+h\left(\xi-\xi^{\prime}\right)\right)$, by the same argument as in the proof of Lemma 3.2 we have for $w \in \mathscr{S}$

$$
\begin{equation*}
\left.\| \int \widehat{p^{*}\left(\xi-\xi^{\prime}\right.}, h \xi\right) \hat{w}\left(\xi^{\prime}\right) d \xi^{\prime}\|\leqq\| \widehat{p^{*}\left\|_{F}\right\| \hat{w} \| . ~ . ~} \tag{3.22}
\end{equation*}
$$

For $u, w \in \mathscr{S}$

$$
\begin{aligned}
\left(u, P_{h}^{*} w\right) & =\left(P_{h} u, w\right)=\left(\widehat{P_{h} u}, \hat{w}\right) \\
& =\int\left\{\int \hat{p}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}\right\}^{*} \hat{w}(\xi) d \xi \\
& =\iint \hat{u}^{*}\left(\xi^{\prime}\right) \hat{p}^{*}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{w}(\xi) d \xi^{\prime} d \xi \\
& =\iint \hat{u}^{*}\left(\xi^{\prime}\right) \widehat{p^{*}}\left(\xi^{\prime}-\xi, h \xi^{\prime}\right) \hat{w}(\xi) d \xi d \xi^{\prime}
\end{aligned}
$$

From this (3.20) follows by (3.22).
It suffices to prove (3.21) in the case $u \in \mathscr{S}$. From (3.20) and the definition of P_{h}^{*} it follows that

$$
\begin{equation*}
\widehat{P_{h}^{*} u}(\xi)-\widehat{P_{h}^{*} u}(\xi)=\int\left\{\widehat{p_{0}^{*}}(\chi, \omega+h \chi)-\widehat{p_{0}^{*}}(\chi, \omega)\right\} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}, \tag{3.23}
\end{equation*}
$$

where $\chi=\xi-\xi^{\prime}$ and $\omega=h \xi^{\prime}$. By III-2) we have

$$
\begin{aligned}
& \left|\widehat{p_{0}^{*}}(\chi, \omega+h \chi)-\widehat{p_{0}^{*}}(\chi, \omega)\right| \\
& \quad=\left|\sum_{j=1}^{n} \int_{0}^{\theta_{j}} \partial_{j} \widehat{p_{0}^{*}}\left(\chi, \omega_{1}, \ldots, \omega_{j-1}, \omega_{j}+\zeta_{j}, \omega_{j+1}+\theta_{j+1}, \ldots, \omega_{n}+\theta_{n}\right) d \zeta_{j}\right|
\end{aligned}
$$

where $\theta_{j}=h \chi_{j}$. Taking the essential suprema of both sides over R_{ω}^{n} and integrating them with respect to χ, we find

$$
\int \operatorname{ess} \cdot \sup \left|\widehat{p_{0}^{*}}(\chi, \omega+h \chi)-\widehat{p_{0}^{*}}(\chi, \omega)\right| d \chi \leqq h \sum_{j=1}^{n} \int \operatorname{ess} \cdot \sup \left(\left|\chi_{j}\right|\left|\partial_{j} \widehat{p_{0}^{*}}(\chi, \omega)\right|\right) d \chi .
$$

Hence (3.21) holds by III-3) and Lemma 3.2.
From (3.23) we have
Corollary 3.2. If $k(\omega) \in \mathscr{K}$, then

$$
\begin{equation*}
K_{h}^{*}=K_{h}^{\#} . \tag{3.24}
\end{equation*}
$$

3.3. Construction of a new norm

We construct a norm which is equivalent to the L_{2}-norm and is useful for establishing (2.17).

Let ε and $R(R \geqq \varepsilon)$ be positive numbers and let $S(R, \varepsilon)=\{x| | x \mid<R+\varepsilon\}$. Let $\boldsymbol{x}^{(i)}(i=1,2, \ldots, s)$ be all the lattice-points $\left(\varepsilon \eta_{1}, \varepsilon \eta_{2}, \ldots, \varepsilon \eta_{n}\right)$ contained in $S(R, \varepsilon)\left(\eta_{j}=m_{j} / / n ; m_{j}=0, \pm 1, \pm 2, \ldots ; j=1,2, \ldots, n\right)$ and let

$$
V_{0}=\{x| | x \mid>R\}, \quad V_{i}=\left\{x| | x-x^{(i)} \mid<\varepsilon\right\} \quad(i=1,2, \ldots, s) .
$$

Then we can construct a partition of unity $\left\{\alpha_{i}^{2}(x)\right\}_{i=0,1, \ldots, s}$ with the properties:

1) $\alpha_{i}(x) \geqq 0, \alpha_{i}(x) \in C^{\infty}, \operatorname{supp} \alpha_{i}(x) \subset V_{i}(i=0,1, \ldots, s)$;
2) $\sum_{i=0}^{s} \alpha_{i}^{2}(x)=1$;
3) $\alpha_{0}(x)$ and all its partial derivatives are bounded uniformly with respect to R for each ε.

We introduce the following
Condition N. 1) $g \in \mathscr{K}$ and $D_{j} g(x, \omega)(j=1,2, \ldots, n)$ are bounded on R_{x}^{n} $\times R_{\omega}^{n}$ and continuous on R_{x}^{n} for each $\omega ; D_{j} g(x, \omega)(j=1,2, \ldots, n)$ are integrable as functions of x for each $\omega ; \widehat{D_{j} g}(\chi, \omega)(j=1,2, \ldots, n)$ are integrable as functions of χ for each ω and ess ${ }_{\omega}$ sup $\left|\overparen{D_{j} g}(\chi, \omega)\right|(j=1,2, \ldots, n)$ are integrable;
2) $\lim _{R \rightarrow \infty}\left\|\widehat{\alpha_{0} g_{0}}\right\|_{F}=0$.

We have

Theorem 3.3. Suppose

1) $g(x, \omega)$ satisfies Condition N ;
2) $g(x, \omega) \geqq e I$ for some constant $e>0$.

Then for sufficiently large R and small ε there exist positive constants d_{1} and d_{2} such that

$$
\begin{align*}
& d_{1}^{2}\|u\|^{2} \leqq \sum_{i=0}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right) \leqq d_{2}^{2}\|u\|^{2} \tag{3.25}\\
& \qquad \text { for all } u \in L_{2}, \quad h>0,
\end{align*}
$$

where $d_{j}(j=1,2)$ are independent of u and h.
This theorem enables us to introduce the norm

$$
\begin{equation*}
\|u\|_{G_{h}}=\left\{\sum_{i=0}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right)\right\}^{1 / 2} \quad \text { for all } u \in L_{2} \tag{3.26}
\end{equation*}
$$

and by (3.25) we have

$$
\begin{equation*}
d_{1}\|u\| \leqq\|u\|_{G_{h}} \leqq d_{2}\|u\| . \tag{3.27}
\end{equation*}
$$

Lemma 3.4. If p and q satisfy Condition N , so also do $p+q, p q$ and p^{*}.
Proof. It suffices to prove the lemma in the case of $p q$. Put $d=p q$. Then d satisfies Condition $\mathrm{N}-1$). Since

$$
d_{0}=p_{0} q_{0}+p_{0} q_{\infty}+p_{\infty} q_{0},
$$

it follows that

$$
\begin{aligned}
\widehat{\alpha_{0} d_{0}}(\chi, \omega)= & \int \widehat{\alpha_{0} p_{0}}(\chi-t, \omega) \hat{q}_{0}(t, \omega) d t \\
& +\widehat{\alpha_{0} p_{0}}(\chi, \omega) q_{\infty}(\omega)+p_{\infty}(\omega) \widehat{\alpha_{0} q_{0}}(\chi, \omega) .
\end{aligned}
$$

Taking the essential suprema of both sides over R_{ω}^{n} and integrating them with respect to χ, we have by Young's Theorem

$$
\left\|\widehat{\alpha_{0} d_{0}}\right\|_{F} \leqq\left\|\widehat{\alpha_{0} p_{0}}\right\|_{F}\left\|\hat{q}_{0}\right\|_{F}+\left\|\widehat{\alpha_{0} p_{0}}\right\|_{F}\left\|q_{\infty}\right\|_{F}+\left\|p_{\infty}\right\|_{F}\left\|\widehat{\alpha_{0} q_{0}}\right\|_{F}
$$

the right side of which tends to zero as $R \rightarrow \infty$ by $\mathrm{N}-2$). Hence $\left\|\widehat{\alpha_{0} d_{0}}\right\|_{F} \rightarrow 0$ as $R \rightarrow \infty$ and $p q$ satisfies Condition $\mathrm{N}-2$).

3.4. Lax-Nirenberg Theorem

We have the following analogue of Lax-Nirenberg Theorem [10] which plays an important role in establishing (2.17).

Theorem 3.4. Suppose $p \in \mathscr{K}$ satisfies the conditions:

1) $\partial_{j} \hat{p}_{0}(\chi, \omega)$ and $\partial_{j} p_{\infty}(\omega)(j=1,2, \ldots, n)$ are continuous on R_{ω}^{n} for each χ and absolutely continuous with respect to $\omega_{k}(k=1,2, \ldots, n)$;
2) $\partial_{k} \partial_{j} \hat{p}_{0}(\chi, \omega)$ and $\partial_{k} \partial_{j} p_{\infty}(\omega)(j, k=1,2, \ldots, n)$ are measurable in R_{χ}^{n} $\times R_{\omega}^{n}$ and in R_{ω}^{n} respectively; ess. $\sup \left(\left|\partial_{k} \partial_{j} \hat{p}_{0}(\chi, \omega)\right|\right)(j, k=1,2, \ldots, n)$ are integrable and $\underset{\omega}{\operatorname{ess}} \cdot \sup \left(\left|\partial_{k} \partial_{j} p_{\infty}(\omega)\right|\right)(j, k=1,2, \ldots, n)$ are finite;
3) ess $\cdot \sup \left(|\chi|^{2}\left|\hat{p}_{0}(\chi, \omega)\right|\right)$ is integrable;
4) $p(x, \omega) \geqq 0$.

Then there exists a positive constant c independent of u and h such that

$$
\begin{equation*}
\operatorname{Re}\left(P_{h} u, u\right) \geqq-c h\|u\|^{2} \quad \text { for all } \quad u \in L_{2}, \quad h>0 . \tag{3.28}
\end{equation*}
$$

4. Powers of families of operators

4.1. The family of operators $\boldsymbol{\Lambda}_{\boldsymbol{h}}$

In this section $s(\omega)$ denotes a real-valued vector function with the properties:

1) $s_{l}(\omega), \partial_{j} s_{l}(\omega)$ and $\partial_{k} \partial_{j} s_{l}(\omega)(j, k, l=1,2, \ldots, n)$ are bounded and continuous on R^{n};
2) Zeros of $|s(\omega)|$ are isolated points.
(The function $s(\omega)$ given in 2.2 has these properties.)
Let $Z=\{\omega| | s(\omega) \mid=0\}$. Then $R_{\omega}^{n}-Z$ is an open set by continuity of $|s(\omega)|$ and by properties 1) and 2$)|s(\omega)|$ satisfies Condition I. Let Λ_{h} be the family associated with $|s(\omega)| I$. Then by Corollary 3.2 we have

$$
\Lambda_{h}=\Lambda_{h}^{*}=\Lambda_{h}^{*}
$$

Let $p(x, \omega)$ be an element of \mathscr{K} such that $p(x, \omega) /|s(\omega)|$ is bounded on R_{x}^{n} $\times\left(R_{\omega}^{n}-Z\right)$. Then we seek sufficient conditions under which P_{h} can be written as $P_{h}=Q_{h} \circ \Lambda_{h}$ for some $Q_{h} \in \mathscr{K}_{h}$. For any constant α let

$$
q_{\alpha}(x, \omega)= \begin{cases}p(x, \omega) /|s(\omega)| & \text { for } \omega \in R^{n}-Z \\ \alpha I & \text { for } \omega \in Z,\end{cases}
$$

and suppose $q_{\alpha}(x, \omega) \in \mathscr{K}$. Then

$$
\begin{aligned}
\left|\widehat{Q_{\alpha h} u}(\xi)-\widehat{Q_{\beta h} u}(\xi)\right| & =\left|\int\left\{\widehat{q_{\alpha}}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right)-\widehat{q_{\beta}}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right)\right\} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}\right| \\
& \leqq\left|q_{\alpha \infty}(h \xi)-q_{\beta \infty}(h \xi)\right||\hat{u}(\xi)| \quad \text { for all } u \in \mathscr{S},
\end{aligned}
$$

where $Q_{\alpha h}$ and $Q_{\beta h}$ are the families associated with q_{α} and $q_{\beta}(\beta \neq \alpha)$ respectively. Since Z is a set of measure zero, for all $u \in \mathscr{S}$ we have for almost all ξ

$$
\left|q_{\alpha \infty}(h \xi)-q_{\beta \infty}(h \xi)\right||\hat{u}(\xi)|=0 .
$$

Hence $Q_{x h}$ and $Q_{\beta h}$ can be identified. In the following we identify $q_{\alpha}(x, \omega)$ and $q_{\beta}(x, \omega)$ and denote them by $p(x, \omega) /|s(\omega)|$. Then we have $P_{h}=P_{1 h^{\circ}} \Lambda_{h}$, where $P_{1 h}$ is the family associated with $p /|s|$.

When $e(\omega)$ is a scalar function with isolated zeros such that $e(\omega) I \in \mathscr{K}$, we can define $p(x, \omega) / e(\omega)$ similarly by replacing $|s(\omega)|$ by $e(\omega)$.

In particular let $r(\omega)$ be a scalar function such that $r(\omega) I \in \mathscr{K}$ and for some constant c_{0}

$$
|r(\omega)| \leqq c_{0}|s(\omega)| \quad \text { for all } \quad \omega \in R^{n} .
$$

Then $r(\omega) /|s(\omega)| \in \mathscr{K}$ and $R_{h}=R_{1 h} \circ \Lambda_{h}$, where R_{h} and $R_{1 h}$ are the families associ-
ated with $r I$ and $(r /|s|) I$ respectively.
To study the relation between $P_{h} Q_{h} \Lambda_{h}$ and $P_{h}{ }^{\circ} Q_{h}{ }^{\circ} \Lambda_{h}$ and that between $\left(P_{h} \Lambda_{h}\right)^{*}$ and $P_{h}^{*} \circ \Lambda_{h}$, we introduce the following conditions:

Condition I'. 1) $p \in \mathscr{K}$;
2) $\hat{p}_{0}(\chi, \omega)$ is bounded on $R_{\chi}^{n} \times\left(R_{\omega}^{n}-Z\right)$;
3) $\partial_{j} l_{0}(\chi, \omega)$ and $\partial_{j} l_{\infty}(\omega)(j=1,2, \ldots, n)$ are bounded on $R_{\chi}^{n} \times\left(R_{\omega}^{n}-Z\right)$ and continuous on $R_{\omega}^{n}-Z$ for each χ, where $l_{0}(\chi, \omega)=\hat{p}_{0}|s|, l_{\infty}(\omega)=p_{\infty}|s|$;
4) ess ${ }_{\omega} \sup \left|\partial_{j} l_{0}\right|(j=1,2, \ldots, n)$ are integrable.

Condition III'. 1), 2) the same as $\mathrm{I}^{\prime}-1$), $\mathrm{I}^{\prime}-2$) respectively;
3) $\partial_{j} l_{0}(\chi, \omega)(j=1,2, \ldots, n)$ are bounded on $R_{\chi}^{n} \times\left(R_{\omega}^{n}-Z\right)$ and continuous on $R_{\omega}^{n}-Z$ for each χ;
4) ess. $\sup \left(\left|\chi_{j}\right|\left|\partial_{j} l_{0}(\chi, \omega)\right|\right)(j=1,2, \ldots, n)$ are integrable.

We have
Lemma 4.1. (i) If p satisfies Condition I^{\prime}, then $p|s|$ satisfies Condition I.
(ii) If p satisfies Condition III', then $p|s|$ satisfies Condition III.

Next we prove
Lemma 4.2. (i) If p satisfies Condition I^{\prime} and q satisfies Condition II, then

$$
\begin{equation*}
P_{h} Q_{h} \Lambda_{h} \equiv P_{h^{\circ}} Q_{h^{\circ}} \Lambda_{h} . \tag{4.1}
\end{equation*}
$$

(ii) If p satisfies Condition III', then

$$
\begin{equation*}
\left(P_{h} \Lambda_{h}\right)^{*} \equiv P_{h}^{\#} \circ \Lambda_{h} . \tag{4.2}
\end{equation*}
$$

Proof. The assertion (ii) follows from Lemma 4.1 and Theorem 3.2. By Theorem 3.1 and its corollary

$$
\Lambda_{h} Q_{h} \equiv \Lambda_{h} Q_{h}, \quad Q_{h} \Lambda_{h}=Q_{h} \circ \Lambda_{h}, \quad P_{h} \Lambda_{h}=P_{h} \circ \Lambda_{h}
$$

As $\Lambda_{h} \circ Q_{h}=Q_{h^{\circ}} \Lambda_{h}$, we have $Q_{h} \Lambda_{h} \equiv \Lambda_{h} Q_{h}$, so that

$$
P_{h} Q_{h} \Lambda_{h} \equiv P_{h} \Lambda_{h} Q_{h}=\left(P_{h} \circ \Lambda_{h}\right) Q_{h}
$$

Since $p|s|$ satisfies Condition I by Lemma 4.1, by Theorem 3.1 we have

$$
\left(P_{h} \circ \Lambda_{h}\right) Q_{h} \equiv\left(P_{h} \circ \Lambda_{h}\right) \circ Q_{h} .
$$

Hence

$$
P_{h} Q_{h} \Lambda_{h} \equiv P_{h^{\circ}} \Lambda_{h} \circ Q_{h}=P_{h^{\circ}} Q_{h^{\circ}} \circ \Lambda_{h}
$$

and the proof is complete.

Now we introduce the following conditions:
Condition IV. $p \in \mathscr{K}$ and ess $\underset{\omega}{ } \cdot \sup \left(|\chi|^{2}\left|\hat{p}_{0}(\chi, \omega)\right|\right)$ is integrable.
Condition V. 1) p satisfies Condition I^{\prime};
2) $\partial_{k} m_{j 0}(\chi, \omega)$ and $\partial_{i} m_{j \infty}(\omega)(j, k=1,2, \ldots, n)$ are bounded on $R_{\chi}^{n} \times\left(R_{\omega}^{n}\right.$ $-Z$) and continuous on $R_{\omega}^{n}-Z$ for each χ, where $m_{j 0}(\chi, \omega)=\left(\partial_{j} l_{0}\right)|s|, m_{j \omega}(\omega)$ $=\left(\partial_{j} l_{\infty}\right)|s|, l_{0}=\hat{p}_{0}|s|$ and $l_{\infty}=p_{\infty}|s| ;$
3) ess. $\sup \left(\left|\partial_{k} m_{j 0}(\chi, \omega)\right|\right)(j, k=1,2, \ldots, n)$ are integrable.

Condition IV implies Condition II and we have
Lemma 4.3. If p satisfies Conditions IV and V, then $p(x, \omega)|s(\omega)|^{2}$ satisfies conditions 1), 2) and 3) of Theorem 3.4.

4.2. Subalgebras \mathscr{M} and \mathscr{L} of \mathscr{K}

Let \mathscr{M} be the set of all elements of \mathscr{K} that satisfy Conditions I', II and III' and let the set \mathscr{L} consist of all elements of \mathscr{M} that satisfy Conditions IV and V. (\mathscr{M} and \mathscr{L} depend on $s(\omega)$.) For instance $|s(\omega)| I$ and $\left(s_{j}(\omega) /|s(\omega)|\right) I(j=1,2, \ldots$, n) belong to \mathscr{M} and \mathscr{L}.

Lemma 4.4. (i) If p and q satisfy Condition II, so also do $p+q, p q$ and p^{*}.
(ii) If $p, q \in \mathscr{M}$, then $p+q, p q, p^{*} \in \mathscr{M}$.
(iii) If $p, q \in \mathscr{L}$, then $p+q, p q, p^{*} \in \mathscr{L}$.

We show
Lemma 4.5. Let $g(x, \omega)$ satisfy Conditions I' and II, and let

$$
\begin{equation*}
l(x, \omega)=c(\omega) I+q(x, \omega)|s(\omega)|, \tag{4.3}
\end{equation*}
$$

where $q(x, \omega) \in \mathscr{M}$ and $c(\omega)$ is a scalar function satisfying Condition I. Then

$$
\begin{equation*}
L_{h}^{*} G_{h} L_{h} \equiv L_{h}^{\#} \circ G_{h} \circ L_{h} . \tag{4.4}
\end{equation*}
$$

Proof. L_{h} can be written as $L_{h}=C_{h}+Q_{h}{ }^{\circ} \Lambda_{h}$, where $C_{h}=\phi(c I)$. By Corollary 3.2 and Lemma 4.2 we have

$$
C_{h}^{*}=C_{h}^{\#}, \quad\left(Q_{h} \circ \Lambda_{h}\right)^{*} \equiv Q_{h}^{\#} \circ \Lambda_{h} .
$$

Therefore $L_{h}^{*} \equiv L_{h}^{*}$, and

$$
\begin{equation*}
L_{h}^{*} G_{h} L_{h} \equiv L_{h}^{\#} G_{h} L_{h} . \tag{4.5}
\end{equation*}
$$

By Corollary 3.1 and Lemma 4.2 we have

$$
G_{h} C_{h}=G_{h} \circ C_{h}, \quad G_{h} Q_{h} \Lambda_{h} \equiv G_{h} Q_{h} \Lambda_{h} .
$$

Hence $G_{h} L_{h} \equiv G_{h}{ }^{\circ} L_{h}$ and by (4.5)

$$
\begin{equation*}
L_{h}^{*} G_{h} L_{h} \equiv L_{h}^{\#}\left(G_{h} \circ L_{h}\right) . \tag{4.6}
\end{equation*}
$$

Since $g l$ satisfies Condition II by Lemma 4.4 and l^{*} satisfies Condition I, by Theorem 3.1, we have

$$
\begin{equation*}
L_{h}^{\#}\left(G_{h} \circ L_{h}\right) \equiv L_{h}^{\# \circ} \circ\left(G_{h} \circ L_{h}\right) . \tag{4.7}
\end{equation*}
$$

Hence (4.4) follows from (4.6) and (4.7).
Corollary 4.1. Under the assumption of Lemma 4.5 let

$$
g(x, \omega)=w^{*}(x, \omega) w(x, \omega),
$$

where $w, w^{-1} \in \mathscr{K}$. Then

$$
\begin{gather*}
G_{h}-L_{h}^{*} G_{h} L_{h} \equiv G_{h}-L_{h}^{\#} \circ G_{h} \circ L_{h}=W_{h}^{\#} \circ\left(I_{h}-\tilde{L}_{h}^{\#} \circ \tilde{L}_{h}\right) \circ W_{h}, \tag{4.8}\\
g-l^{*} g l=w^{*}\left(I-l^{*} l\right) w, \quad \tilde{l}=w l w^{-1} . \tag{4.9}
\end{gather*}
$$

Proof. Since

$$
\bar{W}_{h} \circ W_{h}=W_{h}^{*} \circ \bar{W}_{h}^{\sharp}=I_{h}, \quad G_{h}=W_{h}^{\#} \circ W_{h},
$$

we have from (4.4)

$$
\begin{aligned}
L_{h}^{*} G_{h} L_{h} \equiv L_{h}^{\#} \circ G_{h} \circ L_{h} & =W_{\hbar^{\circ}}^{*} \bar{W}_{h}^{\#} \circ L_{h^{*}}^{\#} \circ W_{h}^{\#} \circ W_{h} \circ L_{h} \circ \bar{W}_{h} \circ W_{h} \\
& =W_{h}^{\#} \circ \tilde{L}_{h}^{\#} \circ \tilde{L}_{h} \circ W_{h} .
\end{aligned}
$$

Hence (4.8) holds and we have (4.9) by matrix calculation.

4.3. Integrability of Fourier transforms

Our next step is to obtain sufficient conditions under which an $N \times N$ matrix function $p(x, \omega)$ belongs to \mathscr{K}, \mathscr{M} or \mathscr{L}. To this end we introduce

Condition VI. 1) $p(x, \omega)$ can be written as

$$
p(x, \omega)=p_{0}(x, \omega)+p_{\infty}(\omega),
$$

where $p_{0}(x, \omega)$ and $p_{\infty}(\omega)$ are bounded and measurable on $R_{x}^{n} \times R_{\omega}^{n}$ and on R_{ω}^{n} respectively, and $\lim _{|x| \rightarrow \infty} p_{0}(x, \omega)=0$ for each $\omega \in R^{n}$;
2) $D_{l}^{m} p_{0}(x, \omega)(l=1,2, \ldots, n ; m=0,1, \ldots, n+3)$ are continuous on R_{x}^{n} $\times\left(R_{\omega}^{n}-Z\right)$ and continuous on R_{x}^{n} for each $\omega \in Z ; \sup _{\omega}\left(\left|D_{l}^{m} p_{0}(x, \omega)\right|\right)(l=1,2, \ldots$,
$n ; m=0,1, \ldots, n+3)$ are bounded and integrable;
3) $D_{l}^{q} \partial_{j} p_{0}(x, \omega)$ and $\partial_{j} p_{\infty}(\omega)(j, l=1,2, \ldots, n ; q=0,1, \ldots, n+2)$ are continuous on $R_{x}^{n} \times\left(R_{\omega}^{n}-Z\right)$;
4) $\sup _{\omega \notin Z}\left(\left|D_{l}^{q} \partial_{j} p_{0}(x, \omega)\right||s(\omega)|\right)(j, l=1,2, \ldots, n ; q=0,1, \ldots, n+2)$ are bounded and integrable; $\sup _{\omega \notin Z}\left(\left|\partial_{j} p_{\infty}(\omega)\right||s(\omega)|\right)(j=1,2, \ldots, n)$ are finite;
5) $D_{l}^{r} \partial_{k} \partial_{j} p_{0}(x, \omega)$ and $\partial_{k} \partial_{j} p_{\infty}(\omega)(j, k, l=1,2, \ldots, n ; r=0,1, \ldots, n+1)$ are continuous on $R_{x}^{n} \times\left(R_{\omega}^{n}-Z\right)$;
6) $\sup _{\omega \notin Z}\left(\left|D_{l}^{r} \partial_{k} \partial_{j} p_{0}(x, \omega)\right||s(\omega)|^{2}\right)(j, k, l=1,2, \ldots, n ; r=0,1, \ldots, n+1)$ are bounded and integrable; $\sup _{\omega \notin Z}\left(\left|\partial_{k} \partial_{,} p_{\infty}(\omega)\right||s(\omega)|^{2}\right)(j, k=1,2, \ldots, n)$ are finite.

We have the following results.
Lemma 4.6. (i) If p satisfies Conditions VI-1) and VI-2), then p satisfies Conditions II and IV.
(ii) If p satisfies Conditions VI-1)-VI-4), then $p \in \mathscr{M}$.
(iii) If p satisfies Condition VI, then $p \in \mathscr{L}$.

Corollary 4.2. Let $a(x)$ be an $N \times N$ matrix such that

$$
a(x)=a_{0}(x)+a_{\infty},
$$

where $\lim _{|x| \rightarrow \infty} a_{0}(x)=0$. Suppose $D_{l}^{m} a_{0}(x)(l=1,2, \ldots, n ; m=0,1, \ldots, n+1+p ; p=$ $0,1,2)$ are bounded and continuous on R^{n} and are integrable. Then $|\chi|^{p}\left|\hat{a}_{0}(\chi)\right|$ ($p=0,1,2$) are integrable.

Lemma 4.7. If $g(x, \omega)$ satisfies Conditions VI-1) and VI-2), then it satisfies Condition N.

4.4. Powers of families of operators

To prove the boundedness of $L_{h}^{\nu}(0 \leqq \nu k \leqq T)$, in view of Theorem 2.1, it suffices to show that L_{h} satisfies (2.17). We show first the following

Theorem 4.1. Let $g(x, \omega) \in \mathscr{L}$ satisfy conditions of Theorem 3.3 and let

$$
\begin{equation*}
l(x, \omega)=c(\omega) I+q(x, \omega)|s(\omega)|+r(x, \omega)|s(\omega)|^{2} \tag{4.10}
\end{equation*}
$$

where $q, r \in \mathscr{L}$ and $c(\omega)$ is a real-valued scalar function which is bounded and continuous together with the first and second partial derivatives. Suppose

1) $q^{*} g+g q=0 \quad$ for all $\omega \in R^{n}-Z$;
2) $1-c^{2}(\omega)=|s(\omega)|^{2} a(\omega)+b(\omega)$;
3) $g-l^{*} g l \geqq b g$;
4) $b(\omega)=\sum_{j=1}^{m} b_{j}^{2}(\omega)$,
where $a(\omega)$ and $b_{j}(\omega)(j=1,2, \ldots, m)$ are real-valued scalar functions such that $b_{j}(\omega)(j=1,2, \ldots, m)$ satisfy Condition I and $a(\omega) I \in \mathscr{L}$. Then for some $c_{0} \geqq 0$

$$
\begin{equation*}
\left\|L_{h} u\right\|_{G_{h}}^{2} \leqq\left(1+c_{0} h\right)\|u\|_{G_{h}}^{2} \quad \text { for all } \quad u \in L_{2}, \quad h>0, \tag{4.11}
\end{equation*}
$$

where $\|\cdot\|_{G_{h}}$ is the norm given by (3.26).
Proof. By Lemma 4.5 we have

$$
\begin{equation*}
L_{h}^{*} G_{h} L_{h} \equiv L_{h}^{\#} \circ G_{h} \circ L_{h} . \tag{4.12}
\end{equation*}
$$

By conditions 1) and 2)

$$
\begin{equation*}
g-l^{*} g l=(a g-p)|s|^{2}+b g, \tag{4.13}
\end{equation*}
$$

where

$$
p=\left(q^{*} g q+r^{*} g c+c g r\right)+\left(q^{*} g r+r^{*} g q\right)|s|+r^{*} g r|s|^{2} .
$$

From condition 3) it follows that

$$
\begin{equation*}
(a g-p)|s|^{2} \geqq 0 \tag{4.14}
\end{equation*}
$$

Since $a g-p \in \mathscr{L}$, by Lemma 4.3 and Theorem 3.4 we have for some $c_{1} \geqq 0$

$$
\begin{equation*}
\operatorname{Re}\left(\left(A_{h} \circ G_{h}-P_{h}\right) \circ \Lambda_{h}^{2} u, u\right) \geqq-c_{1} h\|u\|^{2} \quad \text { for all } \quad u \in L_{2}, \quad h>0, \tag{4.15}
\end{equation*}
$$

where $A_{h}=\phi(a I)$.
Let $\left\{\alpha_{i}^{2}(x)\right\}_{i=0,1, \ldots, s}$ be the partition of unity given in 3.3 and let $\Omega=\{x \mid$ $|x|>R+\varepsilon\}$. Then $\alpha_{0}(x)=1$ on Ω, so that $\beta_{0}(x)=\alpha_{0}(x)-1=0$ on Ω. Since $\beta_{0}(x)$ and $\alpha_{j}(x)(j=1,2, \ldots, s)$ are smooth functions with compact supports, $|\chi|^{k}\left|\hat{\beta}_{0}(\chi)\right|$ and $|\chi|^{k}\left|\hat{\alpha}_{j}(\chi)\right|(k=0,1 ; j=1,2, \ldots, s)$ are integrable. Hence $\alpha_{i}(x)(i=0,1, \ldots$, s) satisfy Condition II.

Let $B_{h}=\phi(b I), B_{j h}=\phi\left(b_{j} I\right)(j=1,2, \ldots, m)$ and $\alpha_{i}=\phi\left(\alpha_{i} I\right)(i=0,1, \ldots, s)$. Then by Theorem $3.1 \alpha_{i} B_{j h} \equiv B_{j h} \alpha_{i}$ and $G_{h} B_{j h} \equiv B_{j h} G_{h}$. Since $B_{j_{h}}^{*}=B_{j h}$ by Corollary 3.2 , for some $c_{2}, c_{3} \geqq 0$ we have

$$
\begin{aligned}
\operatorname{Re}\left(\left(G_{h} \circ B_{h}\right) \alpha_{i} u, \alpha_{i} u\right) & \geqq \operatorname{Re} \sum_{j=1}^{m}\left(B_{j h} G_{h} B_{j h} \alpha_{i} u, \alpha_{i} u\right)-c_{2} h\|u\|^{2} \\
& =\operatorname{Re} \sum_{j=1}^{m}\left(G_{h} B_{j h} \alpha_{i} u, B_{j h} \alpha_{i} u\right)-c_{2} h\|u\|^{2} \\
& \geqq \operatorname{Re} \sum_{j=1}^{m}\left(G_{h} \alpha_{i} B_{j h} u, \alpha_{i} B_{j h} u\right)-c_{3} h\|u\|^{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{i=0}^{s} \operatorname{Re}\left(\left(G_{h}{ }^{\circ} B_{h}\right) \alpha_{i} u, \alpha_{i} u\right) \tag{4.16}
\end{equation*}
$$

$$
\begin{aligned}
& \geqq \sum_{j=1}^{m} \sum_{i=0}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} B_{j h} u, \alpha_{i} B_{j h} u\right)-c_{4} h\|u\|^{2} \\
& \geqq \sum_{j=1}^{m} d_{1}^{2}\left\|B_{j h} u\right\|^{2}-c_{4} h\|u\|^{2} \geqq-c_{4} h\|u\|^{2},
\end{aligned}
$$

where d_{1} is given by (3.25) and $c_{4}=(s+1) c_{3}$.
Since $L_{h} \alpha_{i} \equiv \alpha_{i} L_{h}$ by Theorem 3.1, we have for some $c_{5} \geqq 0$

$$
\begin{align*}
& \left|\left(G_{h} \alpha_{i} L_{h} u, \alpha_{i} L_{h} u\right)-\left(G_{h} L_{h} \alpha_{i} u, L_{h} \alpha_{i} u\right)\right| \tag{4.17}\\
& \leqq\left|\left(G_{h}\left(\alpha_{i} L_{h}-L_{h} \alpha_{i}\right) u, \alpha_{i} L_{h} u\right)\right|+\left|\left(G_{h} L_{h} \alpha_{i} u,\left(\alpha_{i} L_{h}-L_{h} \alpha_{i}\right) u\right)\right| \leqq c_{5} h\|u\|^{2}
\end{align*}
$$

From (4.12) for some $c_{6} \geqq 0$

$$
\begin{equation*}
\left|\left(G_{h} L_{h} u, L_{h} u\right)-\left(L_{h}^{\#} \circ G_{h} \circ L_{h} u, u\right)\right| \leqq c_{6} h\|u\|^{2} \tag{4.18}
\end{equation*}
$$

Since by definition

$$
\left\|L_{h} u\right\|_{G_{h}}^{2}=\sum_{i=0}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} L_{h} u, \alpha_{i} L_{h} u\right)
$$

by (4.17) and (4.18) there is a constant $c_{7} \geqq 0$ such that

$$
\begin{equation*}
\left\|L_{h} u\right\|_{G_{h}}^{2} \leqq \sum_{i=0}^{s} \operatorname{Re}\left(\left(L_{h}^{\#} \circ G_{h} L_{h}\right) \alpha_{i} u, \alpha_{i} u\right)+c_{7} h\|u\|^{2} . \tag{4.19}
\end{equation*}
$$

By (4.13) we have

$$
\begin{equation*}
\left(G_{h}-L_{h}^{\#} \circ G_{h} \circ L_{h}\right) u=\left(A_{h} \circ G_{h}-P_{h}\right) \circ \Lambda_{h}^{2} u+B_{h} \circ G_{h} u \tag{4.20}
\end{equation*}
$$

Hence by (4.15), (4.16), (4.19) and (4.20)

$$
\begin{align*}
\|u\|_{G_{h}}^{2}-\left\|L_{h} u\right\|_{G_{h}}^{2} & \geqq \sum_{i=0}^{s} \operatorname{Re}\left(\left(G_{h}-L_{h}^{\#} \circ G_{h} \circ L_{h}\right) \alpha_{i} u, \alpha_{i} u\right)-c_{7} h\|u\|^{2} \tag{4.21}\\
& \geqq-c_{8} h\|u\|^{2}
\end{align*}
$$

where $c_{8}=c_{1}+c_{4}+c_{7} . \quad$ By (3.27) we have (4.11) with $c_{0}=c_{8} / d_{1}^{2}$ and the proof is complete.

We note that the theorem remains valid even if condition 4) is replaced by the condition

$$
\sum_{i=0}^{s_{i}} \operatorname{Re}\left(\left(G_{h} \circ B_{h}\right) \alpha_{i} u, \alpha_{i} u\right) \geqq-c h\|u\|^{2} \quad \text { for all } \quad u \in L_{2}, \quad h>0
$$

where c is a non-negative constant.
Theorem 4.2. Let $g(x, \omega) \in \mathscr{M}$ satisfy conditions of Theorem 3.3 and let

$$
\begin{gather*}
l(x, \omega)=c(\omega) I+q(x, \omega)|s(\omega)| \tag{4.22}\\
g(x, \omega)-l^{*}(x, \omega) g(x, \omega) l(x, \omega)=|e(\omega)|^{2} r(x, \omega) \tag{4.23}
\end{gather*}
$$

where $q \in \mathscr{M}$ and $c(\omega)$ and $e(\omega)$ are scalar functions satisfying Condition I .

Suppose

1) $r(x, \omega)$ satisfies Conditions II and N ;
2) $r(x, \omega) \geqq \beta I \quad$ for some $\quad \beta>0$.

Then for some $c_{0} \geqq 0$

$$
\begin{equation*}
\left\|L_{h} u\right\|_{G_{h}}^{2} \leqq\left(1+c_{0} h\right)\|u\|_{G_{h}}^{2} \quad \text { for all } \quad u \in L_{2}, \quad h>0 . \tag{4.24}
\end{equation*}
$$

Proof. By Theorem 3.3 there exist positive constants $d_{j}, \varepsilon_{j}(j=1,2), \varepsilon$ and R such that

$$
\begin{align*}
& d_{1}^{2}\|u\|^{2} \leqq \sum_{i=0}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right) \leqq d_{2}^{2}\|u\|^{2}, \tag{4.25}\\
& \varepsilon_{1}^{2}\|u\|^{2} \leqq \sum_{i=0}^{s} \operatorname{Re}\left(R_{h} \alpha_{i} u, \alpha_{i} u\right) \leqq \varepsilon_{2}^{2}\|u\|^{2} . \tag{4.26}
\end{align*}
$$

By Lemma 4.5 we have

$$
\begin{equation*}
L_{h}^{*} G_{h} L_{h} \equiv L_{h}^{*} \circ G_{h} \circ L_{h} . \tag{4.27}
\end{equation*}
$$

By the same argument as in the proof of Theorem 4.1 there is a constant $c_{1} \geqq 0$ such that

$$
\begin{equation*}
\left\|L_{h} u\right\|_{G_{h}}^{2} \leqq \sum_{i=0}^{s} \operatorname{Re}\left(\left(L_{h}^{\sharp} \circ G_{h} \circ L_{h}\right) \alpha_{i} u, \alpha_{i} u\right)+c_{1} h\|u\|^{2} . \tag{4.28}
\end{equation*}
$$

By Corollary 3.2 for $E_{h}=\phi(e I)$ we have

$$
\begin{equation*}
E_{h}^{*}=E_{h}^{\sharp} \tag{4.29}
\end{equation*}
$$

and by Theorem 3.1 and its corollary

$$
\begin{equation*}
E_{\hbar}^{\#} \circ E_{h} \circ R_{h}=\left(E_{h}^{\sharp} \circ R_{h}\right) \circ E_{h}=\left(E_{h}^{\#} \circ R_{h}\right) E_{h} \equiv E_{h}^{\sharp} R_{h} E_{h} . \tag{4.30}
\end{equation*}
$$

Since by (4.23)

$$
G_{h}-L_{h}^{\#} \circ G_{h} \circ L_{h}=E_{h}^{\#} \circ E_{h} \circ R_{h},
$$

by (4.29) and (4.30) we have

$$
\begin{equation*}
G_{h}-L_{\hbar}^{\#} \circ G_{h} \circ L_{h} \equiv E_{h}^{*} R_{h} E_{h} . \tag{4.31}
\end{equation*}
$$

Hence by (4.28) and (4.31) for some $c_{2} \geqq 0$

$$
\begin{aligned}
\|u\|_{G_{h}}^{2}-\left\|L_{h} u\right\|_{G_{h}}^{2} & \geqq \sum_{i=0}^{s} \operatorname{Re}\left(\left(G_{h}-L_{h}^{\not \approx \circ} G_{h} L_{h}\right) \alpha_{i} u, \alpha_{i} u\right)-c_{1} h\|u\|^{2} \\
& \geqq \sum_{i=0}^{s} \operatorname{Re}\left(E_{h}^{*} R_{h} E_{h} \alpha_{i} u, \alpha_{i} u\right)-c_{2} h\|u\|^{2} \\
& =\sum_{i=0}^{s} \operatorname{Re}\left(R_{h} E_{h} \alpha_{i} u, E_{h} \alpha_{i} u\right)-c_{2} h\|u\|^{2} .
\end{aligned}
$$

Since $E_{h} \alpha_{i} \equiv \alpha_{i} E_{h}$, we have for some $c_{3} \geqq 0$

$$
\|u\|_{G_{h}}^{2}-\left\|L_{h} u\right\|_{G_{h}}^{2} \geqq \sum_{i=0}^{s} \operatorname{Re}\left(R_{h} \alpha_{i} E_{h} u, \alpha_{i} E_{h} u\right)-c_{3} h\|u\|^{2}-c_{2} h\|u\|^{2},
$$

so that by (4.26) with $c_{4}=c_{2}+c_{3}$

$$
\|u\|_{G_{h}}^{2}-\left\|L_{h} u\right\|_{G_{h}}^{2} \geqq \varepsilon_{1}^{2}\left\|E_{h} u\right\|^{2}-c_{4} h\|u\|^{2} \geqq-c_{4} h\|u\|^{2} .
$$

Thus (4.24) holds by (4.25) with $c_{0}=c_{4} / d_{1}^{2}$.

5. Two algebras of difference operators

5.1. Algebra \mathscr{F}_{h}

Let \mathscr{A}_{0} be the set of all $N \times N$ matrix functions $a(x)$ defined on R^{n} with the properties:

1) $a(x)$ can be written as

$$
a(x)=a_{0}(x)+a_{\infty},
$$

where $\lim _{|x| \rightarrow \infty} a_{0}(x)=0$;
2) $a_{0}(x)$ is bounded and integrable;
3) $|\chi|^{p}\left|\hat{a}_{0}(\chi)\right|(p=0,1,2)$ are integrable.
(Two elements of \mathscr{A}_{0} are identified if they coincide almost everywhere.)
We denote by α an n-tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ of integers, i.e. $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. Let \mathscr{A} be the set of all matrices $a(x, \omega)$ such that $a(x, \omega)=\sum_{\alpha} a_{\alpha}(x) e^{i \alpha \cdot \omega}$, where $a_{\alpha} \in \mathscr{A}_{0}$ and the summation is over a finite set of α. It is clear that $a(x, \omega)$ satisfies Conditions I, II and III. Let

$$
\begin{equation*}
a(x, \omega)=\sum_{\alpha} a_{\alpha}(x) e^{i \alpha \cdot \omega}, \quad b(x, \omega)=\sum_{\beta} b_{\beta}(x) e^{i \beta \cdot \omega} . \tag{5.1}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
a(x, \omega)+b(x, \omega)=\sum_{\gamma}\left(a_{\gamma}(x)+b_{\gamma}(x)\right) e^{i \gamma \cdot \omega}, \tag{5.2}\\
a(x, \omega) b(x, \omega)=\sum_{\gamma}\left(\sum_{\alpha+\beta=\gamma} a_{\alpha}(x) b_{\beta}(x)\right) e^{i \gamma \cdot \omega}, \tag{5.3}\\
a^{*}(x, \omega)=\sum_{\alpha} a_{\alpha}^{*}(x) e^{-i \alpha \cdot \omega} . \tag{5.4}
\end{gather*}
$$

Hence \mathscr{A} is a subalgebra of \mathscr{K} with involution.
By (2.6) T_{h}^{α} is a family of bounded linear operators mapping L_{2} into itself. Since for $a(x) \in \mathscr{A}_{0}$

$$
\left\|a(x) T_{h}^{\alpha} u(x)\right\| \leqq\left(\text { ess }_{\dot{x}} \sup |a(x)|\right)\|u\|,
$$

the family $a(x) T_{h}^{\alpha}$ belongs to \mathscr{H}_{h}. We define a mapping ψ from \mathscr{A} into \mathscr{H}_{h} by

$$
\psi\left(\sum_{\alpha} a_{\alpha}(x) e^{i \alpha \cdot \omega}\right)=\sum_{\alpha} a_{\alpha}(x) T_{h}^{\alpha},
$$

and let $\mathscr{A}_{h}=\psi(\mathscr{A})$.

For $\sum_{\alpha} a_{\alpha}(x) e^{i \alpha \cdot \omega} \in \mathscr{A}$ let $A_{h}=\phi\left(\sum_{\alpha} a_{\alpha}(x) e^{i \alpha \cdot \omega}\right)$. Then for $u \in \mathscr{S}$

$$
\begin{aligned}
& \kappa \int e^{i x \cdot \xi} \sum_{\alpha} a_{\alpha}(x) T T_{h}^{\alpha} u(x) d x \\
& \quad=\int \sum_{\alpha} \widehat{a_{\alpha 0}}\left(\xi-\xi^{\prime}\right) e^{i \alpha \cdot h \xi^{\prime}} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}+\sum_{\alpha} a_{\alpha \infty} e^{i \alpha \cdot h \xi} \hat{u}(\xi) \\
& \quad=\int \sum_{\alpha} \widehat{a_{\alpha}}\left(\xi-\xi^{\prime}\right) e^{i \alpha \cdot h \xi^{\prime}} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}=\widehat{A_{h} u}(\xi) \text { a.e. }
\end{aligned}
$$

so that for $u \in \mathscr{S}$ we have in L_{2}

$$
\begin{equation*}
\sum_{\alpha} a_{\alpha}(x) T_{h}^{\alpha} u(x)=A_{h} u(x) \tag{5.5}
\end{equation*}
$$

By the uniqueness of the extension of operators (5.5) holds for all $u \in L_{2}$, so that $\sum_{\alpha} a_{\alpha}(x) T_{h}^{\alpha}$ and A_{h} can be identified. Hence ψ is the restriction of ϕ to \mathscr{A} and is a one-to-one mapping from \mathscr{A} onto \mathscr{A}_{h}. We call $\sum_{\alpha} a_{\alpha}(x) e^{i \alpha \cdot \omega}$ the symbol of $\sum_{\alpha} a_{\alpha}(x) T_{h}^{\alpha}$. Let $A_{h}, B_{h} \in \mathscr{A}_{h}$ and let

$$
A_{h}=\sum_{\alpha} a_{\alpha}(x) T_{h}^{\alpha}, \quad B_{h}=\sum_{\beta} b_{\beta}(x) T_{h}^{\beta} .
$$

Then their symbols $a(x, \omega)$ and $b(x, \omega)$ are given by (5.1). Since $\mathscr{A}_{h} \subset \mathscr{K}_{h}, A_{h}$ $+B_{h}, A_{h} B_{h}$ and $A_{h}^{\#}$ can be defined in \mathscr{K}_{h} and they are the families associated with $a+b, a b$ and a^{*} respectively. By (5.2)-(5.4) we have

$$
\begin{gather*}
A_{h}+B_{h}=\sum_{\gamma}\left(a_{\gamma}(x)+b_{\gamma}(x)\right) T_{h}^{\gamma}, \tag{5.6}\\
A_{h} \circ B_{h}=\sum_{\gamma}\left(\sum_{\alpha+\beta=\gamma} a_{\alpha}(x) b_{\beta}(x)\right) T_{h}^{\gamma}, \tag{5.7}\\
A_{h}^{*}=\sum_{\alpha} a_{\alpha}^{*}(x) T_{h}^{-\alpha} . \tag{5.8}
\end{gather*}
$$

Hence \mathscr{A}_{h} is a subalgebra of \mathscr{K}_{h} with involution and it follows that ψ and ψ^{-1} are morphisms.

Lemma 5.1. Let $F_{j h} \in \mathscr{A}_{h}(j=1,2, \ldots, r)$ and let

$$
F_{h}=F_{1 h} F_{2 h} \cdots F_{r h}, \quad L_{h}=F_{1 h^{\circ}} F_{2 h^{\circ} \cdots \circ F_{r h} .}
$$

Then $F_{h} \equiv L_{h}$.
Proof. We have

$$
\begin{aligned}
F_{h}-L_{h}= & \sum_{j=1}^{r-1}\left(F_{0 h} \cdots F_{j-1 h}\right)\left\{F_{j h}\left(F_{j+1 h^{\circ}} \cdots \circ F_{r h}\right)\right. \\
& \left.-F_{j h} \circ\left(F_{j+1 h^{\prime}} \cdots \circ F_{r h}\right)\right\} \quad\left(F_{0 h}=I_{h}\right) .
\end{aligned}
$$

The symbol $f_{j}(x, \omega)$ of $F_{j h}$ satisfies Conditions I and II, because $f_{j} \in \mathscr{A}$. By Lemma $4.4 f_{j+1}(x, \omega) f_{j+2}(x, \omega) \cdots f_{r}(x, \omega)(j=1,2, \ldots, r-1)$ satisfy Condition II.

Hence by Theorem 3.1

$$
F_{j h}\left(F_{j+1 h^{\circ}} \cdots \circ F_{r h}\right) \equiv F_{j h} \circ\left(F_{j+1 h^{\circ}} \cdots \circ F_{r h}\right) \quad(1 \leqq j<r)
$$

and so we have $F_{h} \equiv L_{h}$, which completes the proof.
Let \mathscr{F}_{h} be the subalgebra of \mathscr{H}_{h} generated by \mathscr{A}_{h}. Then $F_{h} \in \mathscr{F}_{h}$ can be expressed as

$$
F_{h}=\sum_{r} F_{1 h}^{(r)} F_{2 h}^{(r)} \cdots F_{k h}^{(r)} \quad\left(F_{j h}^{(r)} \in \mathscr{A}_{h}\right) .
$$

Corresponding to this we put

$$
\begin{aligned}
& L_{h}=\sum_{r} F_{1 h}^{(r)} \circ F_{2 h}^{(r)} \cdots \circ F_{k h}^{(r)} \\
& l(x, \omega)=\sum_{r} f_{1}^{(r)} f_{2}^{(r)} \cdots f_{k}^{(r)},
\end{aligned}
$$

where $f_{j}^{(r)}(x, \omega)$ is the symbol of $F_{j h}^{(r)}$. Then $L_{h} \in \mathscr{A}_{h}, F_{h} \equiv L_{h}$ and $l(x, \omega)$ is the symbol of L_{h}. In the following we call $l(x, \omega)$ a symbol belonging to F_{h}.

5.2. Algebra $\mathscr{G}_{\boldsymbol{h}}$

We consider the case where coefficient matrices of T_{h}^{α} depend not only on x but also on h.

Let \mathscr{B}_{0} be the set of all $N \times N$ matrix functions $b(x, \mu)$ defined on $R_{x}^{n} \times[0, \infty)$ with the properties:

1) $b(x, 0) \in \mathscr{A}_{0}$;
2) $b(x, \mu)$ can be written as

$$
b(x, \mu)=b_{0}(x, \mu)+b_{\infty}(\mu)
$$

where $\lim _{|x| \rightarrow \infty} b_{0}(x, \mu)=0$ for each μ;

4) $\hat{b}_{0}(\chi, \mu)$ is integrable for each μ;
5) For some $c \geqq 0$

$$
\begin{aligned}
& \int\left|\hat{b}_{0}(\chi, \mu)-\hat{b}_{0}(\chi, 0)\right| d \chi \leqq c \mu \\
& \left|b_{\infty}(\mu)-b_{\infty}(0)\right| \leqq c \mu \quad \text { for all } \quad \mu \geqq 0
\end{aligned}
$$

For instance $\Delta_{j \mu} a(x)(j=1,2, \ldots, n)$ belong to \mathscr{B}_{0} for $a(x) \in \mathscr{A}_{0}$.
Lemma 5.2. Let $b(x, \mu) \in \mathscr{B}_{0}$ and let B_{h} be the family associated with $b(x, 0) e^{i \alpha \cdot \omega}$. Then $b(x, h) T_{h}^{\alpha} \in \mathscr{H}_{h}$ and

$$
\begin{equation*}
b(x, h) T_{h}^{\alpha} \equiv B_{h} . \tag{5.9}
\end{equation*}
$$

Proof. Let $u(x) \in \mathscr{S}$. Then since

$$
\left\|b(x, h) T_{h}^{\alpha} u\right\|^{2} \leqq\left(\text { ess. }_{\dot{x}} \sup |b(x, h)|\right)^{2}\|u\|^{2}
$$

$b(x, h) T_{h}^{\alpha} u(x)$ belongs to L_{2} for each fixed h and its Fourier transform can be written as follows:

$$
\begin{aligned}
& \text { 1.i.m. } \kappa \int e^{-i x \cdot \xi} b(x, h) T_{h}^{\alpha} u(x) d x \\
& \quad=\int \hat{b}_{0}\left(\xi-\xi^{\prime}, h\right) e^{i \alpha \cdot h \xi^{\prime}} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}+b_{\infty}(h) e^{i \alpha \cdot h \xi} \hat{u}(\xi) \quad \text { a.e.. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
&\left\|b(x, h) T_{h}^{\alpha} u-B_{h} u\right\| \leqq\left\|\int\left\{\hat{b}_{0}\left(\xi-\xi^{\prime}, h\right)-\hat{b}_{0}\left(\xi-\xi^{\prime}, 0\right)\right\} e^{i \alpha \cdot h \xi^{\prime}} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}\right\| \\
&+\left|b_{\infty}(h)-b_{\infty}(0)\right|\|\hat{u}\| .
\end{aligned}
$$

By Young's Theorem and condition 5) we have

$$
\left\|b(x, h) T_{h}^{\alpha} u-B_{h} u\right\| \leqq 2 c h\|u\|,
$$

which implies (5.9) if $b(x, h) T_{h}^{a} \in \mathscr{H}_{h}$. Since

$$
\left\|b(x, h) T_{h}^{\alpha} u\right\| \leqq\left\|B_{h} u\right\|+2 c h\|u\|,
$$

$b(x, h) T_{h}^{\alpha}$ belongs to \mathscr{H}_{h} and the proof is complete.
Let \mathscr{B}_{h} be the set of all finite sums of families of the form $\sum_{\alpha} b_{\alpha}(x, h) T_{h}^{\alpha}$ $\left(b_{\alpha}(x, \mu) \in \mathscr{B}_{0}\right)$ and let \mathscr{G}_{h} be the subalgebra of \mathscr{H}_{h} generated by \mathscr{B}_{h}. It is clear that $\mathscr{A}_{0} \subset \mathscr{B}_{0}$ and $\mathscr{F}_{h} \subset \mathscr{G}_{h}$.

Let $E_{h} \in \mathscr{G}_{h}$. Then E_{h} can be written as

$$
E_{h}=\sum_{r} E_{1 h}^{(r)} E_{2 h}^{(r) \cdots E_{k h}^{(r)} \quad\left(E_{j h}^{(r)} \in \mathscr{B}_{h}\right), ~, ~ . ~}
$$

where

$$
E_{j h}^{(r)}=\sum_{\alpha} e_{j \alpha}^{(r)}(x, h) T_{h}^{\alpha} \quad\left(e_{j_{\alpha}}^{(r)}(x, \mu) \in \mathscr{B}_{0}\right) .
$$

Corresponding to these we put

$$
F_{j h}^{(r)}=\sum_{\alpha} e_{j \alpha}^{(r)}(x, 0) T_{h}^{\alpha}, \quad F_{h}=\sum_{r} F_{1 h}^{(r)} F_{2 h}^{(r)} \cdots F_{k h}^{(r)} .
$$

Then $F_{j h}^{(r)} \in \mathscr{A}_{h}$ by the definition of \mathscr{B}_{0} and $E_{j h}^{(r)} \equiv F_{j h}^{(r)}$ by Lemma 5.2. Hence $F_{h} \in \mathscr{F}_{h}$ and $E_{h} \equiv F_{h}$. Thus we have

Theorem 5.1. Let $S_{h}(x, h)$ be the difference operator (2.4) with

$$
\begin{equation*}
c_{\alpha m}(x, \mu) \in \mathscr{B}_{0} \quad(j=1,2, \ldots, v) . \tag{5.10}
\end{equation*}
$$

Then

$$
S_{h}(x, h) \in \mathscr{G}_{h}, \quad S_{h}(x, 0) \in \mathscr{F}_{h} .
$$

Let L_{h} be the family associated with a symbol belonging to $S_{h}(x, 0)$. Then

$$
L_{h} \in \mathscr{A}_{h}, \quad S_{h}(x, h) \equiv S_{h}(x, 0) \equiv L_{h} .
$$

By this theorem and Corollary 2.1, in proving the stability of the scheme (2.2) under the condition (5.10) the problem is to establish (2.17) for L_{h}.

Let

$$
s(x, \omega)=\sum_{m} \prod_{j=1}^{v} c_{m_{j}}(x, \omega),
$$

where

$$
c_{m_{j}}(x, \omega)=\sum_{\alpha} c_{\alpha m_{j}}(x, 0) e^{i \alpha \cdot \omega}, \quad c_{\alpha m_{j}}(x, \mu) \in \mathscr{B}_{0} .
$$

Then $s(x, \omega)$ is a symbol belonging to $S_{h}(x, 0)$. For instance let

$$
\begin{gather*}
f(x, \omega ; \lambda)=c(\omega) I+i \lambda p(x, \omega) \tag{5.11}\\
m(x, \omega ; \lambda)=I+i \lambda p(x, \omega)[c(\omega) I+i \lambda p(x, \omega) / 2] \tag{5.12}
\end{gather*}
$$

where

$$
\begin{align*}
p(x, \omega) & =\sum_{j=1}^{n} A_{j}(x) s_{j}(\omega), \quad c(\omega)=\left(\sum_{j=1}^{n} \cos \omega_{j}\right) / n, \tag{5.13}\\
s_{j}(\omega) & =\sin \omega_{j}, \quad A_{j}(x) \in \mathscr{A}_{0} \quad(j=1,2, \ldots, n) \tag{5.14}
\end{align*}
$$

Then $f(x, \omega ; \lambda)$ and $m(x, \omega ; \lambda)$ are symbols belonging to F_{h} and M_{h} given by (2.10) and (2.11) respectively.

6. Stability of difference schemes

6.1. Assumptions and lemmas

In this section we study the stability of the scheme (2.2). Let

$$
\begin{equation*}
A(x, \omega)=\sum_{j=1}^{n} A_{j}(x) \omega_{j} \tag{6.1}
\end{equation*}
$$

and let $\Delta_{j h}(j=1,2, \ldots, n)$ be the difference operators such that $s_{j}(\omega)(j=1,2, \ldots$, n) satisfy (2.9). Suppose the following conditions are satisfied:

Condition A. $A_{j}(x)(j=1,2, \ldots, n)$ are bounded and continuous on R_{x}^{n} and can be written as

$$
A_{j}(x)=A_{j 0}(x)+A_{j \infty} \quad(j=1,2, \ldots, n),
$$

where

$$
\lim _{|x| \rightarrow \infty} A_{j 0}(x)=0 \quad(j=1,2, \ldots, n)
$$

Condition B. $\quad D_{l}^{m} A_{j 0}(x)(l=1,2, \ldots, n ; m=0,1, \ldots, n+3)$ are bounded, continuous and integrable on R_{x}^{n}.

Condition C. 1) Eigenvalues of $A\left(x, \omega^{\prime}\right)$ are all real and their multiplicities are independent of x and ω^{\prime};
2) There exists a constant $\delta>0$ independent of x and ω^{\prime} such that

$$
\left|\lambda_{i}\left(x, \omega^{\prime}\right)-\lambda_{j}\left(x, \omega^{\prime}\right)\right| \geqq \delta \quad(i \neq j ; i, j=1,2, \ldots, s),
$$

where $\lambda_{i}\left(x, \omega^{\prime}\right)(i=1,2, \ldots, s)$ are all the distinct eigenvalues of $A\left(x, \omega^{\prime}\right)$;
3) Elementary divisors of $A\left(x, \omega^{\prime}\right)$ are all linear.

By Corollary 4.2 $A_{j}(x)(j=1,2, \ldots, n)$ belong to \mathscr{A}_{0}.
Let

$$
\begin{gather*}
P_{h}=\sum_{j=1}^{n} A_{j}(x) \Delta_{j h}, \tag{6.2}\\
p(x, \omega)=\sum_{j=1}^{n} A_{j}(x) s_{j}(\omega), \tag{6.3}\\
p_{z}(x, \omega)=\sum_{j=1}^{n} A_{j}(x) s_{j}(\omega) /|s(\omega)| . \tag{6.4}
\end{gather*}
$$

Then $P_{h} \in \mathscr{A}_{h}$ and $i p(x, \omega)$ is the symbol of $P_{h} . \quad$ By Lemmas 4.6 and $4.7 p_{z}(x, \omega)$ belongs to \mathscr{L} and satisfies Condition N . We have the following two lemmas.

Lemma 6.1. There exists an element $g(x, \omega)$ of \mathscr{L} satisfying the conditions of Theorem 3.3 such that

$$
\begin{equation*}
\left\{g(x, \omega) p_{z}(x, \omega)\right\}^{*}=g(x, \omega) p_{z}(x, \omega) \quad \text { for } \quad \omega \in R^{n}-Z \tag{6.5}
\end{equation*}
$$

Lemma 6.2. There exist elements $w(x, \omega)$ and $w^{-1}(x, \omega)$ of \mathscr{L} satisfying Condition N such that

$$
\begin{equation*}
g(x, \omega)=w^{*}(x, \omega) w(x, \omega) . \tag{6.6}
\end{equation*}
$$

For $a \in \mathscr{K}$ we denote $w a w^{-1}$ by \tilde{a}. By these lemmas \tilde{p}_{z} and \tilde{p} are hermitian matrices on $R_{x}^{n} \times\left(R_{\omega}^{n}-Z\right)$ and on $R_{x}^{n} \times R_{\omega}^{n}$ respectively. By Lemma $3.4 \tilde{p}_{z}$ satisfies Condition N and by Lemma 4.4 it belongs to \mathscr{L}.

In the following we assume that $S_{h}(x, h) \in \mathscr{G}_{h}$. Then $S_{h}(x, 0) \in \mathscr{F}_{h}$ and a symbol belonging to $S_{h}(x, 0)$ is an element of \mathscr{A}.

From the results obtained in Sections 2, 4 and 5 we can conclude that if a symbol belonging to $S_{h}(x, 0)$ satisfies conditions of Theorem 4.1 or 4.2 , then the
scheme (2.2) is stable by Theorem 2.1 and its corollary.
Let $P[\lambda ; \mathscr{L}]$ be the set of all polynomials in λ of the form

$$
a(x, \omega ; \lambda)=\sum_{j=0}^{m} \lambda^{j} a_{j}(x, \omega), \quad a_{j}(x, \omega) \in \mathscr{L} \quad(j=0,1, \ldots, m),
$$

and denote by $P[\lambda ; p]$ the set of all polynomials in λ and $p(x, \omega)$. The set $P[\lambda$; \mathscr{M}] is defined similarly. For a scalar function $t(\omega)$ we use the notation

$$
a(x, \omega ; \lambda) / t(\omega)=\sum_{j=0}^{m} \lambda^{j} a_{j} / t \in \mathscr{K} \quad(\text { or } \mathscr{L}, \mathscr{M})
$$

if $a_{j}(x, \omega) / t(\omega) \in \mathscr{K}($ or $\mathscr{L}, \mathscr{M})(j=0,1, \ldots, m)$.

6.2. Special schemes

We have the following [17]
Theorem 6.1. Friedrichs' scheme is stable, if $\lambda \rho\left(p_{z}(x, \omega)\right) \leqq 1 / \sqrt{ } n$. The modified Lax-Wendroff scheme is stable if $\lambda \rho\left(p_{z}(x, \omega)\right) \leqq 2 / \sqrt{ } n$.

Proof. For Friedrichs' scheme by (5.11) $f(x, \omega ; \lambda)$ can be rewritten in \mathscr{K} as

$$
f(x, \omega ; \lambda)=c(\omega) I+i \lambda p_{z}(x, \omega)|s(\omega)|
$$

which is of the form (4.10). By the fact $p_{z} \in \mathscr{L}$ and by Lemma 6.1 the first part of the assumptions and condition 1) of Theorem 4.1 are satisfied.

From (5.13) and (5.14) it follows that

$$
\begin{aligned}
& 1-c^{2}(\omega)=n^{-1}|s(\omega)|^{2}+b(\omega), \quad b(\omega)=\sum_{j>k} b_{j k}^{2}(\omega), \\
& b_{j k}(\omega)=\left(\cos \omega_{j}-\cos \omega_{k}\right) / n
\end{aligned}
$$

Hence conditions 2) and 4) of Theorem 4.1 are satisfied.
By Corollary 4.1 we have

$$
g-f^{*} g f=w^{*}\left(n^{-1} I-\lambda^{2} \tilde{p}_{z}^{2}\right)|s|^{2} w+b g .
$$

Since $\lambda \rho\left(\tilde{p}_{z}\right) \leqq 1 / \sqrt{ } n$, we have $g-f^{*} g f \geqq b g$ and condition 3) of Theorem 4.1 is satisfied. Hence Friedrichs' scheme is stable.

By (5.12) $m(x, \omega ; \lambda)$ can be rewritten in \mathscr{K} as

$$
m(x, \omega ; \lambda)=I+i \lambda p_{z} c|s|-\lambda^{2} p_{z}^{2}|s|^{2} / 2 .
$$

Since $p_{z}^{2} \in \mathscr{L}$ by Lemma 4.4, the assumptions of Theorem 4.1 are satisfied except condition 3).

By Corollary 4.1 we have

$$
g-m^{*} g m=w^{*}(\lambda \tilde{p})^{2}\left[\left(n^{-1} I-\lambda^{2} \tilde{p}_{z}^{2} / 4\right)|s|^{2}+b\right] w .
$$

Since $\lambda \rho\left(\tilde{p}_{z}\right) \leqq 2 / \vee$, we have $g-m^{*} g m \geqq 0$. Hence the modified Lax-Wendroff scheme is stable.

6.3. Stability theorems

We consider the schemes (2.2) with accuracy of order $r \geqq 1$ and state stability conditions in terms of a symbol $l(x, \omega ; \lambda)$ belonging to $S_{h}(x, 0)$. Suppose $s(\omega)$ satisfies (2.9) and let

$$
d=r+k, k=\left\{\begin{array}{ll}
1 & \text { if } r \text { is odd, } \\
2 & \text { if } r \text { is even, }
\end{array} \quad y(x, \omega ; \lambda)=\sum_{j=2}^{r}\left(i \lambda p_{z}\right)^{j}|s|^{j-2} / j!.\right.
$$

Then since $p_{z},|s| I \in \mathscr{L}$, by Lemma $4.4 y \in \mathscr{L}$.
We denote by λ_{0}, c_{1} and c_{2} positive constants and by $t(\omega)$ a scalar function such that $t(\omega) I \in \mathscr{K}$.

Theorem 6.2. Let

$$
\begin{equation*}
l(x, \omega: \lambda)=\sum_{j=0}^{r}(i \lambda p)^{j} / j!, \tag{6.7}
\end{equation*}
$$

where $r=4 m-1$ or $4 m(m \geqq 1)$. Then the scheme (2.2) is stable for sufficiently small λ.

Proof. l can be rewritten in \mathscr{K} as

$$
l(x, \omega ; \lambda)=I+i \lambda p_{z}|s|+y|s|^{2},
$$

and the assumptions of Theorem 4.1 are satisfied except condition 3).
We have

$$
g-l^{*} g l=c_{2} w^{*}(\lambda \tilde{p})^{d}\left(I-(\lambda \tilde{p})^{2} \tilde{q}\right) w,
$$

where $c_{2}=2 /(r!d)$ and $q \in P[\lambda ; p]$. Hence there exists λ_{0} such that $g-l^{*} g l \geqq 0$ for $\lambda \leqq \lambda_{0}$. Thus the scheme (2.2) is stable for $\lambda \leqq \lambda_{0}$.

Theorem 6.3. Let

$$
\begin{equation*}
l(x, \omega ; \lambda)=\sum_{j=0}^{r}(i \lambda p)^{j} / j!-(\lambda p)^{m} v(\lambda p)^{m}, \tag{6.8}
\end{equation*}
$$

where $r \geqq 2 m(m \geqq 1)$ and $v(x, \omega ; \lambda) \in P[\lambda ; \mathscr{L}]$. Suppose

1) $|s(\omega)|^{\sigma} \leqq c_{1} t(\omega)$;
2) $v_{1}(x, \omega ; \lambda)=v / t \in \mathscr{K}$;
3) $u(x, \omega ; \lambda) \geqq c_{2} t(\omega) I \quad$ for $\lambda \leqq \lambda_{0}$,
where $\sigma=d-2 m$ and $u=\tilde{v}^{*}+\tilde{v}-\tilde{v}^{*}(\lambda \tilde{p})^{2 m} \tilde{v}$. Then the scheme (2.2) is stable for sufficiently small λ.

Proof. l can be rewritten in \mathscr{K} as

$$
\begin{equation*}
l(x, \omega ; \lambda)=I+f_{1}|s|+f_{2}|s|^{2} \tag{6.9}
\end{equation*}
$$

where

$$
f_{1}=i \lambda p_{z}, \quad f_{2}=y-\lambda^{2 m} p_{z}^{m} v p_{z}^{m}|s|^{2 m-2}
$$

By Lemma $4.4 f_{1}, f_{2} \in \mathscr{L}$.
It suffices to show that condition 3) of Theorem 4.1 is satisfied. We have

$$
g-l^{*} g l=w^{*}(\lambda \tilde{p})^{m}\left[u+\lambda q_{2}+(\lambda \tilde{p})^{\sigma} \tilde{q}_{3}\right](\lambda \tilde{p})^{m} w,
$$

where $q_{3} \in P[\lambda ; p]$,

$$
\begin{equation*}
q_{2}=\tilde{v}^{*} \tilde{q}_{1}+\tilde{q}_{1}^{*} \tilde{v}, \quad q_{1}=\sum_{j=1}^{r}(i p)^{j \lambda^{j-1} / j!} \tag{6.10}
\end{equation*}
$$

By condition 1) we can define $e(\omega)=|s(\omega)|^{\sigma} / t(\omega)$ as in 4.1 and it follows that $e(\omega) I \in \mathscr{K}$ and

$$
\begin{aligned}
g-l^{*} g l= & w^{*}(\lambda \tilde{p})^{m} t\left[c_{2} I+\lambda q_{21}+\left(\lambda \tilde{p}_{z}\right)^{\sigma} \tilde{q}_{3} e\right](\lambda \tilde{p})^{m} w \\
& +w^{*}(\lambda \tilde{p})^{m}\left(u-c_{2} t I\right)(\lambda \tilde{p})^{m} w,
\end{aligned}
$$

where

$$
q_{21}=\tilde{v}_{1}^{*} \tilde{q}_{1}+\tilde{q}_{1}^{*} \tilde{v}_{1}, \quad \sigma \geqq 2
$$

Hence by condition 3) there exists $\lambda_{1}\left(0<\lambda_{1} \leqq \lambda_{0}\right)$ such that $g-l^{*} g l \geqq 0$ for $\lambda \leqq \lambda_{1}$. Thus the scheme is stable for $\lambda \leqq \lambda_{1}$.

Theorem 6.4. Let

$$
\begin{equation*}
l(x, \omega ; \lambda)=\sum_{j=0}^{r}(i \lambda p)^{j} / j!-(i \lambda p)^{2 m+1} a-(\lambda p)^{m+1} v(\lambda p)^{m+1} \tag{6.11}
\end{equation*}
$$

where $r \geqq 2 m+2(m \geqq 0), v(x, \omega ; \lambda) \in P[\lambda ; \mathscr{L}]$ and $a(\omega)$ is a real-valued scalar function such that $a(\omega) I \in \mathscr{L}$ and $(a(\omega) / t(\omega)) I \in \mathscr{K}$. Suppose conditions 1), 2) and 3) of Theorem 6.3 are satisfied, where $\sigma=d-2 m-2$,

$$
u=\tilde{v}+\tilde{v}^{*}+(-1)^{m} 2 a I-\tilde{b}^{*}(\lambda \tilde{p})^{2 m} \tilde{b}, \quad b=(-1)^{m}(i a)+\lambda p v .
$$

Then the scheme (2.2) is stable for sufficiently small λ.
Proof. l can be rewritten in \mathscr{K} as (6.9), where

$$
f_{1}=i \lambda p_{z}(1-a), \quad f_{2}=y-\left(\lambda p_{z}\right) v\left(\lambda p_{z}\right) \quad \text { if } \quad m=0
$$

$$
f_{1}=i \lambda p_{z}, \quad f_{2}=y-\left(\lambda p_{z}\right)^{m} b\left(\lambda p_{z}\right)^{m+1}|s|^{2 m-1} \quad \text { if } \quad m \geqq 1 .
$$

By Lemma 4.4 $f_{1}, f_{2} \in \mathscr{L}$. We have

$$
g-l^{*} g l=w^{*}(\lambda \tilde{p})^{m+1}\left[u+i \lambda q_{3}+(\lambda \tilde{p})^{\sigma} \tilde{q}_{4}\right](\lambda \tilde{p})^{m+1} w,
$$

where $\sigma \geqq 2, q_{4} \in P[\lambda ; p]$,

$$
q_{3}=q_{2}^{*} \tilde{p}-\tilde{p} q_{2}, \quad q_{2}=\tilde{v}-i \tilde{q}_{1}^{*} \tilde{b}, \quad q_{1}=\sum_{j=0}^{r-2}(i \lambda p)^{j} /(j+2)!.
$$

By condition 1) we can define $e(\omega)=|s(\omega)|^{\sigma} / t(\omega)$ and we have $e(\omega) I \in \mathscr{K}$,

$$
\begin{aligned}
g-l^{*} g l= & w^{*}(\lambda \tilde{p})^{m+1} t\left[c_{2} I+i \lambda q_{31}+\left(\lambda \tilde{p}_{z}\right)^{\sigma} \tilde{q}_{4} e\right](\lambda \tilde{p})^{m+1} w \\
& +w^{*}(\lambda \tilde{p})^{m+1}\left(u-c_{2} t I\right)(\lambda \tilde{p})^{m+1} w,
\end{aligned}
$$

where

$$
\begin{aligned}
& q_{31}=q_{21}^{*} \tilde{p}-\tilde{p} q_{21}, \quad q_{21}=\tilde{v}_{1}-i \tilde{q}_{1}^{*} \tilde{b}_{1} \\
& b_{1}=(-1)^{m}\left(i a_{1}\right)+\lambda p v_{1}, \quad a_{1}=a / t
\end{aligned}
$$

Hence by condition 3) there exists $\lambda_{1}\left(0<\lambda_{1} \leqq \lambda_{0}\right)$ such that $g-l^{*} g l \geqq 0$ for $\lambda \leqq \lambda_{1}$. Thus by Theorem 4.1 the scheme is stable for $\lambda \leqq \lambda_{1}$.

Corollary 6.1. Let

$$
\begin{equation*}
l(x, \omega ; \lambda)=\sum_{j=0}^{r}(i \lambda p)^{j} / j!-(i \lambda p)^{r-1} e, \tag{6.12}
\end{equation*}
$$

where $r=4 m+1$ or $4 m+2(m \geqq 1)$, $e(\omega)$ is a scalar function such that $|s(\omega)|^{2}$ $\leqq c_{1} e(\omega)$ for some $c_{1}>0$ and $e(\omega), \partial_{j} e(\omega)$ and $\partial_{k} \partial_{j} e(\omega)(j, k=1,2, \ldots, n)$ are bounded and continuous on R_{ω}^{n}. Then the scheme (2.2) is stable for sufficiently small λ.

Theorem 6.5. Let

$$
\begin{equation*}
l(x, \omega ; \lambda)=\sum_{j=0}^{r}(i \lambda p)^{j} / j!-\lambda^{2 m} v, \tag{6.13}
\end{equation*}
$$

where $r \geqq 2 m(m \geqq 0, r \geqq 1)$,

$$
\begin{aligned}
& v(x, \omega ; \lambda)=a+\lambda^{\alpha} b \quad(\alpha \geqq 0), \\
& a(x, \omega ; \lambda) \in P[\lambda ; \mathscr{L}], \quad b(x, \omega ; \lambda) \in P[\lambda ; \mathscr{L}], \\
& a_{1}(x, \omega ; \lambda)=a /|s|^{2} \in \mathscr{L}, \quad b_{1}(x, \omega ; \lambda)=b /|s| \in \mathscr{L} .
\end{aligned}
$$

Suppose

1) $\tilde{b}^{*}+\tilde{b}=0 ;$
2) $|s(\omega)|^{d-2} \leqq c_{1} t(\omega)$;
3) $a_{2}(x, \omega ; \lambda)=a_{1} / t \in \mathscr{K}, \quad b_{2}(x, \omega ; \lambda)=b_{1} / t \in \mathscr{K}$;
4) $u(x, \omega ; \lambda) \geqq c_{2} t|s|^{2} I \quad$ for $\lambda \leqq \lambda_{0}$,
where $u=\tilde{a}^{*}+\tilde{a}-\lambda^{2 m} \tilde{v}^{*} \tilde{v}$. Then the scheme (2.2) is stable for sufficiently small λ.

Proof. l can be rewritten in \mathscr{K} as (6.9), where

$$
f_{1}=i \lambda p_{z}-\lambda^{\beta} b_{1}, \quad f_{2}=y-\lambda^{2 m} a_{1}, \quad \beta=2 m+\alpha .
$$

By Lemma $4.4 f_{1}, f_{2} \in \mathscr{L}$. By (6.5) and condition 1) we have

$$
f_{1}^{*} g+g f_{1}=0 .
$$

Hence the assumptions of Theorem 4.1 are satisfied except condition 3).
We have

$$
g-l^{*} g l=\lambda^{2 m} w^{*}\left(u+\lambda q_{2}+\lambda^{\sigma} \tilde{p}^{d} \tilde{q}_{3}\right) w,
$$

where $\sigma=d-2 m \geqq 2, q_{3} \in P[\lambda ; p]$ and q_{2} is given by (6.10). By condition 2) we can define $e(\omega)=|s(\omega)|^{d-2} / t(\omega)$ and $e(\omega) I \in \mathscr{K}$. Put

$$
q_{21}=q_{2} /\left(t|s|^{2}\right), \quad q_{11}=q_{1} /|s|, \quad q_{4}=\tilde{a}_{2}^{*} \tilde{q}_{1}+\lambda^{*} \tilde{b}_{2}^{*} \tilde{q}_{11}
$$

Then

$$
\begin{aligned}
& q_{21}(x, \omega ; \lambda)=q_{4}+q_{4}^{*} \in \mathscr{K}, \\
& g-l^{*} g l=\lambda^{2 m} w^{*} t|s|^{2}\left(c_{2} I+\lambda q_{21}+\lambda^{\sigma} \tilde{p}_{z}^{d} e \tilde{q}_{3}\right) w \\
& \\
& \quad+\lambda^{2 m} w^{*}\left(u-c_{2} t|s|^{2} I\right) w
\end{aligned}
$$

and by condition 4) there exists $\lambda_{1}\left(0<\lambda_{1} \leqq \lambda_{0}\right)$ such that $g-l^{*} g l \geqq 0$ for $\lambda \leqq \lambda_{1}$. Thus the scheme is stable for $\lambda \leqq \lambda_{1}$.

Theorem 6.6. Let

$$
\begin{equation*}
l(x, \omega ; \lambda)=\sum_{j=0}^{r}(i \lambda p)^{j} / j!-\lambda^{\alpha} v, \tag{6.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& v(x, \omega ; \lambda)=m I+\lambda^{\beta} a+\lambda^{\nu} b \quad(\beta, \gamma \geqq 0), \\
& m(\omega ; \lambda)=\sum_{j=0}^{\mu} \lambda^{j} m_{j}(\omega) I, \quad \gamma \geqq \alpha \geqq 0, \\
& a(x, \omega ; \lambda) \in P[\lambda ; \mathscr{M}], \quad b(x, \omega ; \lambda) \in P[\lambda ; \mathscr{M}], \\
& a_{1}(x, \omega ; \lambda)=a /|s| \in \mathscr{M}, \quad b_{1}(x, \omega ; \lambda)=b /|s| \in \mathscr{M},
\end{aligned}
$$

$m_{j}(\omega)(j=0,1, \ldots, \mu)$ are scalar functions satisfying Condition I. Suppose

1) $\tilde{b}^{*}+\tilde{b}=0 ;$
2) $t(\omega)$ satisfies Condition I;
3) $|s(\omega)|^{d} \leqq c_{1} t^{2}(\omega), \quad\left|m_{j}(\omega)\right| \leqq c_{1} t^{2}(\omega) \quad(j=0,1, \ldots, \mu)$;
4) $a_{2}(x, \omega ; \lambda)=a / t^{2} \in \mathscr{K}, b_{2}(x, \omega ; \lambda)=b|s| / t^{2} \in \mathscr{K}$ and a_{2}, b_{1} and b_{2} satisfy Conditions N and II;
5) $u(x, \omega ; \lambda) \geqq c_{2} t^{2} I \quad$ for $\lambda \leqq \lambda_{0}$,
where $u=\left(m^{*}+m\right) I+\lambda^{\beta}\left(\tilde{a}^{*}+\tilde{a}\right)-\lambda^{\alpha} \tilde{v}^{*} \tilde{v}$. Then the scheme (2.2) is stable for suff ciently small λ.

Proof. l can be rewritten in \mathscr{K} as

$$
l(x, \omega ; \lambda)=c(\omega ; \lambda) I+f|s|,
$$

where

$$
c(\omega ; \lambda)=I-\lambda^{\alpha} m, \quad f=i \lambda p_{z}+y|s|-\lambda^{\alpha}\left(\lambda^{\beta} a_{1}+\lambda^{\nu} b_{1}\right) .
$$

By Lemma $4.4 f \in \mathscr{M}$ and $c(\omega ; \lambda)$ satisfies Condition I. By (6.5) and condition 1) we have

$$
g-l^{*} g l=\lambda^{\alpha} w^{*}\left(u+\lambda q_{2}+\lambda^{\sigma} \tilde{p}^{d} \tilde{q}_{3}\right) w,
$$

where $\sigma=d-\alpha \geqq 1, q_{3} \in P[\lambda ; p]$ and q_{2} is given by (6.10).
By condition 3) we can define

$$
e_{1}(\omega)=|s(\omega)|^{d} / t^{2}(\omega), \quad e_{2}(\omega ; \lambda)=\sum_{j=0}^{\mu} \lambda^{j} m_{j}(\omega) / t^{2}(\omega)
$$

and $e_{j} I \in \mathscr{K}(j=1,2)$. Put

$$
\begin{aligned}
& q_{21}=q_{2} / t^{2}, \quad v_{1}=e_{2} I+\lambda^{\beta} a_{2}, \quad q_{11}=q_{1} /|s|, \\
& q_{4}=\tilde{v}_{1}^{*} \tilde{q}_{1}+\lambda^{\gamma} \tilde{b}_{2}^{*} \tilde{q}_{11} .
\end{aligned}
$$

Then $q_{21}(x, \omega ; \lambda)=q_{4}+q_{4}^{*} \in \mathscr{K}$ and we have

$$
g-l^{*} g l=\lambda^{\alpha} t^{2}(\omega) r(x, \omega ; \lambda),
$$

where

$$
\begin{aligned}
& r(x, \omega ; \lambda)=w^{*}\left(u_{1}-c_{2} I\right) w+w^{*}\left(c_{2} I+\lambda q_{21}+\lambda^{\sigma} \tilde{p}_{z}^{d} \tilde{q}_{3} e_{1}\right) w, \\
& u_{1}(x, \omega ; \lambda)=\tilde{v}_{1}^{*}+\tilde{v}_{1}-\lambda^{\alpha}\left(\tilde{v}_{1}^{*} \tilde{v}+\lambda^{\gamma} \tilde{b}^{*} \tilde{v}_{1}+\lambda^{2 v} \tilde{b}_{1}^{*} \tilde{b}_{2}\right) .
\end{aligned}
$$

By condition 4) v_{1} and v satisfy Conditions N and II, so that r satisfies the same conditions. Since by condition 5)

$$
u_{1}(x, \omega ; \lambda) \geqq c_{2} I \quad \text { for } \quad \lambda \leqq \lambda_{0}
$$

there exist $c_{3}>0$ and $\lambda_{1}\left(0<\lambda_{1} \leqq \lambda_{0}\right)$ such that

$$
r(x, \omega) \geqq c_{3} w^{*} w \geqq c_{3} e I \quad \text { for } \quad \lambda \leqq \lambda_{1} .
$$

Hence conditions 1) and 2) of Theorem 4.2 are satisfied and the scheme is stable for $\lambda \leqq \lambda_{1}$.

6.4. Case of a regularly hyperbolic system

In this section we assume that $A_{j}(x)(j=1,2, \ldots, n)$ are real matrices and that (1.1) is a regularly hyperbolic system, that is, eigenvalues of $A\left(x, \omega^{\prime}\right)$ are all real and distinct ($s=N$ in Condition C) [19].

Theorem 6.7. For a regularly hyperbolic system with real coefficients let

$$
\begin{equation*}
l(x, \omega ; \lambda)=I+i \lambda p(x, \omega)+\lambda^{2} q(x, \omega ; \lambda)|s(\omega)|^{2} \tag{6.15}
\end{equation*}
$$

where q is a polynomial in λ with coefficients satisfying Condition VI. Suppose

$$
\begin{equation*}
\rho(l(x, \omega ; \lambda)) \leqq 1 \quad \text { for } \quad \lambda \leqq \lambda_{0} \tag{6.16}
\end{equation*}
$$

Then the scheme (2.2) is stable for sufficiently small λ.
To prove the theorem we need the following
Lemma 6.3. Under the assumptions of the theorem there exist $\lambda_{1}\left(0<\lambda_{1}\right.$ $\leqq \lambda_{0}$) and a nonsingular matrix $u(x, \omega ; \lambda)$ such that
i) u and u^{-1} belong to \mathscr{L} for each $\lambda\left(0<\lambda \leqq \lambda_{1}\right)$;
ii) $g(x, \omega ; \lambda)=u^{*} u$ satisfies Condition N for each $\lambda\left(0<\lambda \leqq \lambda_{1}\right)$;
iii) For some $e_{1}>0$

$$
g(x, \omega ; \lambda) \geqq e_{1} I \quad \text { for } \quad \lambda \leqq \lambda_{1} ;
$$

iv) $u\left(p_{z}-i \lambda q|s|\right) u^{-1}=d+\lambda|s| f \quad$ for $\quad \omega \in R^{n}-Z, \quad \lambda \leqq \lambda_{1}$,
where $d(x, \omega ; \lambda)$ and $f(x, \omega ; \lambda)$ are diagonal matrices belonging to \mathscr{L} and d is a real matrix.

Proof of Theorem 6.7. By Lemma 4.5 and its corollary,

$$
\begin{aligned}
G_{h}-L_{h}^{*} G_{h} L_{h} & \equiv G_{h}-L_{h}^{\#} \circ G_{h} \circ L_{h} \\
& =U_{h}^{\#} \circ\left(I_{h}-\tilde{L}_{h}^{\#} \circ \tilde{L}_{h}\right) \circ U_{h},
\end{aligned}
$$

where $\tilde{l}(x, \omega ; \lambda)=u l u^{-1}$. We have in \mathscr{K}

$$
I-\eta^{*} \tilde{l}=\lambda^{2}|s|^{2}\left[i\left(f^{*}-f\right)-\left(d+\lambda|s| f^{*}\right)(d+\lambda|s| f)\right]
$$

which satisfies conditions 1), 2) and 3) of Theorem 3.4 for $\lambda \leqq \lambda_{1}$ by Lemma 4.3. Since l is a diagonal matrix by Lemma 6.3, from (6.16) it follows that

$$
I-\tilde{l}^{*} \eta \geqq(1-\rho(l)) I \geqq 0 \quad \text { for } \quad \lambda \leqq \lambda_{1}
$$

Hence $u^{*}\left(I-l^{*} l\right) u$ satisfies all conditions of Theorem 3.4 and we have for some $c_{1} \geqq 0$

$$
\begin{aligned}
& \operatorname{Re}\left(\left(G_{h}-L_{h}^{\#} \circ G_{h} \circ L_{h}\right) \alpha_{i} v, \alpha_{i} v\right) \\
& \quad=\operatorname{Re}\left(\left(U_{h}^{\#} \circ\left(I_{h}-\tilde{L}_{h}^{\sharp} \circ \tilde{L}_{h}\right) \circ U_{h}\right) \alpha_{i} v, \alpha_{i} v\right) \geqq-c_{1} h\left\|\alpha_{i} v\right\|^{2} \\
& \qquad \text { for all } v \in L_{2}, \quad h>0 .
\end{aligned}
$$

By the same argument as in the proof of Theorem 4.1 we have for some c_{2} $\geqq 0$

$$
\|v\|_{G_{h}}^{2}-\left\|L_{h} v\right\|_{G_{h}}^{2} \geqq \sum_{i=0}^{s} \operatorname{Re}\left(\left(G_{h}-L_{h}^{\sharp} \circ G_{h} \circ L_{h}\right) \alpha_{i} v, \alpha_{i} v\right)-c_{2} h\|v\|^{2},
$$

so that

$$
\|v\|_{G_{h}}^{2}-\left\|L_{h} v\right\|_{G_{h}}^{2} \geqq-\left(c_{1}+c_{2}\right) h\|v\|^{2} .
$$

Hence for some $c_{0} \geqq 0$

$$
\left\|L_{h} v\right\|_{G_{h}}^{2} \leqq\left(1+c_{0} h\right)\|v\|_{G_{h}}^{2},
$$

and by Corollary 2.1 the scheme is stable for $\lambda \leqq \lambda_{1}$.

7. Examples of schemes

In this section Conditions A, B and C are assumed. To construct difference schemes with accuracy of order r, we assume that $A_{j}(x)(j=1,2, \ldots, n)$ are bounded and continuous together with their partial derivatives up to the r-th order, where $r=3$ in examples 2 and 3 and $r=4$ in examples 4 and 5.

We introduce the following difference operators:

$$
\begin{gathered}
\Delta_{1 j}=\left(T_{j}-T_{j}^{-1}\right) / 2, \quad \Delta_{2 j}=\left[8\left(T_{j}-T_{j}^{-1}\right)-\left(T_{j}^{2}-T_{j}^{-2}\right)\right] / 12 \\
\delta_{j}=\left(T_{j}+T_{j}^{-1}-2 I\right) / 4 \quad(j=1,2, \ldots, n), \\
P_{m h}(x)=\sum_{j=1}^{n} A_{j}(x) \Delta_{m j} \quad(m=1,2),
\end{gathered}
$$

$$
\begin{gathered}
F_{m h}(x, h)=\sum_{j \neq k} A_{j} \Delta_{m j}\left(A_{k} \Delta_{m k}\right)+\sum_{j=1}^{n} A_{j}\left(\Delta_{m j} A_{j}\right) \Delta_{m j}, \\
K_{1 h}(x, h)=F_{1 h}+4 \sum_{j=1}^{n} A_{j}^{2} \delta_{j}, \\
K_{2 h}(x, h)=F_{2 h}+4 \sum_{j=1}^{n} A_{j}^{2} \delta_{j}\left(1-\delta_{j} / 3\right), \\
Q_{h}(x, h)=F_{2 h}+\sum_{j=1}^{n} A_{j}^{2} \Delta_{1 j}^{2}\left(1-4 \delta_{j} / 3\right),
\end{gathered}
$$

Since by Corollary $4.2 A_{j}(x) \in \mathscr{A}_{0}$ and $\Delta_{m j} A_{j}(x) \in \mathscr{B}_{0}(j=1,2, \ldots, n ; m=1,2)$, $P_{m h}(x)(m=1,2)$ belong to \mathscr{A}_{h} and $F_{m h}(x, h), K_{m h}(x, h)(m=1,2)$ and $Q_{h}(x, h)$ belong to \mathscr{G}_{h}.

In connection with these operators we define the following functions:

$$
\begin{gather*}
\alpha_{j}(\omega)=\sin \omega_{j}, \quad \beta_{j}(\omega)=\sin ^{2}\left(\omega_{j} / 2\right), \\
s_{j}(\omega)=\alpha_{j}\left(1+2 \beta_{j} / 3\right) \quad(j=1,2, \ldots, n), \\
p_{1}(x, \omega)=\sum_{j=1}^{n} A_{j} \alpha_{j}, \quad p_{2}(x, \omega)=\sum_{j=1}^{n} A_{j} s_{j}, \tag{7.1}\\
n_{1}(x, \omega)=4 \sum_{j=1}^{n} A_{j}^{2} \beta_{j}^{2}, \quad n_{2}(x, \omega)=(16 / 9) \sum_{j=1}^{n} A_{j}^{2}\left(2+\beta_{j}\right) \beta_{j}^{3}, \tag{7.2}\\
f(x, \omega)=(4 / 9) \sum_{j=1}^{n} A_{j}^{2} \alpha_{j}^{2} \beta_{j}^{2}, \tag{7.3}\\
k_{m}(x, \omega)=-p_{m}^{2}-n_{m} \quad(m=1,2), \quad q(x, \omega)=-p_{2}^{2}+f, \tag{7.4}\\
r_{1}(x, \omega)=(2 / 3) \sum_{j=1}^{n} A_{j} \alpha_{j} \beta_{j}, \quad r_{j+1}(x, \omega)=p_{2} r_{j}+r_{1} p_{1}^{j} \quad(j=1,2) . \tag{7.5}
\end{gather*}
$$

Matrices $i p_{m}(x, \omega), k_{m}(x, \omega)(m=1,2)$ and $q(x, \omega)$ are symbols belonging to $P_{m h}(x), K_{m h}(x, 0)(m=1,2)$ and $Q_{h}(x, 0)$ respectively. By Lemmas 4.6 and 4.7 $p_{m}, n_{m}, k_{m}(m=1,2), r_{j}(j=1,2,3), f$ and q belong to \mathscr{L} and satisfy Condition N .

Put

$$
\begin{aligned}
& |\alpha|=\left(\sum_{j=1}^{n} \alpha_{j}^{2}\right)^{1 / 2}, \quad|\beta|=\left(\sum_{j=1}^{n} \beta_{j}^{2}\right)^{1 / 2} \\
& \sigma(\omega)=\left(\sum_{j=1}^{n} \beta_{j}^{3}\right)^{1 / 2}, \quad \tau(\omega)=\sum_{j=1}^{n} \beta_{j}
\end{aligned}
$$

Then we have

$$
\begin{equation*}
|\alpha| \leqq|s| \leqq 5|\alpha| / 3 \tag{7.6}
\end{equation*}
$$

$$
|\alpha|^{2} \leqq 4 \sqrt{ } n|\beta|, \quad|\beta| \leqq \tau, \quad|\beta|^{3} \leqq \sqrt{ } n \sigma^{2}, \quad 9|s|^{2} / 100 \leqq \sqrt{ } n|\beta| .
$$

From these it follows that

$$
\begin{array}{cl}
\left(\alpha_{j} /|s|\right) I \quad(j=1,2, \ldots, n), & (|\alpha| /|s|) I \in \mathscr{L} \\
\left(\alpha_{j} /|\alpha|\right) I,\left(\beta_{j} /|\beta|\right) I(j=1,2, \ldots, n), & (|s| /|\alpha|) I,\left(|\alpha|^{2} /|\beta|\right) I \tag{7.8}
\end{array}
$$

$$
(|\beta| / \tau) I,\left(|\beta|^{3} / \sigma^{2}\right) I,\left(|s|^{2} /|\beta|\right) I,\left(|s|^{2} / \tau\right) I \in \mathscr{K} .
$$

Hence by (7.1)-(7.8)

$$
\begin{gather*}
p_{m} /|s|(m=1,2), \quad r_{j} /|s|^{j}(j=1,2,3), \quad f /|s|^{2} \in \mathscr{L}, \tag{7.9}\\
n_{m} /|\beta|^{m+1}(m=1,2), \quad r_{j} /\left(|\alpha|^{j}|\beta|\right)(j=1,2,3), \quad f /\left(|\alpha|^{2}|\beta|^{2}\right) \in \mathscr{K}, \tag{7.10}
\end{gather*}
$$

and they satisfy Conditions N and II. It is clear that $|\beta(\omega)|$ and $\sigma(\omega)$ satisfy Condition I and

$$
r_{j}(x, \omega)=p_{2}^{j}-p_{1}^{j} \quad(j=1,2,3)
$$

For simplicity we put $\mu=1 / n$. For a difference operator $S_{h}(x, h)$ let $l(x, \omega$; λ) be a symbol belonging to $S_{h}(x, 0)$ and let $M(x, \omega ; \lambda)$ denote a hermitian element of \mathscr{K}.

Example 1. Let

$$
\begin{equation*}
S_{h}(x)=\sum_{j=0}^{r}\left(\lambda P_{2 h}\right)^{j} / j! \tag{7.11}
\end{equation*}
$$

where $r=3$ or 4 . Then $l(x, \omega ; \lambda)$ can be written as (6.7). By Theorem 6.2 the scheme (2.2) with the operator (7.11) is stable if $\lambda \rho\left(p_{z}\right) \leqq \sqrt{ } 3 d / \sqrt{ } n$ in the case $r=3$ and is so if $\lambda \rho\left(p_{z}\right) \leqq 2 \sqrt{ } 2 d / \sqrt{ } n$ in the case $r=4$, where $p_{z}=p_{2} /|s|, d=$ $(2 / 25) \sqrt{40^{\prime} 6-15}$.

Example 2. Let

$$
\begin{equation*}
S_{h}(x)=I-E_{h}+\lambda P_{2 h}+\lambda^{2} P_{2 h} P_{1 h} / 2+\lambda^{3} P_{1 h}^{3} / 6, \tag{7.12}
\end{equation*}
$$

where $E_{h}=\mu^{2} \sum_{j=1}^{n} \Delta_{1 j}^{2} \sum_{k=1}^{n} \delta_{k}$. Then $l(x, \omega ; \lambda)$ can be written in \mathscr{K} as

$$
\begin{equation*}
l(x, \omega ; \lambda)=\sum_{j=0}^{3}\left(i \lambda p_{2}\right)^{j} / j!-v \tag{7.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& v(x, \omega ; \lambda)=e I-\lambda^{2} p_{2} r_{1} / 2-i \lambda^{3} r_{3} / 6, \\
& e(\omega)=\mu^{2}|\alpha|^{2} t, \quad t=\tau .
\end{aligned}
$$

By (7.7)-(7.10) $v /|s|^{2} \in \mathscr{L}$ and $v /\left(t|s|^{2}\right) \in \mathscr{K}$. Since $\mu^{2}|\alpha|^{2} t \leqq 1$, by (7.6) we have for some λ_{0} and M

$$
\begin{aligned}
u & =\tilde{v}^{*}+\tilde{v}-\tilde{v}^{*} \tilde{v} \\
& =t|s|^{2}\left[\mu^{2}\left(2-\mu^{2}|\alpha|^{2} t\right)(|\alpha| /|s|)^{2} I-\lambda^{2} M\right] \geqq 0 \quad \text { for } \quad \lambda \leqq \lambda_{0} .
\end{aligned}
$$

Application of Theorem 6.5 with $a(x, \omega ; \lambda)=v, b(x, \omega ; \lambda)=0, r=3$ and $m=c$
shows that the scheme (2.2) with the operator (7.12) is stable for sufficiently small λ.

Example 3. Let

$$
\begin{equation*}
S_{h}(x, h)=I-C_{h}+\lambda P_{2 h}+\lambda^{2} P_{1 h}^{2} / 2+\lambda^{3} K_{1 h} P_{1 h} / 6, \tag{7.14}
\end{equation*}
$$

where $C_{h}=\mu \sum_{j=1}^{n} \delta_{j}^{2}$. Then we have (7.13), where

$$
\begin{gathered}
v(x, \omega ; \lambda)=c I+\lambda^{2} a, \quad c(\omega)=\mu \sum_{j=1}^{n} \beta_{j}^{2}, \\
a(x, \omega ; \lambda)=-r_{2} / 2+i \lambda\left(n_{1} p_{1}-r_{3}\right) / 6 .
\end{gathered}
$$

Put $t=|\beta|$. Then by (7.7)-(7.10) $a /|s| \in \mathscr{M}$ and a / t^{2} satisfies Conditions N and II. Hence for some λ_{0} and M we have

$$
\begin{aligned}
u & =2 c I+\lambda^{2}\left(\tilde{a}^{*}+\tilde{a}\right)-\tilde{v}^{*} \tilde{v} \\
& =t^{2}\left[\mu\left(2-\mu t^{2}\right) I-\lambda^{2} M\right] \geqq 0 \quad \text { for } \quad \lambda \leqq \lambda_{0} .
\end{aligned}
$$

Application of Theorem 6.6 with $m(\omega ; \lambda)=c, b(x, \omega ; \lambda)=0$ and $r=3$ yields the stability of the scheme (2.2) with the operator (7.14) for sufficiently small λ.

Example 4. Let

$$
\begin{equation*}
S_{h}(x, h)=I+E_{h}+\lambda\left(I+\lambda P_{2 h} / 2+\lambda^{2} Q_{h} / 6+\lambda^{3} P_{1 h}^{3} / 24\right) P_{2 h}, \tag{7.15}
\end{equation*}
$$

where $E_{h}=\mu^{2} \sum_{j=1}^{n} \Delta_{1 j}^{2} \sum_{k=1}^{n} \delta_{k}^{2}$. Then we have in \mathscr{K}

$$
\begin{equation*}
l(x, \omega ; \lambda)=\sum_{j=0}^{4}\left(i \lambda p_{2}\right)^{j} / j!-v, \tag{7.16}
\end{equation*}
$$

where

$$
v(x, \omega ; \lambda)=e I-i \lambda^{3} f p_{2} / 6+\lambda^{4} r_{3} p_{2} / 24, \quad e=\mu^{2}|\alpha|^{2}|\beta|^{2} .
$$

Put $t=|\beta|^{2}$. Then by (7.7)-(7.10) $v /|s|^{2} \in \mathscr{L}$, and $v /\left(t|s|^{2}\right) \in \mathscr{K}$. Hence by (7.6) we have for some λ_{0} and M

$$
\begin{aligned}
u & =\tilde{v}^{*}+\tilde{v}-\tilde{v}^{*} \tilde{v} \\
& =t|s|^{2}\left[\mu^{2}\left(2-\mu^{2}|\alpha|^{2} t\right)(|\alpha| /|s|)^{2} I-\lambda^{2} M\right] \geqq 0 \quad \text { for } \quad \lambda \leqq \lambda_{0} .
\end{aligned}
$$

Thus the scheme (2.2) with the operator (7.15) is stable for sufficiently small λ by applying Theorem 6.5 with $r=4$ and $m=0$.

Example 5. Let

$$
\begin{equation*}
S_{h}(x, h)=I+E_{h}+\lambda\left(I+\lambda P_{2 h} / 2+\lambda^{2} K_{2 h} / 6+\lambda^{3} K_{1 h} P_{1 h} / 24\right) P_{2 h}, \tag{7.17}
\end{equation*}
$$

where $E_{h}=\mu \sum_{j=1}^{n} \delta_{j}^{3}$. Then we have (7.16), where

$$
\begin{gathered}
v(x, \omega ; \lambda)=e I+\lambda^{3} a, \quad e=\mu \sigma^{2} \\
a(x, \omega ; \lambda)=\left[i n_{2}+\lambda\left(r_{3}-n_{1} p_{1}\right) / 4\right] p_{2} / 6 .
\end{gathered}
$$

Put $t=\sigma$. Then by (7.7)-(7.10) $a /|s|$ belongs to \mathscr{M} and a / t^{2} satisfies Conditions N and II. Hence for some λ_{0} and M we have

$$
\begin{aligned}
u & =2 e I+\lambda^{3}\left(\tilde{a}^{*}+\tilde{a}\right)-\tilde{v}^{*} \tilde{v} \\
& =t^{2}\left[\mu\left(2-\mu t^{2}\right) I-\lambda^{2} M\right] \geqq 0 \quad \text { for } \quad \lambda \leqq \lambda_{0}
\end{aligned}
$$

By Theorem 6.6 the scheme (2.2) with the operator (7.17) is stable for sufficiently small λ.

8. Proofs

8.1. Proof of Theorem $\mathbf{3 . 3}$

Let $\alpha_{i}(0 \leqq i \leqq s)$ be the family associated with $\alpha_{i}(x) I$. Then $\alpha_{i}(x) u(x)=\left(\alpha_{i} u\right)(x)$ $(0 \leqq i \leqq s)$. Since

$$
\left|\sum_{i=0}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right)\right| \leqq \sum_{i=0}^{s}\|\hat{g}\|_{F}\left\|\alpha_{i} u\right\|^{2}=\|\hat{g}\|_{F}\|u\|^{2},
$$

we have the second inequality of (3.25).
By continuity of the L_{2}-norm it suffices to prove the first inequality in the case $u \in \mathscr{S}$. We consider first the case $1 \leqq i \leqq s$. From (3.12) it follows that

$$
\begin{aligned}
& \left(G_{h} \alpha_{i} u, \alpha_{i} u\right)=\left(\alpha_{i} G_{h} \alpha_{i} u, u\right), \\
& \alpha_{i} G_{h} \alpha_{i} u=\alpha_{i}(x) \kappa^{-1} \int e^{i x \cdot \xi} g(x, h \xi) \widehat{\alpha_{i} u}(\xi) d \xi
\end{aligned}
$$

Without loss of generality we may assume that $x^{(i)}$ is the origin. By the mean value theorem we have

$$
g(x, h \xi)=g(0, h \xi)+\sum_{j} x_{j} \int_{0}^{1} g_{j}(\theta x, h \xi) d \theta
$$

where $g_{j}(x, \omega)=D_{j} g(x, \omega)$. Since $g(0, h \xi) \geqq e I$ by condition 2), it follows that

$$
\begin{equation*}
\operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right) \geqq e\left\|\alpha_{i} u\right\|^{2}-\sum_{j}\left|\left(G_{j h}^{\prime} \alpha_{i} u, x_{j} \alpha_{i} u\right)\right| \tag{8.1}
\end{equation*}
$$

where

$$
G_{j h}^{\prime} \alpha_{i} u(x)=\kappa^{-1} \int e^{i x \cdot \xi} \int_{0}^{1} g_{j}(\theta x, h \xi) d \theta \widehat{\alpha_{i} u}(\xi) d \xi .
$$

Let $\left\{\varepsilon_{k}\right\}$ be any sequence such that $\varepsilon_{k}>0$ and $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$. Then by the boundedness of g_{j} we have

$$
\begin{equation*}
\left(G_{j h}^{\prime} \alpha_{i} u, x_{j} \alpha_{i} u\right)=\lim _{k \rightarrow \infty}\left(w_{j k}, x_{j} \alpha_{i} u\right) \tag{8.2}
\end{equation*}
$$

where

$$
\begin{gathered}
w_{j k}(x)=\kappa^{-1} \int e^{i x \cdot \xi} g_{j k}(x, h \xi) \widehat{\alpha_{i} u}(\xi) d \xi \\
g_{j k}(x, \omega)=\int_{\varepsilon_{k}}^{1} g_{j}(\theta x, \omega) d \theta
\end{gathered}
$$

Since $\operatorname{supp}\left(x_{j} \alpha_{i} u\right) \subset V_{i}$, we have

$$
\left\|x_{j} \alpha_{i} u\right\| \leqq \varepsilon\left\|\alpha_{i} u\right\| .
$$

Combining this with the estimate (to be shown later)

$$
\begin{equation*}
\left\|w_{j k}\right\| \leqq c_{j}\left\|\alpha_{i} u\right\|, \quad c_{j}=\int \sup _{\omega}\left|\hat{g}_{j}(\chi, \omega)\right| d \chi, \tag{8.3}
\end{equation*}
$$

we obtain

$$
\left|\left(w_{j k}, x_{j} \alpha_{i} u\right)\right| \leqq \varepsilon c_{j}\left\|\alpha_{i} u\right\|^{2},
$$

which yields by (8.2)

$$
\left|\left(G_{j h}^{\prime} \alpha_{i} u, x_{j} \alpha_{i} u\right)\right| \leqq \varepsilon c_{j}\left\|\alpha_{i} u\right\|^{2} .
$$

From this and (8.1) with $c=\sum_{j=1}^{n} c_{j}$ we have

$$
\operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right) \geqq e\left\|\alpha_{i} u\right\|^{2}-c \varepsilon\left\|\alpha_{i} u\right\|^{2},
$$

so that

$$
\begin{equation*}
\sum_{i=1}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right) \geqq e \sum_{i=1}^{s}\left\|\alpha_{i} u\right\|^{2}-c \varepsilon\left(\sum_{i=1}^{s}\left\|\alpha_{i} u\right\|^{2}\right) . \tag{8.4}
\end{equation*}
$$

Next we consider the case $i=0$. Let $G_{\infty h}$ and $G_{0 h}$ be the families associated with $g_{\infty}(\omega)$ and $g_{0}(x, \omega)$ respectively. Then

$$
\begin{gathered}
\operatorname{Re}\left(G_{h} \alpha_{0} u, \alpha_{0} u\right)=\operatorname{Re}\left(G_{\infty h} \alpha_{0} u, \alpha_{0} u\right)+\operatorname{Re}\left(\alpha_{0} G_{0 h} \alpha_{0} u, u\right), \\
\left(G_{\infty h} \alpha_{0} u, \alpha_{0} u\right) \geqq e\left\|\alpha_{0} u\right\|^{2},
\end{gathered}
$$

because $g_{\infty}(\omega) \geqq e I$. Since by definition

$$
\alpha_{0} G_{0 h} \alpha_{0} u=\alpha_{0}\left(G_{0 h}\left(\alpha_{0} u\right)\right)=\left(\alpha_{0} G_{0 h}\right)\left(\alpha_{0} u\right)
$$

and $\alpha_{0} G_{0 h}=\alpha_{0} \circ G_{0 h}$ by Corollary 3.1, we have

$$
\alpha_{0} G_{0 h} \alpha_{0} u=\left(\alpha_{0} \circ G_{0 h}\right)\left(\alpha_{0} u\right) .
$$

Hence it follows that

$$
\operatorname{Re}\left(G_{h} \alpha_{0} u, \alpha_{0} u\right) \geqq e\left\|\alpha_{0} u\right\|^{2}-\left\|\widehat{\alpha_{0} g_{0}}\right\|_{F}\left\|\alpha_{0} u\right\|\|u\|
$$

From this and (8.4) we have

$$
\sum_{i=0}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right) \geqq e\|u\|^{2}-c \varepsilon\|u\|^{2}-\left\|\widehat{\alpha_{0} g_{0}}\right\|_{F}\|u\|^{2} .
$$

Now we choose ε small so that $c \varepsilon \leqq e / 4$, and then choose R large so that $\left\|\widehat{\alpha_{0} g_{0}}\right\|_{F}$ $\leqq e / 4$. This choice of R is possible by $\mathrm{N}-2$). For such ε and R we have

$$
\begin{equation*}
\sum_{i=0}^{s} \operatorname{Re}\left(G_{h} \alpha_{i} u, \alpha_{i} u\right) \geqq(e / 2)\|u\|^{2}, \tag{8.5}
\end{equation*}
$$

which is the first inequality of (3.25).
It remains to show (8.3). Since $g_{j}(x, \omega)$ is continuous and integrable with respect to x for each ω, by the change of order of integration we have

$$
\int\left|g_{j k}(x, \omega)\right| d x \leqq \int_{\varepsilon_{k}}^{1} \int\left|g_{j}(\theta x, \omega)\right| d x d \theta=\int\left|g_{j}(x, \omega)\right| d x \int_{\varepsilon_{k}}^{1} 1 /|\theta|^{n} d \theta
$$

Hence $g_{j k}(x, \omega)$ is integrable for each ω, and

$$
\begin{align*}
\hat{g}_{j k}(\chi, \omega) & =\kappa \int_{\varepsilon_{k}}^{1} \int^{-i x \cdot \chi} e_{j}(\theta x, \omega) d x d \theta \tag{8.6}\\
& =\int_{\varepsilon_{k}}^{1} \hat{g}_{j}(\chi \mid \theta, \omega) /|\theta|^{n} d \theta
\end{align*}
$$

Since $\hat{g}_{j}(\chi, \omega)$ is integrable for each ω, it follows that

$$
\begin{aligned}
\int\left|\hat{g}_{j k}(\chi, \omega)\right| d \chi & \leqq \iint_{\varepsilon_{k}}^{1}\left|\hat{g}_{j}(\chi \mid \theta, \omega)\right| /|\theta|^{n} d \theta d \chi \\
& =\int_{\varepsilon_{k}}^{1}\left|\hat{g}_{j}(\chi \mid \theta, \omega)\right| /|\theta|^{n} d \chi d \theta \\
& \leqq \int\left|\hat{g}_{j}(\chi, \omega)\right| d \chi .
\end{aligned}
$$

Hence $\hat{g}_{j k}(\chi, \omega)$ is integrable for each ω and by N-1) we have from (8.6)

$$
\int \sup _{\omega}\left|\hat{g}_{j k}(\chi, \omega)\right| d \chi \leqq c_{j} \quad(j=1,2, \ldots, n)
$$

Put

$$
v_{j k}(\xi)=\int \hat{g}_{j k}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \widehat{\alpha_{i} u}\left(\xi^{\prime}\right) d \xi^{\prime} .
$$

Then by the same argument as in the proof of Lemma 3.2 we have

$$
\begin{gather*}
\int\left|v_{j k}(\xi)\right| d \xi \leqq c_{j} \int\left|\widehat{\alpha_{i} u}(\xi)\right| d \xi \\
\left\|v_{j k}\right\| \leqq c_{j}\left\|\alpha_{i} u\right\| \tag{8.7}
\end{gather*}
$$

Since $v_{j k} \in L_{1} \cap L_{2}$,

$$
\text { 1.i.m. } \kappa^{-1} \int e^{i x \cdot \xi} v_{j k}(\xi) d \xi=w_{j k}(x) \quad \text { a.e. }
$$

Thus $\left\|v_{j k}\right\|=\left\|w_{j k}\right\|$ and (8.3) holds by (8.7).

8.2. Proof of Theorem $\mathbf{3 . 4}$

By continuity of the L_{2}-norm it suffices to prove the theorem in the case $u \in \mathscr{S}$. Let σ be a space variable in $R^{n}, B_{0}=\{\sigma| | \sigma \mid \leqq 1\}$ and $q(\sigma)$ be a C^{∞} even function such that
i) $q(\sigma) \geqq 0, \quad \operatorname{supp} q(\sigma) \subset B_{0}$;
ii) $\int q^{2}(\sigma) d \sigma=1$.

After Vaillancourt [16] we introduce the functions

$$
\begin{aligned}
a(x, \omega) & =c^{-n} \int p(x, \zeta) e^{2}(\omega, \zeta) d \zeta \\
b(\tilde{\omega}, x, \omega) & =c^{-n} \int e(\tilde{\omega}, \zeta) p(x, \zeta) e(\omega, \zeta) d \zeta
\end{aligned}
$$

where

$$
c=h^{1 / 2}, \quad \zeta=\omega-c \sigma, \quad e(\omega, \zeta)=q\left(c^{-1}[\omega-\zeta]\right)
$$

As will be shown in the proof of Lemma A , the families of operators A_{h} and B_{h} can be defined by

$$
\begin{align*}
& A_{h} u(x)=\text { 1.i.m. } \kappa^{-1} \int e^{i x \cdot \xi} \int \hat{a}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d \xi \tag{8.8}\\
& B_{h} u(x)=\text { 1.i.m. } \kappa^{-1} \int e^{i x \cdot \xi} \int \hat{b}\left(h \xi, \xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d \xi
\end{align*}
$$

$$
\text { for all } u \in \mathscr{S}
$$

where $\hat{b}(\tilde{\omega}, \chi, \omega)$ is the Fourier transform of $b(\tilde{\omega}, x, \omega)$ with respect to x.
Lemma A. A_{h} and B_{h} are families of bounded linear operators mapping
\mathscr{S} into L_{2} and

$$
\begin{gather*}
\left(B_{h} u, u\right) \geqq 0 \quad \text { for all } u \in \mathscr{S}, \tag{8.10}\\
A_{h} \equiv P_{h}, \tag{8.11}\\
A_{h}+A_{h}^{*} \equiv 2 B_{h} . \tag{8.12}
\end{gather*}
$$

By this lemma we have

$$
\begin{aligned}
\operatorname{Re}\left(P_{h} u, u\right) & \geqq \operatorname{Re}\left(P_{h} u, u\right)-\left(B_{h} u, u\right) \\
& \geqq \operatorname{Re}\left(\left(P_{h}-A_{h}\right) u, u\right)+\left(\left(A_{h}+A_{h}^{*}-2 B_{h}\right) u, u\right) / 2 \\
& \geqq-\left\|P_{h}-A_{h}\right\|\|u\|^{2}-\left\|A_{h}+A_{h}^{*}-2 B_{h}\right\|\|u\|^{2} / 2 .
\end{aligned}
$$

Hence (3.28) holds by (8.11) and (8.12).
Proof of Lemma A. Let

$$
w(\xi)=\int \hat{b}\left(h \xi, \xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}
$$

Then

$$
w(\xi)=\int r_{0}\left(\xi-\xi^{\prime}, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}+r_{\infty}(h \xi) \hat{u}(\xi),
$$

where

$$
\begin{aligned}
& r_{0}(\chi, \omega)=c^{-n} \int e(h \chi+\omega, \zeta) \hat{p}_{0}(\chi, \zeta) e(\omega, \zeta) d \zeta, \\
& r_{\infty}(\omega)=c^{-n} \int e(\omega, \zeta) p_{\infty}(\zeta) e(\omega, \zeta) d \zeta .
\end{aligned}
$$

By condition i) we have

$$
\begin{gathered}
\int \sup _{\omega}\left|r_{0}(\chi, \omega)\right| d \chi \leqq L \int \sup _{\omega}\left|\hat{p}_{0}(\chi, \omega)\right| d \chi \\
\sup _{\omega}\left|r_{\infty}(\omega)\right| \leqq L \sup _{\omega}\left|p_{\infty}(\omega)\right|
\end{gathered}
$$

where $L=\max _{\eta} q^{2}(\eta) \int_{|\sigma| \leq 1} d \sigma$.
By the same argument as in the proof of Lemma 3.2 we have $\|w\| \leqq L\|\hat{p}\|_{F}\|\hat{u}\|$. Hence $w \in L_{2}$, and the formula (8.9) defines a family of bounded linear operators B_{h}. The same reasoning applies also to A_{h}.

We show (8.10). Put

$$
\begin{equation*}
\hat{v}(\xi, \zeta)=e(h \zeta, \zeta) \hat{u}(\xi) . \tag{8.13}
\end{equation*}
$$

Then $|\hat{v}(\xi, \zeta)|^{2}$ is integrable for each fixed ζ. Hence there exists the Fourier inverse transform $v(x, \zeta)$ such that $|v(x, \zeta)|^{2}$ is integrable for each fixed ζ. Since $p(x, \zeta) \geqq 0$, it follows that

$$
v^{*}(x, \zeta) p(x, \zeta) v(x, \zeta) \geqq 0 .
$$

Integration of this inequality with respect to x yields by Plancherel's formula

$$
\begin{align*}
& \int v^{*}(x, \zeta) p(x, \zeta) v(x, \zeta) d x \tag{8.14}\\
& \quad=\iint \hat{v}^{*}(\xi, \zeta) \hat{p}\left(\xi-\xi^{\prime}, \zeta\right) \hat{v}\left(\xi^{\prime}, \zeta\right) d \xi^{\prime} d \xi \geqq 0 .
\end{align*}
$$

Substituting (8.13) into (8.14) and then integrating it with respect to ζ, by the change of order of integration we have ($\hat{u}, w) \geqq 0$, which shows (8.10), because $w=\widehat{B_{h} u}$ by (8.9).

Since

$$
a(x, \omega)=\int p(x, \omega-c \sigma) q^{2}(\sigma) d \sigma
$$

from (8.8) it follows that

$$
\begin{align*}
\overline{\left(P_{h}-A_{h}\right) u}(\xi)= & \int\{\hat{p}(\chi, \omega)-\hat{a}(\chi, \omega)\} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} \tag{8.15}\\
& =\iint\{\hat{p}(\chi, \omega)-\hat{p}(\chi, \omega-c \sigma)\} q^{2}(\sigma) d \sigma \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}
\end{align*}
$$

where $\chi=\xi-\xi^{\prime}, \omega=h \xi^{\prime}$.
Owing to condition 1) we have by the mean value theorem

$$
\begin{equation*}
\hat{p}_{0}(\chi, \omega)-\hat{a}_{0}(\chi, \omega)=c \int \sum_{j=1}^{n} \sigma_{j} \int_{0}^{1} \partial_{j} \hat{p}_{0}(\chi, \omega-\theta c \sigma) q^{2}(\sigma) d \theta d \sigma . \tag{8.16}
\end{equation*}
$$

Since $\partial_{j} \hat{p}_{0}(\chi, \omega)$ is absolutely continuous with respect to ω_{k},

$$
\begin{align*}
\partial_{j} \hat{p}_{0}(\chi, \omega)- & \partial_{j} \hat{p}_{0}(\chi, \omega-\rho) \tag{8.17}\\
= & \sum_{k=1}^{n}\left\{\partial_{j} \hat{p}_{0}\left(\chi, \omega_{1}, \ldots, \omega_{k-1}, \omega_{k}, \eta_{k+1}, \ldots, \eta_{n}\right)\right. \\
& \left.\quad-\partial_{j} \hat{p}_{0}\left(\chi, \omega_{1}, \ldots, \omega_{k-1}, \eta_{k}, \eta_{k+1}, \ldots, \eta_{n}\right)\right\} \\
= & \sum_{k=1}^{n} m_{k j}(\chi, \eta, \omega),
\end{align*}
$$

where $\rho=\theta c \sigma, \eta=\omega-\rho$,

$$
m_{k j}(\chi, \eta, \omega)=-\int_{0}^{\rho_{1}} \partial_{k} \partial_{j} \hat{p}_{0}\left(\chi, \omega_{1}, \ldots, \omega_{k-1}, \omega_{k}-t_{k}, \eta_{k+1}, \ldots, \eta_{n}\right) d t_{k}
$$

Hence by (8.16) and (8.17)

$$
\begin{align*}
\hat{p}_{0}(\chi, \omega)- & \hat{a}_{0}(\chi, \omega) \tag{8.18}\\
& =c \int \sum_{j=1}^{n} \sigma_{j} \int_{0}^{1} \partial_{j} \hat{p}_{0}(\chi, \omega) q^{2}(\sigma) d \theta d \sigma-c k(\chi, \omega),
\end{align*}
$$

where

$$
k(\chi, \omega)=\int \sum_{j=1}^{n} \sigma_{j} \int_{0}^{1} \sum_{k} m_{k j}(\chi, \eta, \omega) q^{2}(\sigma) d \theta d \sigma
$$

The first term on the right side of (8.18) vanishes, because $q^{2}(\sigma)$ is even. Since

$$
\begin{gathered}
|c k(\chi, \omega)| \leqq c \iint_{0}^{1} \sum_{j, k}\left|\sigma_{j}\right|\left|\rho_{l}\right| \sup _{\omega}\left|\partial_{k} \partial_{j} \hat{p}_{0}(\chi, \omega)\right| q^{2}(\sigma) d \theta d \sigma \\
\leqq h \sum_{j, k} \sup _{\omega}\left|\partial_{k} \partial_{j} \hat{p}_{0}(\chi, \omega)\right| \quad \text { a.e., }
\end{gathered}
$$

from (8.18) it follows that

$$
\left|\hat{p}_{0}(\chi, \omega)-\hat{a}_{0}(\chi, \omega)\right| \leqq h \sum_{j, k} \sup _{\omega}\left|\partial_{k} \partial_{j} \hat{p}_{0}(\chi, \omega)\right| \quad \text { a.e.. }
$$

Similarly we have

$$
\left|p_{\infty}(\omega)-a_{\infty}(\omega)\right| \leqq h \sum_{j, k} \operatorname{supp}_{\omega}\left|\partial_{k} \partial_{j} p_{\infty}(\omega)\right| \quad \text { a.e. }
$$

The same argument as in the proof of Lemma 3.2 yields from (8.15)

$$
\left\|\widehat{\left(P_{h}-A_{h}\right) u}\right\| \leqq M h\|\hat{u}\|
$$

where

$$
M=\sum_{j, k}\left(\int \sup _{\omega}\left|\partial_{k} \partial_{j} \hat{p}_{0}(\chi, \omega)\right| d \chi+\sup _{\omega}\left|\partial_{k} \partial_{j} p_{\infty}(\omega)\right|\right)
$$

Hence (8.11) holds.
From (8.8) and (3.20) it follows that

$$
\begin{align*}
& \overline{\left(A_{h}+A_{h}^{*}-2 B_{h}\right) u}(\xi) \tag{8.19}\\
& =c^{-n} \iint \hat{p}(\chi, \zeta)\{e(h \chi+\omega, \zeta)-e(\omega, \zeta)\}^{2} \hat{u}\left(\xi^{\prime}\right) d \zeta d \xi^{\prime}, \\
& =\iint \hat{p}_{0}(\chi, \zeta)\left\{q\left(\chi^{\prime}+\sigma\right)-q(\sigma)\right\}^{2} \hat{u}\left(\xi^{\prime}\right) d \sigma d \xi^{\prime},
\end{align*}
$$

where $\chi^{\prime}=c \chi, \chi=\xi-\xi^{\prime}, \omega=h \xi^{\prime}, \zeta=\omega-c \sigma$. By the mean value theorem we have

$$
\begin{aligned}
& \left|\int \hat{p}_{0}(\chi, \zeta)\left\{q\left(\chi^{\prime}+\sigma\right)-q(\sigma)\right\}^{2} d \sigma\right| \\
& \leqq h \int\left|\hat{p}_{0}(\chi, \zeta)\left\{\sum_{j} \chi_{j} \frac{\partial q}{\partial \sigma_{j}}\left(\sigma+\theta \chi^{\prime}\right)\right\}^{2}\right| d \sigma \\
& \leqq h K_{1} \sup _{\omega}\left(|\chi|^{2}\left|\hat{p}_{0}(\chi, \omega)\right|\right) \text { a.e., }
\end{aligned}
$$

where

$$
K_{1}=n \max _{j}\left\{\max _{\eta}\left(\left|\frac{\partial q}{\partial \eta_{j}}(\eta)\right|^{2}\right)\right\} \int_{|\sigma| \leqq 1} 1 .
$$

From (8.19) it follows as in the proof of (8.11) that

$$
\left\|\overline{\left(A_{h}+A_{h}^{*}-2 B_{h}\right) u}\right\| \leqq K_{2} h\|\hat{u}\|,
$$

where $K_{2}=\int \sup _{\omega}\left(|\chi|^{2}\left|\hat{p}_{0}(\chi, \omega)\right|\right) d \chi$. Hence (8.12) holds.
In the following for simplicity we put

$$
S_{\omega}=R_{\omega}^{n}, \quad S_{z}=R_{\omega}^{n}-Z, \quad S_{\chi}=R_{\chi}^{n}, \quad S_{x}=R_{x}^{n}, \quad S_{t}=R_{t}^{n}, \quad S_{0}=R_{\omega}^{n}-\{0\}
$$

and let

$$
S_{a b}=S_{a} \times S_{b}, \quad S_{a b c}=S_{a} \times S_{b} \times S_{c},
$$

where a, b and c denote ω, z, χ, x, t or 0 . We denote by $M[x, \chi, z]$ the set of all bounded and measurable $N \times N$ matrix functions on $S_{x x z}$ and denote by $C[\chi$, $z]$ the set of all bounded and continuous $N \times N$ matrix functions on $S_{\chi z}$. The sets $M[z], M[\chi, z], C[0], C[\chi, 0]$, etc. are also defined in the same manner.

8.3. Proof of Lemma 4.1

We show (i). Let $l(\chi, \omega)=\hat{p}|s|$. Then by $\left.\mathrm{I}^{\prime}-1\right) l$ belongs to \mathscr{K} and satisfies I-1). Let $c_{j}(j=1,2,3)$ be constants such that

$$
\begin{gathered}
\left|\partial_{j} s_{k}(\omega)\right| \leqq c_{1} \quad \text { on } \quad S_{\omega} \quad(j, k=1,2, \ldots, n), \\
\left|\partial_{j} l_{0}(\chi, \omega)\right| \leqq c_{2}, \quad\left|\hat{p}_{0}(\chi, \omega)\right| \leqq c_{3} \quad \text { on } \quad S_{\chi^{z}} \quad(j=1,2, \ldots, n) .
\end{gathered}
$$

Denote by $L(\tilde{\omega}, \omega)$ the line segment joining the points $\tilde{\omega}$ and ω, where

$$
\tilde{\omega}=\left(\omega_{1}, \ldots, \omega_{j-1}, \tilde{\omega}_{j}, \omega_{j+1}, \ldots, \omega_{n}\right), \quad \omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right) .
$$

When there lies no point of Z on $L(\tilde{\omega}, \omega)$, by $\mathrm{I}^{\prime}-3$) we have

$$
\begin{equation*}
l_{0}(\chi, \tilde{\omega})-l_{0}(\chi, \omega)=\left(\tilde{\omega}_{j}-\omega_{j}\right) \partial_{j} l_{0}(\chi, \eta) \tag{8.20}
\end{equation*}
$$

where η is some point on $L(\tilde{\omega}, \omega)$.
When a point $\hat{\omega}$ of Z lies on $L(\tilde{\omega}, \omega)$, we have $|s(\hat{\omega})|=0$ and

$$
l_{0}(\chi, \tilde{\omega})-l_{0}(\chi, \omega)=\hat{p}_{0}(\chi, \tilde{\omega})(|s(\tilde{\omega})|-|s(\hat{\omega})|)+\hat{p}_{0}(\chi, \omega)(|s(\hat{\omega})|-|s(\omega)|),
$$

where the first (or second) term on the right side vanishes if $\tilde{\omega} \in Z$ (or $\omega \in Z$). Hence it follows that

$$
\begin{align*}
\left|l_{0}(\chi, \tilde{\omega})-l_{0}(\chi, \omega)\right| & \leqq c_{3}(|s(\tilde{\omega})-s(\hat{\omega})|+|s(\hat{\omega})-s(\omega)|) \tag{8.21}\\
& \leqq \sqrt{ } n c_{1} c_{3}\left(\left|\tilde{\omega}_{j}-\hat{\omega}_{j}\right|+\left|\hat{\omega}_{j}-\omega_{j}\right|\right) \\
& =\sqrt{ } n c_{1} c_{3}\left|\tilde{\omega}_{j}-\omega_{j}\right| .
\end{align*}
$$

From (8.20) and (8.21) we have

$$
\left|l_{0}(\chi, \tilde{\omega})-l_{0}(\chi, \omega)\right| \leqq c_{4}\left|\tilde{\omega}_{j}-\omega_{j}\right| \quad \text { for } \quad \tilde{\omega}, \omega \in R^{n}
$$

where $c_{4}=\max \left(c_{2}, \sqrt{ } n c_{1} c_{3}\right)$. Thus $l_{0}(\chi, \omega)$ is absolutely continuous with respect to ω_{j}. Hence l_{0} satisfies I-2), because $\partial_{j} l_{0} \in M[\chi, z]$. Similarly l_{∞} satisfies I-2).

From $\mathrm{I}^{\prime}-3$) and $\mathrm{I}^{\prime}-4$) it follows that l satisfies $\mathrm{I}-3$).
The assertion (ii) can be shown similarly.

8.4. Proof of Lemma 4.3

Since $\sup _{\omega}\left(\left.|\chi|^{2}\left|\hat{p}_{0}\right| s\right|^{2} \mid\right)$ is integrable by IV, it suffices to show that conditions 1) and 2) of Theorem 3.4 are satisfied. By $\left.\left.\mathrm{I}^{\prime}-1\right)-\mathrm{I}^{\prime}-3\right)$ and $\left.\mathrm{V}-2\right) \partial_{j} l_{0}(\chi, \omega), \partial_{k} m_{j 0}$ $(\chi, \omega) \in M[\chi, z] ; \sup _{\omega}\left|\partial_{j} l_{0}(\chi, \omega)\right|, \sup _{\omega}\left|\partial_{k} m_{j 0}(\chi, \omega)\right| \in M[\chi]$ and $\partial_{j} l_{\infty}(\omega), \partial_{k} m_{j \infty}(\omega)$ $\in M[z]$.

Let $r_{0}=\hat{p}_{0}|s|^{2}$ and $r_{\infty}=p_{\infty}|s|^{2}$. Then by $\left.\mathrm{I}^{\prime}-1\right)$ and $\left.\mathrm{I}^{\prime}-2\right) r_{0} \in M[\chi, \omega]$ and $r_{\infty}(\omega) \in M[\omega]$. By I $\mathrm{I}^{\prime}-3$) we have for $\omega \in S_{z}$

$$
\begin{equation*}
\partial_{j} r_{0}=m_{j 0}+l_{0}\left(\partial_{j}|s|\right), \quad \partial_{j} r_{\infty}=m_{j \infty}+l_{\infty}\left(\partial_{j}|s|\right) \tag{8.22}
\end{equation*}
$$

Since the terms on the right sides are continuous on S_{z} for each χ, so are $\partial_{j} r_{0}$ and $\partial_{j} r_{\infty}$.

Let $\omega^{(0)}$ be any point of Z. Then $\partial_{j} r_{0}\left(\chi, \omega^{(0)}\right)$ and $\partial_{j} r_{\infty}\left(\omega^{(0)}\right)$ are calculated to be zero. By I' I^{\prime}) and $\left.\mathrm{I}^{\prime}-3\right) \hat{p}_{0}$ and $\partial_{j} l_{0}$ are bounded on $S_{\chi z} ; p_{\infty}, \partial_{j} l_{\infty}$ and $\partial_{j}|s|$ are bounded on S_{z}. Hence the terms on the right sides of (8.22) tend to
zero as $\omega \rightarrow \omega^{(0)}$. Therefore $\partial_{j} r_{0}$ and $\partial_{j} r_{\infty}$ are continuous on S_{ω} for each χ.
By the same argument as in the proof of Lemma $4.1 m_{j 0}, l_{0}\left(\partial_{j}|s|\right), m_{j \infty}$ and $l_{\infty}\left(\partial_{j}|s|\right)$ are absolutely continuous with respect to ω_{k}. Hence by (8.22) $\partial_{j} r_{0}$ and $\partial_{j} r_{\infty}$ have the same property and condition 1) is satisfied.

By $\mathrm{I}^{\prime}-3$) and $\mathrm{V}-2$) we have from (8.22) for $\omega \in S_{\text {, }}$

$$
\begin{aligned}
& \partial_{k} \partial_{j} r_{0}=\partial_{k} m_{j 0}+\left(\partial_{k} l_{0}\right)\left(\partial_{j}|s|\right)+\hat{p}_{0}|s|\left(\partial_{k} \partial_{j}|s|\right), \\
& \partial_{k} \partial_{j} r_{\infty}=\partial_{k} m_{j \infty}+\left(\partial_{k} l_{\infty}\right)\left(\partial_{j}|s|\right)+p_{\infty}|s|\left(\partial_{k} \partial_{j}|s|\right),
\end{aligned}
$$

and $\partial_{k} \partial_{j} r_{0} \in M[\chi, z], \partial_{k} \partial_{j} r_{\infty} \in M[z], \sup _{\omega}\left|\partial_{k} \partial_{j} r_{0}\right| \in M[\chi]$. By the conditions $\sup _{\omega}\left|\partial_{k} \partial_{j} r_{0}\right|$ is integrable and $\sup _{\omega}\left|\partial_{k} \partial_{j} r_{\infty}\right|$ is finite, so that condition 2) is satisfied.

8.5. Proof of Lemma 4.4

We prove that if p and q satisfy (a) II (or IV) (b) I' (c) I', II and III' or (d) V, then $p+q, p q$ and p^{*} satisfy the corresponding conditions. For properties (i) and (ii) of the lemma follow from (a) and (c) respectively; property (iii) follows from (a), (c) and (d). It suffices to show these assertions only for $p q$.

Put $d=p q$. Then by Lemma $3.1 d \in \mathscr{K}, d_{\infty} \in M[\omega]$ and $\sup _{\omega}\left|\hat{d}_{0}(\chi, \omega)\right|$ is integrable.

We prove (a). Since

$$
\begin{equation*}
\hat{d}_{0}(\chi, \omega)=\hat{p}_{0} * \hat{q}_{0}+\hat{p}_{0} q_{\infty}+p_{\infty} \hat{q}_{0}, \quad d_{\infty}=p_{\infty} q_{\infty} \tag{8.23}
\end{equation*}
$$

we have

$$
\begin{align*}
|\chi|\left|\hat{d}_{0}\right| \leqq & \int|\chi-t|\left|\hat{p}_{0}(\chi-t, \omega)\right|\left|\hat{q}_{0}(t, \omega)\right| d t+\int\left|\hat{p}_{0}(\chi-t, \omega)\right||t|\left|\hat{q}_{0}(t, \omega)\right| d t \tag{8.24}\\
& +|\chi|\left|\hat{p}_{0}\right|\left|q_{\infty}\right|+\left|p_{\infty}\right||\chi|\left|\hat{q}_{0}\right|
\end{align*}
$$

$$
\begin{align*}
|\chi|^{2}\left|\hat{a}_{0}\right| \leqq & 2\left\{\int|\chi-t|^{2}\left|\hat{p}_{0}(\chi-t, \omega)\right|\left|\hat{q}_{0}(t, \omega)\right| d t\right. \tag{8.25}\\
& \left.+\int\left|\hat{p}_{0}(\chi-t, \omega)\right||t|^{2}\left|\hat{q}_{0}(t, \omega)\right| d t\right\}+|\chi|^{2}\left|\hat{p}_{0}\right|\left|q_{\infty}\right|+\left|p_{\infty}\right||\chi|^{2}\left|\hat{q}_{0}\right|
\end{align*}
$$

Taking the essential suprema of both sides of (8.24) and (8.25) over S_{ω} and integrating them with respect to χ, we find that $\sup _{\omega}\left(|\chi|^{k}\left|\hat{d}_{0}(\chi, \omega)\right|\right)$ is integrable in the case $k=1$ (or $k=2$) if p and q satisfy II (or IV).

We prove (b). Let

$$
v_{0}(\chi, \omega)=\hat{q}_{0}|s|, v_{\infty}(\omega)=q_{\infty}|s|, e_{0}(\chi, \omega)=\hat{d}_{0}|s|, e_{\infty}(\omega)=d_{\infty}|s| .
$$

Then $\partial_{j} l_{0}(\chi, \omega), \partial_{j} v_{0}(\chi, \omega) \in M[\chi, z]$ and $\partial_{j} l_{\infty}(\omega), \partial_{j} v_{\infty} \in C[z] ; \partial_{j} l_{0}(\chi, \omega)$ and $\partial_{j} v_{0}(\chi, \omega)$ are measurable on S_{χ} for each $\omega \in S_{z}$.

It can be shown that if $f(\chi, \omega)$ is measurable on $S_{\chi z}$ and is continuous on S_{z} for each χ, then $\sup _{\omega}|f(\chi, \omega)|$ is measurable on S_{χ} and

$$
\begin{equation*}
|f(\chi, \omega)| \leqq \sup _{\omega}|f(\chi, \omega)| \quad \text { on } \quad S_{\chi z} \tag{8.26}
\end{equation*}
$$

Hence by $\left.\left.\mathrm{I}^{\prime}-1\right)-\mathrm{I}^{\prime}-3\right) \sup _{\omega}\left|\hat{p}_{0}(\chi, \omega)\right|, \sup _{\omega}\left|\hat{q}_{0}(\chi, \omega)\right|, \sup _{\omega}\left|\partial_{j} l_{0}(\chi, \omega)\right|$ and $\sup _{\omega} \mid \partial_{j} v_{0}(\chi$, $\omega) \mid$ belong to $M[\chi]$.

Let $c_{k}(k=1,2,3,4)$ be constants such that

$$
\begin{gather*}
|s(\omega)| \leqq c_{1} \quad \text { on } \quad S_{\omega} \\
\left|\partial_{j}\right| s(\omega)\left|\mid \leqq c_{2} \quad(j=1,2, \ldots, n) \quad \text { on } \quad S_{z}\right. \tag{8.27}\\
\left|\hat{p}_{0}(\chi, \omega)\right| \leqq c_{3}, \quad\left|\partial_{j} l_{0}(\chi, \omega)\right| \leqq c_{4} \quad(j=1,2, \ldots, n) \quad \text { on } \quad S_{\chi z}
\end{gather*}
$$

Then by (8.26)

$$
\left|\hat{p}_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega)\right| \leqq c_{3} \sup _{\omega}\left|\hat{q}_{0}(t, \omega)\right| \quad \text { for } \quad(t, \chi, \omega) \in S_{t \chi z}
$$

Integration of both sides with respect to t shows that $\hat{p}_{0} * \hat{q}_{0}$ is bounded on $S_{\chi z}$. By $\mathrm{I}^{\prime}-1$) and $\mathrm{I}^{\prime}-2$) $p_{\infty} \hat{q}_{0}$ and $\hat{p}_{0} q_{\infty}$ are bounded on $S_{\chi z}$. Hence $\mathrm{I}^{\prime}-2$) is satisfied by (8.23).

By (8.23) we have

$$
\begin{equation*}
e_{0}=l_{0} * \hat{q}_{0}+l_{0} q_{\infty}+l_{\infty} \hat{q}_{0}, \quad e_{\infty}=l_{\infty} q_{\infty} \tag{8.28}
\end{equation*}
$$

By $\mathrm{I}^{\prime}-1$) and $\left.\mathrm{I}^{\prime}-2\right) l_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega)$ belong to $M[t, \chi, z]$ and is integrable with respect to t for each $(\chi, \omega) \in S_{\chi z}$. By I'-3) we have for $\omega \in S_{z}$

$$
\begin{align*}
\partial_{j}\left\{l_{0}(\chi-\right. & \left.t, \omega) \hat{q}_{0}(t, \omega)\right\}=\left(\partial_{j} l_{0}(\chi-t, \omega)\right) \hat{q}_{0}(t, \omega) \tag{8.29}\\
& +\hat{p}_{0}(\chi-t, \omega) \partial_{j} v_{0}(t, \omega)-\hat{p}_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega)\left(\partial_{j}|s|\right)
\end{align*}
$$

so that by (8.26)

$$
\left|\partial_{j}\left\{l_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega)\right\}\right| \leqq \varphi(t)
$$

where

$$
\varphi(t)=\left(c_{2} c_{3}+c_{4}\right) \sup _{\omega}\left|\hat{q}_{0}(t, \omega)\right|+c_{3} \sup _{\omega}\left|\partial_{j} v_{0}(t, \omega)\right|
$$

which is integrable by $\mathrm{I}^{\prime}-1$) and $\mathrm{I}^{\prime}-4$). Hence

$$
\begin{equation*}
\partial_{j}\left(l_{0} * \hat{q}_{0}\right)=\int \partial_{j}\left\{l_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega)\right\} d t \quad \text { for } \quad(\chi, \omega) \in S_{\chi z} \tag{8.30}
\end{equation*}
$$

$\partial_{j}\left(l_{0} * \hat{q}_{0}\right) \in M[\chi, z]$ and $\sup _{\omega}\left|\partial_{j}\left(l_{0} * \hat{q}_{0}\right)\right| \in M[\chi]$.
By $\left.\mathrm{I}^{\prime}-3\right)$ and (8.29) $\partial_{j}\left\{l_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega)\right\}$ is continuous on S_{z} for each (χ, t) and is dominated by $\varphi(t)$, so that $\partial_{j}\left(l_{0} * \hat{q}_{0}\right)$ is continuous on S_{z} for each χ.

By $\left.\left.\mathrm{I}^{\prime}-1\right)-\mathrm{I}^{\prime}-3\right) \partial_{j}\left(l_{\infty} \hat{q}_{0}\right), \partial_{j}\left(l_{0} q_{\infty}\right) \in M[\chi, z]$ and $\partial_{j}\left(l_{\infty} q_{\infty}\right) \in M[z]$; they are continuous on S_{z} for each χ. Hence by (8.28) d satisfies I' -3).

Since d satisfies $I^{\prime}-1$) and $I^{\prime}-3$), $\sup _{\omega}\left|\partial_{j} e_{0}\right| \in M[\chi]$. From (8.29) it follows that

$$
\begin{align*}
& \sup _{\omega}\left|\partial_{j}\left\{l_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega)\right\}\right| \leqq \sup _{\omega}\left|\partial_{j} l_{0}(\chi-t, \omega)\right| \sup _{\omega}\left|\hat{q}_{0}(t, \omega)\right| \tag{8.31}\\
& \quad+\sup _{\omega}\left|\hat{p}_{0}(\chi-t, \omega)\right|\left(\sup _{\omega}\left|\partial_{j} v_{0}(t, \omega)\right|+c_{2} \sup _{\omega}\left|\hat{q}_{0}(t, \omega)\right|\right) .
\end{align*}
$$

By $\mathrm{I}^{\prime}-1$) and $\mathrm{I}^{\prime}-4$) the terms on the right side are integrable with respect to χ and t. Hence from (8.30) and (8.31) we have

$$
\begin{aligned}
\int \sup _{\omega}\left|\partial_{j}\left(l_{0} * \hat{q}_{0}\right)\right| d \chi \leqq & \int \sup _{\omega}\left|\partial_{j} l_{0}(\chi, \omega)\right| d \chi\left\|\hat{q}_{0}\right\|_{F} \\
& +\left\|\hat{p}_{0}\right\|_{F} \int \sup _{\omega}\left|\partial_{j} v_{0}(\chi, \omega)\right| d \chi+c_{2}\left\|\hat{p}_{0}\right\|_{F}\left\|\hat{q}_{0}\right\|_{F}
\end{aligned}
$$

and $\sup _{\omega}\left|\partial_{j}\left(l_{0} * \hat{q}_{0}\right)\right|$ is integrable.
Since

$$
\begin{gathered}
\sup _{\omega}\left|\partial_{j}\left(l_{\infty} \hat{q}_{0}\right)\right| \leqq \sup _{\omega}\left|\partial_{j} l_{\infty}\right| \sup _{\omega}\left|\hat{q}_{0}\right|+\sup _{\omega}\left|p_{\infty}\right| \sup _{\omega}\left|\partial_{j} v_{0}\right| \\
+c_{2} \sup _{\omega}\left|p_{\infty}\right| \sup _{\omega}\left|\hat{q}_{0}\right|,
\end{gathered}
$$

by $\left.\mathrm{I}^{\prime}-1\right), \mathrm{I}^{\prime}-3$) and $\left.\mathrm{I}^{\prime}-4\right) \sup _{\omega}\left|\partial_{j}\left(l_{\infty} \hat{q}_{0}\right)\right|$ is integrable. Similarly $\sup _{\omega}\left|\partial_{j}\left(l_{0} q_{\infty}\right)\right|$ is integrable. Hence by (8.28) sup $\left|\partial_{j} e_{0}\right|$ is integrable and $\left.I^{\prime}-4\right)$ is satisfied.

We prove (c). By (a) and (b) it suffices to show that d satisfies III'-4). From (8.29) it follows that

$$
\begin{align*}
& \left|\chi_{j}\right|\left|\partial_{j}\left\{l_{0}(\chi-t, \omega) \hat{q}_{0}(t, \omega)\right\}\right| \leqq\left|\chi_{j}-t_{j}\right|\left|\partial_{j} l_{0}(\chi-t, \omega)\right|\left|\hat{q}_{0}(t, \omega)\right| \tag{8.32}\\
& \quad+\left|\partial_{j} l_{0}(\chi-t, \omega)\right|\left|t_{j}\right|\left|\hat{q}_{0}(t, \omega)\right|+\left|\chi_{j}-t_{j}\right|\left|\hat{p}_{0}(\chi-t, \omega)\right|\left|\partial_{j} v_{0}(t, \omega)\right| \\
& \quad+\left|\hat{p}_{0}(\chi-t, \omega)\right|\left|t_{j}\right|\left|\partial_{j} v_{0}(t, \omega)\right|+\left|\chi_{j}-t_{j}\right|\left|\hat{p}_{0}(\chi-t, \omega)\right|\left|\hat{q}_{0}(t, \omega)\right|\left|\partial_{j}\right| s| | \\
& \quad+\left|\hat{p}_{0}(\chi-t, \omega)\right|\left|t_{j}\right|\left|\hat{q}_{0}(t, \omega)\right|\left|\partial_{j}\right| s| | .
\end{align*}
$$

Each term of (8.32) is measurable on $S_{t \chi z}$ and its essential supremum over S_{ω} is measurable on $S_{t x}$, so that the integrability of $\sup _{\omega}\left(\left|\chi_{j}\right|\left|\partial_{j}\left(l_{0} * \hat{q}_{0}\right)\right|\right)$ follows from the conditions.

By I', II and III' it can be shown that $\sup _{\omega}\left(\left|\chi_{j}\right|\left|\partial_{j}\left(l_{\infty} \hat{q}_{0}\right)\right|\right)$ and $\sup _{\omega}\left(\left|\chi_{j}\right| \cdot\right.$ $\left.\left|\partial_{j}\left(l_{0} q_{\infty}\right)\right|\right)$ are also integrable. Hence by (8.28) $\sup _{\omega}\left(\left|\chi_{j}\right|\left|\partial_{j} e_{0}\right|\right)$ is integrable and $\mathrm{III}^{\prime}-4$) is satisfied.

We prove (d). By (b) it suffices to show that d satisfies V-2) and V-3). Let $w_{j 0}(\chi, \omega)=\left(\partial_{j} v_{0}\right)|s|$. Then by V-1) and V-2) $\partial_{k} m_{j 0}(\chi, \omega)$ and $\partial_{k} w_{j 0}(\chi, \omega)$ belong to $M[\chi, z]$ and are measurable on S_{χ} for each $\omega \in S_{z} ; \sup _{\omega}\left|\partial_{k} m_{j 0}(\chi, \omega)\right|$, $\sup _{\omega}\left|\partial_{k} w_{j 0}(\chi, \omega)\right| \in M[\chi]$.

Multiplying both sides of (8.30) by $|s(\omega)|$, we have by (8.29)

$$
\begin{equation*}
\left\{\partial_{j}\left(l_{0} * \hat{q}_{0}\right)\right\}|s|=m_{j 0} * \hat{q}_{0}+\hat{p}_{0} * w_{j 0}-\left(l_{0} * \hat{q}_{0}\right)\left(\partial_{j}|s|\right) . \tag{8.33}
\end{equation*}
$$

By the same argument as in the proof of (b) $\partial_{k}\left(m_{j 0} * \hat{q}_{0}\right)$ belongs to $M[\chi, z]$ and is continuous on S_{z} for each $\chi ; \sup _{\omega}\left|\partial_{k}\left(m_{j 0} * \hat{q}_{0}\right)\right|$ belongs to $M[\chi]$ and is integrable. Similarly for $\partial_{k}\left(\hat{p}_{0} * w_{j 0}\right)$ and $\partial_{k}\left\{\left(l_{0} * \hat{q}_{0}\right)\left(\partial_{j}|s|\right)\right\}$ we have the same results. Therefore by (8.33) $p_{0} q_{0}$ satisfies $V-2$) and $V-3$).

It is readily verified that $p_{\infty} q_{0}, p_{0} q_{\infty}$ and $p_{\infty} q_{\infty}$ satisfy the same conditions. Hence by (8.28) d satisfies V-2) and V-3).

In the following sup does not stand for ess. sup.

8.6. Proof of Lemma 4.6

We prove (i). By VI-1) and VI-2) p satisfies conditions 1) and 2) of \mathscr{K}. Since

$$
\begin{equation*}
\left|\hat{p}_{0}(\chi, \omega)\right| \leqq \kappa \int \sup _{\omega}\left|p_{0}(x, \omega)\right| d x \tag{8.34}
\end{equation*}
$$

by VI-2) $\hat{p}_{0}(\chi, \omega)$ belongs to $M[\chi, \omega]$; it belongs to $M[\omega]$ for each χ and is continuous on S_{χ} for each ω. Hence ess ${ }_{\omega} \sup \left|\hat{p}_{0}(\chi, \omega)\right|, \sup _{\omega}\left|\hat{p}_{0}(\chi, \omega)\right| \in M[\chi]$.

By integration by parts we have for each ω

$$
\widehat{D_{l}^{n+3} p_{0}}(\chi, \omega)=\left(i \chi_{l}\right)^{n+3} \hat{p}_{0}(\chi, \omega),
$$

so that

$$
\sum_{l=1}^{n}\left|\widehat{D_{l}^{n+3} p_{0}}(\chi, \omega)\right|=\sum_{l=1}^{n}\left|\chi_{l}\right|^{n+3}\left|\hat{p}_{0}(\chi, \omega)\right| .
$$

Let d be a positive constant such that $\sum_{l=1}^{n}\left|\chi_{l}\right|^{n+3} \geqq d|\chi|^{n+3}$. Then since

$$
d|\chi|^{n+3}\left|\hat{p}_{0}\right| \leqq \sum_{l=1}^{n}\left|\chi_{l}\right|^{n+3}\left|\hat{p}_{0}\right| \leqq \kappa \sum_{l=1}^{n} \int\left|D_{l}^{n+3} p_{0}\right| d x
$$

we have for any fixed $A>0$

$$
\int_{|\chi| \geqq A} \sup _{\omega}\left(|\chi|^{k}\left|\hat{p}_{0}(\chi, \omega)\right|\right) d \chi \leqq c \int_{|x| \geqq A} 1 /|\chi|^{n+3-k} d \chi \quad(k=0,1,2),
$$

where

$$
c=(\kappa / d) \sum_{l=1}^{n} \int \sup _{\omega}\left|D_{l}^{n+3} p_{0}(x, \omega)\right| d x .
$$

Hence $\sup _{\omega}\left(|\chi|^{k}\left|\hat{p}_{0}(\chi, \omega)\right|\right)(k=0,1,2)$ are integrable, because by (8.34)

$$
\int_{|\chi| \leqq A} \sup _{\omega}\left(|\chi|^{k}\left|\hat{p}_{0}(\chi, \omega)\right|\right) d \chi<\infty .
$$

Thus p satisfies condition 3) of \mathscr{K}, II and IV.
We prove (ii). Since p belongs to \mathscr{K} and $\hat{p}_{0}(\chi, \omega)$ is bounded on $S_{\chi z}$ by (i), p satisfies $\left.\left.\left.\mathrm{I}^{\prime}-1\right), \mathrm{I}^{\prime}-2\right), \mathrm{III}^{\prime}-1\right)$ and $\left.\mathrm{III}^{\prime}-2\right)$. By VI-3) and VI-4) ess. $\sup \left(\left|\partial_{j} p_{0}\right||s|\right)$, $\sup _{\omega \notin \mathrm{Z}}\left(\widehat{\mid \partial_{j} p_{0}}| | s \mid\right) \in M[\chi](j=1,2, \ldots, n)$.

By VI-2) $e^{-i x \cdot \chi} p_{0}(x, \omega)|s(\omega)|$ is measurable on $S_{x \chi z}$ and is integrable with respect to x for each $(\chi, \omega) \in S_{\chi z}$. By VI-3) we have for $\omega \in S_{z}$

$$
\partial_{j}\left(e^{-i x \cdot x} p_{0}|s|\right)=e^{-i x \cdot x}\left(\partial_{j} p_{0}\right)|s|+e^{-i x \cdot \chi} p_{0} \partial_{j}|s|,
$$

so that

$$
\left|\partial_{j}\left(e^{-i x \cdot \chi} p_{0}|s|\right)\right| \leqq \varphi(x) \quad \text { for } \quad \omega \in S_{z}
$$

where

$$
\varphi(x)=\sup _{\omega \notin Z}\left(\left|\partial_{j} p_{0}\right||s|\right)+c_{2} \sup _{\omega \notin Z}\left|p_{0}\right|
$$

and c_{2} is given by (8.27). By VI-2) and VI-4) $\varphi(x)$ is integrable. Hence

$$
\begin{equation*}
\partial_{j}\left(\hat{p}_{0}|s|\right)=\widehat{\partial_{j}\left(p_{0}|s|\right)} \quad \text { for } \quad(\chi, \omega) \in S_{x z} \tag{8.35}
\end{equation*}
$$

$\partial_{j}\left(\hat{p}_{0}|s|\right) \in M[\chi, z]$ and

$$
\begin{equation*}
\partial_{j}\left(\hat{p}_{0}|s|\right)=\widehat{\partial_{j} p_{0}}|s|+\hat{p}_{0} \partial_{j}|s| \quad \text { for } \quad(\chi, \omega) \in S_{\chi z} . \tag{8.36}
\end{equation*}
$$

By VI-2) and VI-3) $\partial_{j}\left(e^{-i x \cdot} \cdot p_{0}|s|\right)$ is continuous on $S_{\chi z}$ and is dominated by $\varphi(x)$, so that $\partial_{j}\left(\hat{p}_{0}|s|\right)$ is continuous on $S_{\chi z}$ and p_{0} satisfies I' -3) and III' -3). Since by VI-3)

$$
\begin{equation*}
\partial_{j}\left(p_{\infty}|s|\right)=\left(\partial_{j} p_{\infty}\right)|s|+p_{\infty} \partial_{j}|s| \quad \text { for } \quad \omega \in S_{z}, \tag{8.37}
\end{equation*}
$$

by VI-1), VI-3) and VI-4) $p_{\infty},\left(\partial_{j} p_{\infty}\right)|s| \in C[z]$ and p_{∞} satisfies $\left.\mathrm{I}^{\prime}-3\right)$. Thus
$\mathrm{I}^{\prime}-3$) and $\mathrm{III}^{\prime}-3$) are satisfied.
By integration by parts we have

$$
\widehat{D_{l}^{n+2} \partial_{j} p_{0}}(\chi, \omega)|s(\omega)|=\left(i \chi_{l}\right)^{n+2} \widehat{\partial_{j} p_{0}}(\chi, \omega)|s(\omega)| \quad \text { for } \quad \omega \in S_{z},
$$

and $\sup _{\omega \neq Z}\left(|\chi|^{k} \widehat{\partial_{j} p_{0}}| | s \mid\right)(k=0,1)$ are integrable by the same argument as for $\sup _{\omega}\left(|\chi|^{k}\left|\hat{p}_{0}(\chi, \omega)\right|\right)$. Hence by (i) and (8.36) $\sup _{\omega \neq Z}\left(|\chi|^{k}\left|\partial_{j}\left(\hat{p}_{0}|s|\right)\right|\right)(k=0,1)$ are integrable and p satisfies $\mathrm{I}^{\prime}-4$) and III'-4). Therefore by (i) $p \in \mathscr{M}$.

We prove (iii). By (ii) it suffices to show that $\mathrm{V}-2$) and $\mathrm{V}-3$) are satisfied. By VI-5) and VI-6) ess. $\sup \left(\widehat{\partial_{k} \partial_{j} p_{0}}\left||s|^{2}\right), \sup _{\omega \neq Z}\left(\left|\widehat{\partial_{k} \partial_{j} p_{0}}\right||s|^{2}\right) \in M[\chi] \quad(j, k=1\right.$, $2, \ldots, n$).

Multiplying both sides of (8.36) by $|s(\omega)|$, we have

$$
\begin{equation*}
\left\{\partial_{j}\left(\hat{p}_{0}|s|\right)\right\}|s|=\widehat{\partial_{j} p_{0}}|s|^{2}+\hat{p}_{0}|s| \partial_{j}|s| \quad \text { for } \quad \omega \in S_{z} \tag{8.38}
\end{equation*}
$$

By the same argument as in the proof of (8.35)

$$
\left.\partial_{k} \widehat{\partial_{j} p_{0}}|s|^{2}\right)=\widehat{\partial_{k}\left\{\left(\partial_{j} p_{0}\right)|s|^{2}\right\}} \quad \text { for } \quad \omega \in S_{z}
$$

and $\partial_{k}\left(\widehat{\left(\partial_{j} p_{0}|s|^{2}\right.}\right) \in C[\chi, z]$.
Since p satisfies V-1), we have for $\omega \in S_{z}$

$$
\partial_{k}\left(\hat{p}_{0}|s| \partial_{j}|s|\right)=\left\{\partial_{k}\left(\hat{p}_{0}|s|\right)\right\} \partial_{j}|s|+\hat{p}_{0}|s| \partial_{k} \partial_{j}|s|,
$$

which belongs to $C[\chi, z]$. Hence by (8.38) $\partial_{k}\left[\left\{\partial_{j}\left(\hat{p}_{0}|s|\right)\right\}|s|\right] \in C[\chi, z]$ and p_{0} satisfies V-2).

Multiplying both sides of (8.37) by $|s(\omega)|$, we have

$$
\begin{equation*}
\left\{\partial_{j}\left(p_{\infty}|s|\right)\right\}|s|=\left(\partial_{j} p_{\infty}\right)|s|^{2}+p_{\infty}|s| \partial_{j}|s| \tag{8.39}
\end{equation*}
$$

Calculating the partial derivatives of (8.39) with respect to ω_{k}, by VI-3)-VI-6) we find $\partial_{k}\left[\left\{\partial_{j}\left(p_{\infty}|s|\right)\right\}|s|\right] \in C[z]$. Hence p_{∞} satisfies V-2).

From (8.38) it follows for $(\chi, \omega) \in S_{x z}$ that

$$
\begin{align*}
\partial_{k}\left[\left\{\partial_{j}\left(\hat{p}_{0}|s|\right)\right\}|s|\right]= & \widehat{\partial_{k} \partial_{j} p_{0}}|s|^{2}+2 \widehat{\partial_{j} p_{0}}|s| \partial_{k}|s| \tag{8.40}\\
& +\left\{\partial_{k}\left(\hat{p}_{0}|s|\right)\right\} \partial_{j}|s|+\hat{p}_{0}|s| \partial_{k} \partial_{j}|s|
\end{align*}
$$

By the same argument as for $\sup _{\omega \notin Z}\left(\left|\widehat{\partial_{j} p_{0}}\right||s|\right)$ we have the integrability of $\sup _{\omega \notin Z}\left(\widehat{\partial_{k} \partial_{j} p_{0}} \mid\right.$. $|s|^{2}$). Since $\sup _{\omega \notin Z}\left|\partial_{k}\left(\hat{p}_{0}|s|\right)\right|$ is integrable by (ii), so is $\sup _{\omega \notin Z}\left|\partial_{k}\left[\left\{\partial_{j}\left(\hat{p}_{0}|s|\right)\right\}|s|\right]\right|$ by (8.40) and $\mathrm{V}-3$) is satisfied.

8.7. Proof of Lemma 4.7

By VI-1) and VI-2) $D_{l}^{m} g_{0}(x, \omega) \in M[x, \omega]$ and $\sup _{\omega} D_{l}^{m} g_{0}(x, \omega) \in M[x]$ $(l=1,2, \ldots, n ; m=0,1, \ldots, n+3)$. Hence $\hat{g}_{0}(\chi, \omega), \widehat{D_{l} g_{0}}(\chi, \omega) \in M[\chi, \omega]$; ess ${ }_{\omega}$ $\sup \left|\hat{g}_{0}(\chi, \omega)\right|$, ess. $\underset{\omega}{\sup }\left|\widehat{D_{l} g_{0}}(\chi, \omega)\right|, \sup _{\omega}\left|\hat{g}_{0}(\chi, \omega)\right|$ and $\sup _{\omega}\left|\widehat{D_{l} g_{0}}(\chi, \omega)\right|$ belong to $M[\chi]$.

By Lemma $4.6 g \in \mathscr{K}$. Since $D_{l} g=D_{l} g_{0}$, by VI-2) $D_{l} g(x, \omega)$ is bounded on $S_{x \omega}$, and is continuous and integrable with respect to x for each ω.

From VI-2) it follows as in the proof of Lemma 4.6 that $\widehat{D_{l} g}(\chi, \omega)(l=1$, $2, \ldots, n)$ are integrable with respect to χ and that ess. ${ }_{\omega} \sup \widehat{\mid D_{l} g}(\chi, \omega) \mid(l=1,2, \ldots$, n) are also integrable. Thus g satisfies $\mathrm{N}-1$).

By the same argument as in the proof of Lemma 4.6 we have for any fixed $A>0$

$$
\begin{aligned}
& \int_{|x| \geqq A} \sup _{\omega}\left|\widehat{\alpha_{0} g_{0}}(\chi, \omega)\right| d \chi \leqq c_{1}(R) \int_{|x| \geqq A}|\chi|^{-n-1} d \chi \\
& \int_{|x| \leqq A} \sup _{\omega}\left|\widehat{\alpha_{0} g_{0}}(\chi, \omega)\right| d \chi \leqq c_{0}(R) \int_{|x| \leqq A} 1 d \chi
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{1}(R)=\left(\kappa / d^{\prime}\right) \sum_{l=1}^{n} \int \sup _{\omega}\left|D_{l}^{n+1}\left(\alpha_{0}(x) g_{0}(x, \omega)\right)\right| d x \\
& c_{0}(R)=\kappa \int \sup _{\omega}\left|\alpha_{0}(x) g_{0}(x, \omega)\right| d x
\end{aligned}
$$

and d^{\prime} is a positive constant such that $\sum_{l=1}^{n}\left|\chi_{1}\right|^{n+1} \geqq d^{\prime}|\chi|^{n+1}$.
Since the supports of $\sup _{\omega}\left|\alpha_{0}(x) g_{0}(x, \omega)\right|$ and $\sup _{\omega}\left|D_{l}^{n+1} \alpha_{0}(x) g_{0}(x, \omega)\right|(l=1$, $2, \ldots, n)$ are contained in V_{0} and $D_{l}^{m} \alpha_{0}(x)(m=0,1, \ldots, n+1)$ are bounded uniformly with respect to R, by the integrability of $\sup _{\omega}\left|D_{l}^{m} g_{0}(x, \omega)\right|$ we have

$$
\lim _{R \rightarrow \infty} c_{j}(R)=0 \quad(j=0,1)
$$

Hence

$$
\lim _{R \rightarrow \infty} \int \sup _{\omega}\left|\widehat{\alpha_{0} g_{0}}(\chi, \omega)\right| d \chi=0
$$

and Condition $\mathrm{N}-2$) is satisfied.

8.8. Proof of Lemma 6.1

8.8.1. Preliminary results and proof

Assume that $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{s}$ and let $p_{i}(1 \leqq i \leqq s)$ be the multiplicity of λ_{i}. We denote by $\sup _{\omega} u\left(x, \omega^{\prime}\right)$ the supremum of $u\left(x, \omega^{\prime}\right)$ over S^{n-1}. Unless otherwise stated, in this section we denote by j, k, l, m, q and r the integers such that $1 \leqq j, k, l \leqq n, 0 \leqq m \leqq n+3,0 \leqq q \leqq n+2$ and $0 \leqq r \leqq n+1$. To prove Lemma 6.1 we need the following three lemmas.

Lemma B. Under Conditions A and C there exists a hermitian matrix $S\left(x, \omega^{\prime}\right)$ such that

$$
\begin{gather*}
S\left(x, \omega^{\prime}\right)=S_{0}\left(x, \omega^{\prime}\right)+S_{\infty}\left(\omega^{\prime}\right) \tag{8.41}\\
S\left(x, \omega^{\prime}\right) \geqq e I \tag{8.42}\\
\left\{S\left(x, \omega^{\prime}\right) A\left(x, \omega^{\prime}\right)\right\}^{*}=S\left(x, \omega^{\prime}\right) A\left(x, \omega^{\prime}\right) \tag{8.43}
\end{gather*}
$$

where $S_{0}\left(x, \omega^{\prime}\right) \rightarrow 0$ uniformly with respect to ω^{\prime} as $|x| \rightarrow \infty$ and e is a positive constant which does not depend on x and ω^{\prime}.

Let $a(x, \omega)$ be a scalar function defined on $S_{x 0}$. Then we introduce the following

Property D. 1) $a(x, \omega)$ can be written as

$$
a(x, \omega)=a_{0}(x, \omega)+a_{\infty}(\omega)
$$

where $\lim _{|x| \rightarrow \infty} a_{0}(x, \omega)=0$ for $\omega \in S_{0}$;
2) $\stackrel{|x| \rightarrow \infty}{D_{l}^{m}} a_{0}(x, \omega), D_{l}^{q} \partial_{j} a_{0}(x, \omega)$ and $D_{l}^{r} \partial_{k} \partial_{j} a_{0}(x, \omega)$ are continuous on $S_{x 0}$; $\partial_{j} a_{\infty}(\omega)$ and $\partial_{k} \partial_{j} a_{\infty}(\omega)$ are continuous on S_{0};
3) $\sup _{\omega \neq 0}\left(\left|D_{l}^{m} a_{0}(x, \omega)\right|\right), \sup _{\omega \neq 0}\left(\left|D_{l}^{q} \partial_{j} a_{0}(x, \omega)\right||\omega|\right)$ and $\sup _{\omega \neq 0}\left(\left|D_{l}^{r} \partial_{k} \partial_{j} a_{0}(x, \omega)\right||\omega|^{2}\right)$ are bounded and integrable; $\sup _{\omega \neq 0}\left(\left|a_{\infty}(\omega)\right|\right), \sup _{\omega \neq 0}\left(\left|\partial_{j} a_{\infty}(\omega)\right|| | \omega \mid\right)$ and $\sup _{\omega \neq 0}\left(\left|\partial_{k} \partial_{j} a_{\infty}(\omega)\right|\right.$. $\left.|\omega|^{2}\right)$ are finite.

Lemma C. Let $a(x, \omega)$ and $b(x, \omega)$ be scalar functions with property D. Then
(i) $a+b, a b$ and \bar{a} have property D ;
(ii) If $|b| \geqq \alpha$ for some $\alpha>0$, then a / b has property D ;
(iii) If $a \geqq \beta$ for some $\beta>0$, then $\sqrt{ }$ a has property D .

Lemma D. Under Conditions A, B and C the eigenvalues $\lambda_{i}(x, \omega /|\omega|)$ $(i=1,2, \ldots, s)$ of $A(x, \omega /|\omega|)(|\omega| \neq 0)$ and the entries of $S(x, \omega /|\omega|)$ have property D.

Proof of Lemma 6.1. Let

$$
g(x, \omega)= \begin{cases}S(x, s(\omega) /|s(\omega)|) & \text { if } \omega \in S_{z} \tag{8.44}\\ e I & \text { if } \omega \in Z\end{cases}
$$

We show that $g(x, \omega)$ satisfies VI. Since by Lemma D the entries of $S(x, \omega /|\omega|)$ have property D , by $\mathrm{D}-1$) we have

$$
S(x, \omega /|\omega|)=S_{0}(x, \omega /|\omega|)+S_{\infty}(\omega /|\omega|)
$$

where $\lim _{|x| \rightarrow \infty} S_{0}(x, \omega /|\omega|)=0$. Let

$$
g_{\infty}(\omega)= \begin{cases}S_{\infty}(s(\omega) /|s(\omega)|) & \text { if } \omega \in S_{z} \tag{8.45}\\ e I & \text { if } \omega \in Z,\end{cases}
$$

and put $g_{0}(x, \omega)=g(x, \omega)-g_{\infty}(\omega)$. Then

$$
\begin{array}{ll}
\lim _{|x| \rightarrow \infty} g_{0}(x, \omega)=0 & \text { for } \\
g_{0}(x, \omega)=0 & \text { for } \tag{8.46}\\
\omega \in Z .
\end{array}
$$

By D-2) and D-3) $g_{0}(x, \omega) \in C[x, z]$ and $g_{\infty}(\omega) \in C[z]$. Hence by (8.45) and (8.46) $g_{0}(x, \omega) \in M[x, \omega]$ and $g_{\infty}(\omega) \in M[\omega]$. Thus g satisfies VI-1).

Since $\sup _{\omega \neq 0}\left|D_{l}^{m} S_{0}(x, \omega /|\omega|)\right|$ belongs to $M[x]$ and is integrable by D-2) and D-3), $\sup _{\omega \notin Z}\left|D_{l}^{m \neq 0} g_{0}(x, \omega)\right|$ is bounded and integrable. Hence g satisfies VI-2).

For $\omega \in S_{z}$ we have

$$
\begin{align*}
& D_{l}^{q} \partial_{j} g_{0}(x, \omega)=\sum_{k=1}^{n}\left\{\partial_{j} s_{k}(\omega)\right\}\left[D_{l}^{q} \partial_{k} S_{0}(x, \omega /|\omega|)\right]_{\omega=s(\omega)}, \tag{8.47}\\
& \partial_{j} g_{\infty}(\omega)=\sum_{k=1}^{n}\left\{\partial_{j} s_{k}(\omega)\right\}\left[\partial_{k} S_{\infty}(\omega /|\omega|)\right]_{\omega=s(\omega)}, \tag{8.48}
\end{align*}
$$

so that by D-2) $D_{l}^{q} \partial_{j} g_{0}(x, \omega)$ and $\partial_{j} g_{\infty}(\omega)$ are continuous on $S_{x z}$ and on S_{z} respectively. Thus g satisfies VI-3).

From (8.47) and (8.48) it follows that for $(x, \omega) \in S_{x z}$

$$
\begin{aligned}
& \left|D_{l}^{q} \partial_{j} g_{0}\right||s| \leqq c \sum_{k=1}^{n} \sup _{\omega \neq 0}\left(\left|D_{l}^{q} \partial_{k} S_{0}(x, \omega /|\omega|)\right||\omega|\right), \\
& \left|\partial_{j} g_{\infty}\right||s| \leqq c \sum_{k=1}^{n} \sup _{\omega \neq 0}\left(\left|\partial_{k} S_{\infty}(\omega /|\omega|)\right||\omega|\right),
\end{aligned}
$$

where c is a constant such that $\left|\partial_{j} s_{k}(\omega)\right| \leqq c$. Hence by D-3) $\sup _{\omega \notin Z}\left(\left|D_{l}^{q} \partial_{j} g_{0}\right||s|\right)$ is bounded and integrable and $\sup _{\omega \notin Z}\left(\left|\partial_{j} g_{\infty}\right||s|\right)$ is finite. Thus g satisfies VI-4). Similarly it can be shown that g fulfills VI-5) and VI-6).

By Lemma $4.6 g \in \mathscr{L}$. Since by (8.42) and (8.44)

$$
g(x, \omega) \geqq e I \quad(e>0),
$$

by Lemma 4.7 g satisfies the conditions of Theorem 3.3. Finally (6.5) follows from (8.43).

8.8.2. Proof of Lemma B

Let

$$
\begin{align*}
& d\left(\lambda ; x, \omega^{\prime}\right)=\operatorname{det}(\lambda I-A)=\prod_{j=1}^{s_{j}}\left(\lambda-\lambda_{j}\right)^{p_{j}}, \tag{8.49}\\
& d_{\lambda}\left(\lambda ; x, \omega^{\prime}\right)=D_{\lambda} d\left(\lambda ; x, \omega^{\prime}\right) \quad\left(D_{\lambda}=\partial / \partial \lambda\right), \\
& A_{\infty}\left(\omega^{\prime}\right)=\sum_{j=1}^{n} A_{j \infty} \omega_{j}^{\prime}, \quad d_{\infty}\left(\lambda ; \omega^{\prime}\right)=\operatorname{det}\left(\lambda I-A_{\infty}\left(\omega^{\prime}\right)\right), \\
& d_{\lambda \infty}\left(\lambda ; \omega^{\prime}\right)=D_{\lambda} d_{\infty}\left(\lambda ; \omega^{\prime}\right) .
\end{align*}
$$

As $\lambda_{j}(j=1,2, \ldots, s)$ are real, we have

$$
\begin{equation*}
d_{\lambda}\left(\lambda ; x, \omega^{\prime}\right)=N \prod_{j=1}^{s}\left(\lambda-\lambda_{j}\right)^{p_{j}-1} \prod_{k=1}^{s-1}\left(\lambda-\mu_{k}\right), \tag{8.50}
\end{equation*}
$$

where $\mu_{k}\left(x, \omega^{\prime}\right)(k=1,2, \ldots, s-1)$ are real and $\lambda_{k}<\mu_{k}<\lambda_{k+1}$.
By Condition A $A\left(x, \omega^{\prime}\right) \rightarrow A_{\infty}\left(\omega^{\prime}\right)$ uniformly with respect to ω^{\prime} as $|x| \rightarrow \infty$. Hence by continuity of eigenvalues of matrices we have the following results:

1) Eigenvalues of $A_{\infty}\left(\omega^{\prime}\right)$ are all real and their multiplicities are independent of ω^{\prime};
2) $\quad\left|\lambda_{i \infty}\left(\omega^{\prime}\right)-\lambda_{j \infty}\left(\omega^{\prime}\right)\right| \geqq \delta \quad(i \neq j ; i, j=1,2, \ldots, s)$,

$$
\begin{equation*}
\lambda_{j}\left(x, \omega^{\prime}\right) \longrightarrow \lambda_{j \infty}\left(\omega^{\prime}\right) \quad(j=1,2, \ldots, s) \tag{8.51}
\end{equation*}
$$

uniformly with respect to ω^{\prime} as $|x| \rightarrow \infty$, where $\lambda_{j \infty}\left(\omega^{\prime}\right)(j=1,2, \ldots, s)$ are all the distinct eigenvalues of $A_{\infty}\left(\omega^{\prime}\right)$ and $\lambda_{1 \infty}<\lambda_{2 \infty}<\cdots<\lambda_{s \infty}$;
3) $\mu_{k}\left(x, \omega^{\prime}\right) \rightarrow \mu_{k \infty}\left(\omega^{\prime}\right)(k=1,2, \ldots, s-1)$ uniformly with respect to ω^{\prime} as $|x|$ $\rightarrow \infty$, where $\mu_{k \infty 0}\left(\omega^{\prime}\right)(k=1,2, \ldots, s-1)$ are zeros of $d_{\lambda \infty}\left(\lambda, \omega^{\prime}\right)$ such that $\lambda_{k \infty}<\mu_{k \infty}$ $<\lambda_{k+1 \infty}$;
4) There exists a constant $\rho>0$ independent of x and ω^{\prime} such that

$$
\left|\lambda_{j}\left(x, \omega^{\prime}\right)-\mu_{k}\left(x, \omega^{\prime}\right)\right| \geqq 2 \rho \quad(j=1,2, \ldots, s ; k=1,2, \ldots, s-1)
$$

Put $\lambda_{j 0}\left(x, \omega^{\prime}\right)=\lambda_{j}-\lambda_{j \infty}(j=1,2, \ldots, s)$. Then from (8.51) it follows that

$$
\begin{equation*}
\lambda_{j}\left(x, \omega^{\prime}\right)=\lambda_{j 0}\left(x, \omega^{\prime}\right)+\lambda_{j \infty}\left(\omega^{\prime}\right), \quad \lim _{|x| \rightarrow \infty} \lambda_{j 0}\left(x, \omega^{\prime}\right)=0 \tag{8.52}
\end{equation*}
$$

Let $D_{j}(\rho)$ and $D_{j \infty}(\rho)(j=1,2, \ldots, s)$ be the open disks on the complex λ-plane with radius ρ and centers at λ_{j} and $\lambda_{j \infty}$ respectively. Let $E\left(\lambda ; x, \omega^{\prime}\right)$ and $E_{\infty}\left(\lambda ; \omega^{\prime}\right)$ be the matrices whose (i, j) entries are (j, i) cofactors of $\lambda I-A\left(x, \omega^{\prime}\right)$ and λI
$-A_{\infty}\left(\omega^{\prime}\right)$ respectively. Then $E\left(\lambda ; x, \omega^{\prime}\right) \rightarrow E_{\infty}\left(\lambda ; \omega^{\prime}\right)$ uniformly with respect to ω^{\prime} for each fixed λ as $|x| \rightarrow \infty$.

By C-3) $\left(\lambda I-A\left(x, \omega^{\prime}\right)\right)^{-1}$ has a simple pole at $\lambda=\lambda_{j}\left(x, \omega^{\prime}\right)(1 \leqq j \leqq s)$. Let $C_{j}\left(x, \omega^{\prime}\right)$ be the residue of $\left(\lambda I-A\left(x, \omega^{\prime}\right)\right)^{-1}$ at $\lambda=\lambda_{j}$ and let

$$
r_{j}\left(\lambda ; x, \omega^{\prime}\right)=\prod_{i=1, i \neq j}^{s}\left(\lambda-\lambda_{i}\right)^{p_{i}}, \quad r_{j \infty}\left(\lambda ; \omega^{\prime}\right)=\prod_{i=1, i \neq j}^{s}\left(\lambda-\lambda_{i \infty}\right)^{p_{i}} .
$$

Then

$$
r_{j}\left(\lambda_{j} ; x, \omega^{\prime}\right) \longrightarrow r_{j \infty}\left(\lambda_{j \infty} ; \omega^{\prime}\right) \quad \text { as } \quad|x| \rightarrow \infty
$$

and we have

$$
\begin{equation*}
\left|r_{j}\left(\lambda_{j} ; x, \omega^{\prime}\right)\right| \geqq \delta^{N-p_{j}}, \quad\left|r_{j \infty}\left(\lambda_{j \infty} ; \omega^{\prime}\right)\right| \geqq \delta^{N-p_{j}} . \tag{8.53}
\end{equation*}
$$

Since

$$
\left(\lambda I-A\left(x, \omega^{\prime}\right)\right)^{-1}=E\left(\lambda ; x, \omega^{\prime}\right) / d\left(\lambda ; x, \omega^{\prime}\right)
$$

$E\left(\lambda ; x, \omega^{\prime}\right)$ can be written on $D_{j}(\rho)$ as

$$
\begin{equation*}
E\left(\lambda ; x, \omega^{\prime}\right)=\left(\lambda-\lambda_{j}\left(x, \omega^{\prime}\right)\right)^{p_{j}-1} B_{j}\left(\lambda ; x, \omega^{\prime}\right), \tag{8.54}
\end{equation*}
$$

where the entries of $B_{j}\left(\lambda ; x, \omega^{\prime}\right)$ are sums of products of $\lambda, \lambda_{j}\left(x, \omega^{\prime}\right)$ and entries of $A\left(x, \omega^{\prime}\right)$. Hence $B_{j}\left(\lambda ; x, \omega^{\prime}\right)$ converges to a matrix, say $B_{j \omega}\left(\lambda ; \omega^{\prime}\right)$, uniformly with respect to ω^{\prime} as $|x| \rightarrow \infty$ for each fixed λ. It follows that

$$
\begin{equation*}
C_{j}\left(x, \omega^{\prime}\right)=B_{j}\left(\lambda_{j} ; x, \omega^{\prime}\right) / r_{j}\left(\lambda_{j} ; x, \omega^{\prime}\right) \tag{8.55}
\end{equation*}
$$

$$
\begin{equation*}
B_{j \infty}\left(\lambda_{j \infty} ; \omega^{\prime}\right)=\lim _{|x| \rightarrow \infty} B_{j}\left(\lambda_{j} ; x, \omega^{\prime}\right), \tag{8.56}
\end{equation*}
$$

and by (8.54) we have on $D_{j \infty}(\rho)$

$$
\begin{equation*}
E_{\infty}\left(\lambda ; \omega^{\prime}\right)=\left(\lambda-\lambda_{j \infty}\left(\omega^{\prime}\right)\right)^{p_{j}-1} B_{j \infty}\left(\lambda ; \omega^{\prime}\right) \tag{8.57}
\end{equation*}
$$

Let

$$
\begin{equation*}
C_{j \infty}\left(\omega^{\prime}\right)=B_{j \infty}\left(\lambda_{j \infty} ; \omega^{\prime}\right) / r_{j \omega}\left(\lambda_{j \infty} ; \omega^{\prime}\right) \tag{8.58}
\end{equation*}
$$

Then by (8.53) and (8.56) $C_{j}\left(x, \omega^{\prime}\right) \rightarrow C_{j \infty}\left(\omega^{\prime}\right)$ uniformly with respect to ω^{\prime} as $|x| \rightarrow \infty$. Since

$$
\left(\lambda I-A_{\infty}\left(\omega^{\prime}\right)\right)^{-1}=E_{\infty}\left(\lambda ; \omega^{\prime}\right) / d_{\infty}\left(\lambda ; \omega^{\prime}\right),
$$

by (8.57) and (8.58) we have

$$
\lim _{\lambda \rightarrow \lambda_{j \infty}}\left(\lambda I-A_{\infty}\left(\omega^{\prime}\right)\right)^{-1}\left(\lambda-\lambda_{j \infty}\right)=C_{j \infty}\left(\omega^{\prime}\right) .
$$

Hence $\left(\lambda I-A_{\infty}\left(\omega^{\prime}\right)\right)^{-1}$ has simple poles at $\lambda=\lambda_{j \infty}(j=1,2, \ldots, s)$.

We prove (8.41)-(8.43). After Friedrichs [3] we define $S\left(x, \omega^{\prime}\right)$ by

$$
\begin{aligned}
& S\left(x, \omega^{\prime}\right)=\sum_{j=1}^{s} \frac{1}{2 \pi i} \int_{\Gamma_{j}}\left(\lambda I-A^{*}\left(x, \omega^{\prime}\right)\right)^{-1}\left(\lambda I-A\left(x, \omega^{\prime}\right)\right)^{-1} \\
& \times d_{\lambda}^{-1}\left(\lambda ; x, \omega^{\prime}\right) d\left(\lambda ; x, \omega^{\prime}\right) d \lambda,
\end{aligned}
$$

where $\Gamma_{j}(1 \leqq j \leqq s)$ is the positively oriented path running along the circumference of $D_{j}(\rho)$. Then it follows that

$$
\begin{align*}
S\left(x, \omega^{\prime}\right) & =\sum_{j=1}^{s} \lim _{\lambda \rightarrow \lambda_{j}}\left\{\left(\lambda I-A^{*}\right)^{-1}(\lambda I-A)^{-1}\left(\lambda-\lambda_{j}\right)^{2} d_{\lambda}^{-1} d /\left(\lambda-\lambda_{j}\right)\right\} \tag{8.59}\\
& =\sum_{j=1}^{s_{j} p_{j}^{-1} C_{j}^{*}\left(x, \omega^{\prime}\right) C_{j}\left(x, \omega^{\prime}\right)} .
\end{align*}
$$

Hence

$$
\begin{equation*}
S\left(x, \omega^{\prime}\right) \longrightarrow S_{\infty}\left(\omega^{\prime}\right) \equiv \sum_{j=1}^{s_{j}} p_{j}^{-1} C_{j \infty}^{*}\left(\omega^{\prime}\right) C_{j \infty}\left(\omega^{\prime}\right) \tag{8.60}
\end{equation*}
$$

uniformly with respect to ω^{\prime} as $|x| \rightarrow \infty$. Put $S_{0}\left(x, \omega^{\prime}\right)=S\left(x, \omega^{\prime}\right)-S_{\infty}\left(\omega^{\prime}\right)$. Then (8.41) holds.

We show (8.42). From (8.59) we have $S\left(x, \omega^{\prime}\right) \geqq 0$. Suppose $S\left(x, \omega^{\prime}\right)$ >0 does not hold. Then there exist a point ($\left.\tilde{x}, \tilde{\omega}^{\prime}\right)$ and a vector $u(u \neq 0)$ such that $S\left(\tilde{x}, \tilde{\omega}^{\prime}\right) u=0$, and (8.59) yields

$$
C_{j}\left(\tilde{x}, \tilde{\omega}^{\prime}\right) u=0 \quad(j=1,2, \ldots, s)
$$

Since in general

$$
u=\frac{1}{2 \pi i} \sum_{j=1}^{s} \int_{\Gamma_{j}}\left(\lambda I-A\left(x, \omega^{\prime}\right)\right)^{-1} d \lambda u
$$

it follows that $u=\sum_{j=1}^{s} C_{j}\left(x, \omega^{\prime}\right) u$, and so we have $u=0$, which is a contradiction. Hence

$$
S\left(x, \omega^{\prime}\right)>0 \quad \text { for all } \quad x \in R^{n}, \quad \omega^{\prime} \in S^{n-1}
$$

By the same argument it follows from continuity of $S_{\infty}\left(\omega^{\prime}\right)$ that $S_{\infty}\left(\omega^{\prime}\right) \geqq \alpha I$ for some $\alpha>0$.

By (8.60) there is $R_{0}>0$ such that

$$
S\left(x, \omega^{\prime}\right) \geqq(\alpha / 2) I \quad \text { for } \quad|x| \geqq R_{0}
$$

By continuity of $S\left(x, \omega^{\prime}\right)$ there exists $\beta>0$ such that

$$
S\left(x, \omega^{\prime}\right) \geqq \beta I \quad \text { for } \quad|x| \leqq R_{0} \quad \text { and } \quad \omega^{\prime} \in S^{n-1}
$$

Hence (8.42) holds with $e=\min (\alpha / 2, \beta)$.
Finally we have

$$
\begin{aligned}
\left\{S\left(x, \omega^{\prime}\right) A\left(x, \omega^{\prime}\right)\right\}^{*} & =A^{*}\left(x, \omega^{\prime}\right) S\left(x, \omega^{\prime}\right) \\
=\sum_{j=1}^{s} \frac{1}{2 \pi i} & \left\{\int_{\Gamma_{j}} \lambda\left(\lambda I-A^{*}\right)^{-1}(\lambda I-A)^{-1} d_{\lambda}^{-1} d d \lambda\right. \\
& \left.\quad-\int_{\Gamma_{j}}\left(\lambda I-A^{*}\right)\left(\lambda I-A^{*}\right)^{-1}(\lambda I-A)^{-1} d_{\lambda}^{-1} d d \lambda\right\} \\
= & S\left(x, \omega^{\prime}\right) A\left(x, \omega^{\prime}\right),
\end{aligned}
$$

because the second integral vanishes.

8.8.3. Proof of Lemma C

It is clear that $a+b$ and \bar{a} have property D . Let $d=a b$. Then $d=d_{0}+d_{\infty}$, where

$$
d_{0}=a_{0} b_{0}+a_{\infty} b_{0}+a_{0} b_{\infty}, \quad d_{\infty}=a_{\infty} b_{\infty} .
$$

From this it follows that d has property D.
In the case (ii) let $e(x, \omega)=a / b$. Then $e=e_{0}+e_{\infty}$, where

$$
\begin{aligned}
& e_{0}(x, \omega)=u / v, \quad e_{\infty}=a_{\infty} / b_{\infty}, \\
& u(x, \omega)=a_{0} b_{\infty}-b_{0} a_{\infty}, \quad v(x, \omega)=b b_{\infty}
\end{aligned}
$$

By (i) u and v have property D. Since

$$
u=u_{0}, \quad u_{\infty}=0, \quad|v| \geqq \alpha^{2}, \quad\left|b_{\infty}\right| \geqq \alpha,
$$

it follows that e has property D .
In the case (iii) let $f(x, \omega)=\sqrt{ } a$ and $\gamma=\sqrt{ } \beta$. Then $f=f_{0}+f_{\infty}$, where

$$
f_{0}(x, \omega)=\sqrt{ } a-\sqrt{ } a_{\infty}, \quad f_{\infty}(\omega)=\sqrt{ } a_{\infty} .
$$

Since

$$
\begin{gathered}
f_{\infty} \geqq \gamma, \quad f_{\infty} \partial_{j} f_{\infty}=\left(\partial_{j} a_{\infty}\right) / 2, \\
f_{\infty} \partial_{k} \partial_{j} f_{\infty}+\left(\partial_{k} f_{\infty}\right)\left(\partial_{j} f_{\infty}\right)=\left(\partial_{k} \partial_{j} a_{\infty}\right) / 2
\end{gathered}
$$

f_{∞} has property D. As $f_{0}=a_{0} /\left(\sqrt{ } a+\sqrt{ } a_{\infty}\right)$ and $f \geqq \gamma, f_{0}$ has property D.

8.8.4. Proof of Lemma D

Since by (8.52) $\lambda_{i}(x, \omega /|\omega|)(1 \leqq i \leqq s)$ has property $\left.\mathrm{D}-1\right)$, we show first that it has property $\mathrm{D}-2$). The coefficients of the polynomial $d(\lambda ; x, \omega /|\omega|)$ are sums
of products of entries of $A(x, \omega /|\omega|)$, which have property D by Lemma C . Hence $\lambda_{i}(x, \omega /|\omega|) \in C[x, 0]$. Similarly we have $\lambda_{i \infty}(\omega /|\omega|) \in C[0]$.

Put

$$
\begin{array}{ll}
q(\lambda ; x, \omega /|\omega|)=D_{\lambda}^{p_{i}-1} d(\lambda ; x, \omega /|\omega|) & \left(D_{\lambda}=\partial / \partial \lambda\right), \\
q_{\infty}(\lambda ; \omega /|\omega|)=D_{\lambda}^{p_{i}-1} d_{\infty}(\lambda ; \omega /|\omega|), & p=N-p_{i} . \tag{8.62}
\end{array}
$$

Then $q\left(\lambda_{i}(x, \omega /|\omega|) ; x, \omega /|\omega|\right)=0, q_{\infty}\left(\lambda_{i \infty}(\omega /|\omega|) ; \omega /|\omega|\right)=0$ and by C-2) we have for $(x, \omega) \in S_{x 0}$

$$
\begin{align*}
& \left|D_{\lambda} q\left(\lambda_{i}(x, \omega /|\omega|) ; x, \omega /|\omega|\right)\right|=\prod_{k=1, k \neq i}^{s}\left|\lambda_{i}-\lambda_{k}\right|^{p_{k}} p_{i}!\geqq p_{i}!\delta^{p}>0, \tag{8.63}\\
& \left|D_{\lambda} q_{\infty}\left(\lambda_{i \infty}(\omega /|\omega|) ; \omega /|\omega|\right)\right|=\prod_{k=1, k \neq i}^{s}\left|\lambda_{i \infty}-\lambda_{k \infty}\right|^{p_{k}} p_{i}!\geqq p_{i}!\delta^{p}>0 . \tag{8.64}
\end{align*}
$$

Hence by the implicit function theorem $\lambda_{i}(x, \omega /|\omega|)$ has partial derivatives $D_{l} \lambda_{i}$ and $\partial_{j} \lambda_{i}$ on $S_{x 0}$, which can be written as

$$
\begin{align*}
& D_{l} \lambda_{i}(x, \omega /|\omega|)=-\left[D_{l} q(\lambda ; x, \omega /|\omega|) / D_{\lambda} q(\lambda ; x, \omega /|\omega|)\right]_{\lambda=\lambda_{i}}, \tag{8.65}\\
& \partial_{j} \lambda_{i}(x, \omega /|\omega|)=-\left[\partial_{j} q(\lambda ; x, \omega /|\omega|) / D_{\lambda} q(\lambda ; x, \omega /|\omega|)\right]_{\lambda=\lambda_{i}} . \tag{8.66}
\end{align*}
$$

Similarly $\lambda_{i \infty}(\omega /|\omega|)$ has a partial derivative $\partial_{j} \lambda_{i \infty}(\omega /|\omega|)$ on S_{0}, which can be written as

$$
\begin{equation*}
\partial_{j} \lambda_{i \infty}(\omega /|\omega|)=-\left[\partial_{j} q_{\infty}(\lambda ; \omega /|\omega|) / D_{\lambda} q_{\infty}(\lambda ; \omega /|\omega|)\right]_{\lambda=\lambda_{i \infty}} . \tag{8.67}
\end{equation*}
$$

On the other hand by (8.61) and (8.62) $q(\lambda ; x, \omega /|\omega|)$ and $q_{\infty}(\lambda ; \omega /|\omega|)$ can be written as follows:

$$
\begin{align*}
& q(\lambda ; x, \omega /|\omega|)=b \lambda^{p+1}+a_{0}(x, \omega /|\omega|) \lambda^{p}+\cdots+a_{p}(x, \omega /|\omega|), \tag{8.68}\\
& q_{\infty}(\lambda ; \omega /|\omega|)=b \lambda^{p+1}+a_{0 \infty}(\omega /|\omega|) \lambda^{p}+\cdots+a_{p \infty}(\omega /|\omega|) \tag{8.69}
\end{align*}
$$

where $b=N!/(p+1)!, a_{t}(t=0,1, \ldots, p)$ have property D and can be written as $a_{t}=a_{t 0}+a_{t \infty}$. Hence by (8.63) and (8.65) $D_{l} \lambda_{i}(x, \omega /|\omega|) \in C[x, 0]$, because $\lambda_{i}(x$, $\omega /|\omega|) \in C[x, 0]$. By consideration of the successive derivatives of (8.65) with respect to $x_{l} D_{l}^{m} \lambda_{i 0}(x, \omega /|\omega|)$ belongs to $C[x, 0]$.

Since by (8.66) and (8.67) $\partial_{j} \lambda_{i}(x, \omega /|\omega|)$ and $\partial_{j} \lambda_{i \infty}(\omega /|\omega|)$ are continuous on $S_{x 0}$, so is $\partial_{j} \lambda_{i 0}(x, \omega /|\omega|)$. Calculating the successive derivatives of (8.66) with respect to x_{l}, we see that $D_{l}^{m} \partial_{j} \lambda_{i 0}(x, \omega /|\omega|)$ is continuous on $S_{x 0}$.

By consideration of the derivatives of (8.66) and (8.67) with respect to ω_{k} $\partial_{k} \partial_{j} \lambda_{i}(x, \omega /|\omega|)$ and $\partial_{k} \partial_{j} \lambda_{i \infty}(\omega /|\omega|)$ are continuous on $S_{x 0}$ and on S_{0} respectively. Hence $\partial_{k} \partial_{j} \lambda_{i 0}(x, \omega /|\omega|)$ is continuous on $S_{x 0}$. Similarly $D_{l}^{r} \partial_{k} \partial_{j} \lambda_{i 0}(x, \omega /|\omega|)$ is continuous on $S_{x 0}$. Thus $\lambda_{i}(x, \omega /|\omega|)$ has property $\left.\mathrm{D}-2\right)$.

We prove that $\lambda_{i}(x, \omega /|\omega|)$ has property D-3). Put $q_{i}(x, \omega)=q\left(\lambda_{i \infty}(\omega /|\omega|)\right.$;
$x, \omega /|\omega|)$. Then from (8.61) and (8.49) we have

$$
\begin{equation*}
q_{i}(x, \omega)=\lambda_{i 0}(x, \omega /|\omega|) e_{i}(x, \omega) \tag{8.70}
\end{equation*}
$$

where

$$
e_{i}(x, \omega)=-\prod_{j=1, j \neq i}^{s}\left(\lambda_{i \infty}-\lambda_{j}\right)^{p_{j}} p_{i}!+\lambda_{i 0} \tilde{q}(x, \omega)
$$

and $\tilde{q}(x, \omega)$ is a sum of products of $\lambda_{i \infty}$ and $\lambda_{t}(t=1,2, \ldots, s)$ which are bounded on $S_{x 0}$. Hence there exists $K>0$ such that

$$
\begin{equation*}
\left|e_{i}(x, \omega)\right| \geqq(\delta / 4)^{p} \quad \text { for } \quad|x| \geqq K \tag{8.71}
\end{equation*}
$$

From (8.68) and (8.69) it follows that

$$
\begin{equation*}
q_{i}(x, \omega)=\sum_{t=0}^{p} a_{t 0} \lambda_{i \infty}^{p-t} \tag{8.72}
\end{equation*}
$$

and from (8.70)-(8.72) we have for $|x| \geqq K$

$$
\begin{equation*}
\left|\lambda_{i 0}(x, \omega /|\omega|)\right| \leqq\left(\sum_{t=0}^{p}\left|a_{t 0}\right|\left|\lambda_{i \infty}\right|^{p-t}\right) /(\delta / 4)^{p} \tag{8.73}
\end{equation*}
$$

Since $\lambda_{i 0}(x, \omega /|\omega|)$ and $a_{t 0}(x, \omega /|\omega|)(t=0,1, \ldots, p)$ belong to $C[x, 0]$, $\sup _{\omega \neq 0}\left|\lambda_{i 0}(x, \omega /|\omega|)\right|$ and $\sup _{\omega \neq 0}\left|a_{t 0}(x, \omega /|\omega|)\right|(t=0,1, \ldots, p)$ belong to $M[x]$. Put $c_{i}^{\omega \neq 0}(x)=\sup _{\omega \neq 0}\left|\lambda_{i 0}(x, \omega /|\omega|)\right| . \quad$ Then $\int_{|x| \leqq K} c_{i}(x) d x<\infty$, and by (8.73) $\int_{|x| \geqq K} c_{i}(x) d x$ $<\infty$, because $\int \sup _{\omega \neq 0}\left|a_{t 0}(x, \omega /|\omega|)\right| d x<\infty(t=0,1, \ldots, p)$. Hence $c_{i}(x)$ is integrable.

Since $D_{l} \lambda_{i 0}(x, \omega /|\omega|) \in C[x, 0]$, we have $\sup _{\omega \neq 0}\left|D_{l} \lambda_{i 0}(x, \omega /|\omega|)\right| \in M[x]$. As $\lambda_{i}(x, \omega /|\omega|)$ is bounded on $S_{x 0}$, by (8.65) and (8.63) $\sup _{\omega \neq 0}^{\omega \neq 0}\left|D_{l} \lambda_{i 0}(x, \omega /|\omega|)\right|$ is integrable. By calculating the successive derivatives of (8.65) with respect to x_{l}, it can be shown similarly that $\sup _{\omega \neq 0}\left|D_{l}^{m} \lambda_{i 0}(x, \omega /|\omega|)\right|$ is bounded and integrable.

As $a_{t}(x, \omega /|\omega|) \stackrel{\substack{\omega \neq 0 \\(t=0}}{(t=1, \ldots, p)}$ have property $D,\left\{\partial_{j} a_{t}(x, \omega /|\omega|)\right\}|\omega| \in C[x$, $0](t=0,1, \ldots, p)$ and by (8.66) and (8.63) $\left\{\partial_{j} \lambda_{i}(x, \omega /|\omega|)\right\}|\omega| \in C[x, 0]$. Similarly $\left\{\partial_{j} \lambda_{i \infty}(\omega /|\omega|)\right\}|\omega| \in C[0]$. Therefore $\sup _{\omega \neq 0}\left(\left|\partial_{j} \lambda_{i 0}(x, \omega /|\omega|)\right||\omega|\right) \in M[x]$ and $\sup _{\omega \neq 0}\left(\left|\partial_{j} \lambda_{i \infty}(\omega /|\omega|)\right||\omega|\right)$ is finite.

From (8.70) we have

$$
\begin{equation*}
\partial_{j} q_{i}(x, \omega)=\left(\partial_{j} \lambda_{i 0}\right) e_{i}+\lambda_{i 0} \partial_{j} e_{i} . \tag{8.74}
\end{equation*}
$$

By D-3) $\sup _{\omega \neq 0}\left(\left|\partial_{j} a_{t 0}(x, \omega /|\omega|)\right||\omega|\right)$ and $\sup _{\omega \neq 0}\left|a_{t 0}(x, \omega /|\omega|)\right|(t=0,1, \ldots, p)$ are integrable. Hence from (8.72) it follows that $\sup _{\omega \neq 0}^{\omega \neq 0}\left(\left|\partial_{j} q_{i}(x, \omega)\right||\omega|\right)$ is integrable. By (8.73) and (8.74) we have for $|x| \geqq K$

$$
\left|\partial_{j} \lambda_{i 0}(x, \omega /|\omega|)\right||\omega| \leqq\left\{\left|\partial_{j} q_{i}\right||\omega|+\left|\lambda_{i 0}\right|\left|\partial_{j} e_{i}\right||\omega|\right\} /(\delta / 4)^{p}
$$

so that $\sup _{\omega \neq 0}\left(\left|\partial_{j} \lambda_{i 0}(x, \omega /|\omega|)\right||\omega|\right)$ is integrable.

Calculating the successive derivatives of (8.74) with respect to x_{l}, we see that $\left\{D_{l}^{q} \partial_{j} \lambda_{i 0}(x, \omega /|\omega|)\right\}|\omega| \in M[x, 0]$ and that $\sup _{\omega \neq 0}\left(\left|D_{l}^{q} \partial_{j} \lambda_{i 0}(x, \omega /|\omega|)\right||\omega|\right)$ is integrable. Similarly it can be shown that $\sup _{\omega \neq 0}\left(\left|D_{l}^{r} \partial_{k} \partial_{j} \lambda_{i 0}(x, \omega /|\omega|)\right||\omega|^{2}\right)$ is bounded and integrable and that $\sup _{\omega \neq 0}\left(\left|\partial_{k} \partial_{j} \lambda_{i \infty}(\omega /|\omega|)\right||\omega|^{2}\right)$ is finite. Hence $\lambda_{i}(x, \omega /|\omega|)$ has property D-3).

By (8.55) the entries of $C_{i}(x, \omega /|\omega|)$ have property D by Lemma C , because the entries of $B_{i}\left(\lambda_{i} ; x, \omega /|\omega|\right)$ and $r_{i}\left(\lambda_{i} ; x, \omega /|\omega|\right)$ are sums of products of $\lambda_{i}(x$, $\omega /|\omega|)$ and entries of $A(x, \omega /|\omega|)$. Hence the entries of $S(x, \omega /|\omega|)$ have property D.

8.9. Proof of Lemma 6.2

Let $S(x, \omega /|\omega|)=\left(s_{i j}(x, \omega)\right)$ and

$$
q_{k}(x, \omega)=\operatorname{det}\left[\begin{array}{ccc}
s_{11} \cdots & s_{1 k} \\
\vdots & \vdots \\
s_{k 1} \cdots & \vdots & s_{k k}
\end{array}\right] \quad(k=1,2, \ldots, N) .
$$

Since $S(x, \omega /|\omega|)$ is positive definite, it can be written as $S(x, \omega /|\omega|)=W^{*} W$, where $W(x, \omega)=\left(w_{i j}\right)$ is an upper triangular matrix and

$$
\begin{aligned}
w_{i i}=d_{i}= & \left(q_{i} / q_{i-1}\right)^{1 / 2} \quad\left(i=1,2, \ldots, N ; q_{0}=1\right) \\
w_{i j}= & d_{i} u_{i j} \quad(j>i ; i=1,2, \ldots, N-1) \\
& u_{i j}=\left(s_{i j}-\sum_{k=1}^{i-1} d_{k}^{2} \bar{u}_{k i} u_{k j}\right) / d_{i}^{2} .
\end{aligned}
$$

Put

$$
w(x, \omega)= \begin{cases}W(x, s(\omega)) & \text { for } \\ \sqrt{ } e I & \text { for } \\ \omega \in Z .\end{cases}
$$

Then $g(x, \omega)$ can be written as (6.6).
As $S(x, \omega /|\omega|) \geqq e I$, there exist positive constants $c_{j}(j=1,2,3)$ such that

$$
c_{1} \leqq q_{k}(x, \omega) \leqq c_{2}, \quad c_{3} \leqq d_{k}(x, \omega) \quad(k=1,2, \ldots, N)
$$

Since $s_{i j}(i, j=1,2, \ldots, N)$ have property D by Lemma D , it follows that $w_{i j}$ $(j \geqq i ; i=1,2, \ldots, N)$ have property D and as in the proof of Lemma $6.1 w(x, \omega)$ satisfies VI.

Since $\operatorname{det} w(x, \omega) \geqq \min \left(\sqrt{ } c_{1}, \sqrt{ } e\right)>0, w^{-1}(x, \omega)$ exists and satisfies VI. Hence $w(x, \omega)$ and $w^{-1}(x, \omega)$ belong to \mathscr{L} and fulfill Condition N by Lemmas 4.6 and 4.7.

8.10. Proof of Lemma 6.3

We construct first the matrix u which diagonalizes $p_{z}-i \lambda q|s|$ for $\omega \in S_{z}$. By regular hyperbolicity there exist a nonsingular matrix $w(x, \omega)$ and a real diagonal matrix $d(x, \omega)$ with the following

Property E. 1) w, w^{-1} and d satisfy Condition VI;
2) For some constant $e_{0}>0$

$$
\begin{equation*}
w^{*}(x, \omega) w(x, \omega) \geqq e_{0} I ; \tag{8.75}
\end{equation*}
$$

3) $d=w p_{z} w^{-1} \quad$ for $\quad \omega \in S_{z}^{1}$.

Put

$$
e(x, \omega ; \lambda)=w\left(p_{z}-i \lambda q|s|\right) w^{-1} .
$$

Then by E-3) we have

$$
\begin{equation*}
e(x, \omega ; \lambda)=d-\lambda|s| \tilde{q} \tag{8.76}
\end{equation*}
$$

where $\tilde{q}(x, \omega ; \lambda)=i w q w^{-1}$. Let $\tilde{q}=\left(\tilde{q}_{i j}\right)$ and $d=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{N}\right)$. By the condition of Theorem 6.7 and E-1) $\tilde{q}_{i j}(i, j=1,2, \ldots, N)$ are bounded on $S_{x \omega}$ $\times\left(0, \lambda_{0}\right]$. Hence for some $\lambda_{2}\left(0<\lambda_{2} \leqq \lambda_{0}\right)$

$$
\begin{equation*}
\lambda|s| \sum_{j=1}^{N}\left|\tilde{q}_{k j}\right| \leqq \delta / 4 \quad(k=1,2, \ldots, N) \quad \text { for } \quad \lambda \leqq \lambda_{2} \tag{8.77}
\end{equation*}
$$

and by C-2)

$$
\begin{equation*}
\left|d_{i}-d_{j}\right| \geqq \delta \quad \text { for } \quad \omega \in S_{z} \quad(i \neq j ; i, j=1,2, \ldots, N) \tag{8.78}
\end{equation*}
$$

By Gershgorin's Theorem the eigenvalues $\mu_{i}(x, \omega ; \lambda)(i=1,2, \ldots, N)$ of $e(x, \omega ; \lambda)$ can be numbered so that

$$
\left|\mu_{i}-d_{i}\right| \leqq \delta / 4 \quad(i=1,2, \ldots, N) \quad \text { for } \quad \omega \in S_{z}, \quad \lambda \leqq \lambda_{2}
$$

Therefore they are bounded on $S_{x z} \times\left(0, \lambda_{2}\right]$ and

$$
\begin{align*}
\left|\mu_{i}-\mu_{j}\right| \geqq \delta / 2, \quad\left|\mu_{i}-d_{j}\right| \geqq 3 \delta / 4 \quad \text { for } \quad \omega & \in S_{z}, \quad \lambda \leqq \lambda_{2} \tag{8.79}\\
& (i \neq j ; i, j=1,2, \ldots, N) .
\end{align*}
$$

We construct an eigenvector of e corresponding to $\mu_{i}(1 \leqq i \leqq N)$.

[^0]From (8.76) we have

$$
\begin{equation*}
\prod_{j=1}^{N}\left(d_{i}-\mu_{j}\right)=\operatorname{det}\left\{\left(d_{i} I-d\right)+\lambda|s| \tilde{q}\right\}=\lambda|s| y_{i}, \tag{8.80}
\end{equation*}
$$

where $y_{i}(x, \omega ; \lambda)$ is a sum of products of $d_{k}, \tilde{q}_{k l}(k, l=1,2, \ldots, N)$ and $\lambda|s|$. Let

$$
\phi_{i}(x, \omega ; \lambda)=\prod_{j=1, j \neq i}^{N}\left(d_{i}-\mu_{j}\right) .
$$

Since by (8.79) $\left|\phi_{i}\right| \geqq(3 \delta / 4)^{N-1}$ for $\lambda \leqq \lambda_{2}$, from (8.80) it follows that

$$
\begin{equation*}
d_{i}-\mu_{i}=\lambda|s| \varphi_{i} \quad \text { for } \quad \lambda \leqq \lambda_{2}, \tag{8.81}
\end{equation*}
$$

where $\varphi_{i}(x, \omega ; \lambda)=y_{i} / \phi_{i}$.
Let $\Delta_{i j}(x, \omega ; \lambda)(j=1,2, \ldots, N)$ be the (i, j) cofactors of the matrix $\mu_{i} I-e$. Since

$$
\mu_{i} I-e=\left(\mu_{i}-d_{i}\right) I+\left(d_{i} I-d\right)+\lambda|s| \tilde{q}
$$

by (8.81) we have

$$
\begin{gathered}
\Delta_{i i}=\varepsilon_{i}+\lambda|s| v_{i i}, \quad \varepsilon_{i}(x, \omega ; \lambda)=\prod_{j=1, j \neq i}^{N}\left(d_{i}-d_{j}\right), \\
\Delta_{i j}=\lambda|s| v_{i j} \quad(j \neq i ; j=1,2, \ldots, N),
\end{gathered}
$$

where $v_{i j}(x, \omega ; \lambda)(j=1,2, \ldots, N)$ are sums of products of $\lambda|s|, \varphi_{i}, d_{k}$ and $\tilde{q}_{k l}$ ($k, l=1,2, \ldots, N)$. Hence for some $\lambda_{3}\left(0<\lambda_{3} \leqq \lambda_{2}\right)$

$$
\begin{equation*}
\lambda|s|\left|v_{i i}\right| \leqq \delta^{N-1} / 2 \quad \text { for } \quad \lambda \leqq \lambda_{3} . \tag{8.82}
\end{equation*}
$$

Since by (8.78) $\left|\varepsilon_{i}\right| \geqq \delta^{N-1}$, it follows that

$$
\begin{equation*}
\left|\operatorname{Re}\left(\Delta_{i i}\right)\right| \geqq \delta^{N-1} / 2 \quad \text { for } \quad \lambda \leqq \lambda_{3} . \tag{8.83}
\end{equation*}
$$

Hence $\left(\Delta_{i 1}, \Delta_{i 2}, \ldots, \Delta_{i N}\right)^{T}$ is an eigenvector of e corresponding to μ_{i}.
We normalize this eigenvector and find its expression. Since ε_{i} is of constant sign, we may assume that $\varepsilon_{i}>0$. Then $\varepsilon_{i} \geqq \delta^{N-1}$ and by (8.82) $\operatorname{Re}\left(\Delta_{i i}\right) \geqq \delta^{N-1 / 2}$ for $\lambda \leqq \lambda_{3}$. Setting $\Delta_{i}=\left(\sum_{k=1}^{N}\left|\Delta_{i k}\right|^{2}\right)^{1 / 2}$, we have

$$
\begin{equation*}
\Delta_{i} \geqq \delta^{N-1} / 2, \quad\left|\bar{U}_{i i}+\Delta_{i}\right| \geqq \delta^{N-1} \quad \text { for } \quad \lambda \leqq \lambda_{3} . \tag{8.84}
\end{equation*}
$$

The vector $m_{i}=\left(m_{i 1}, m_{i 2}, \ldots, m_{i N}\right)^{T}$ is defined as follows:

$$
\begin{gather*}
m_{i}(x, \omega ; \lambda)=0 \quad \text { for } \omega \in Z, \tag{8.85}\\
m_{i i}(x, \omega ; \lambda)=a_{i} / b_{i} \quad \text { for } \omega \in S_{z}, \tag{8.86}\\
m_{i j}(x, \omega ; \lambda)=v_{i j} / \Delta_{i} \quad(j \neq i) \quad \text { for } \omega \in S_{z}, \tag{8.87}
\end{gather*}
$$

where

$$
\begin{gathered}
a_{i}(x, \omega ; \lambda)=\Delta_{i}\left(v_{i i}-\bar{v}_{i i}\right)-\lambda|s| \eta_{i}, \quad \eta_{i}=\sum_{k=1, k \neq i}^{N}\left|v_{i k}\right|^{2} \\
b_{i}(x, \omega ; \lambda)=\Delta_{i}\left(\bar{\Delta}_{i i}+\Delta_{i}\right)
\end{gathered}
$$

Then

$$
\begin{equation*}
\Delta_{i i} / \Delta_{i}=1+\lambda|s| m_{i i} \quad \text { for } \quad \omega \in S_{z}, \tag{8.88}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{i j} / \Delta_{i}=\lambda|s| m_{i j} \quad(j \neq i) \quad \text { for } \quad \omega \in S_{z} . \tag{8.89}
\end{equation*}
$$

Hence $\sigma_{i}+\lambda|s| m_{i}$ is a normalized eigenvector of e corresponding to μ_{i}, where σ_{i} is the i-th column vector of I.

We define matrices $m(x, \omega ; \lambda), \Lambda(x, \omega ; \lambda)$ and $t(x, \omega ; \lambda)$ as follows:

$$
\begin{gather*}
m=\left(m_{1}, m_{2}, \ldots, m_{N}\right), \quad \Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right), \\
t=I+\lambda|s| m \quad \text { for } \quad \lambda \leqq \lambda_{3} . \tag{8.90}
\end{gather*}
$$

Then

$$
\begin{equation*}
e t=t \Lambda \quad \text { for } \quad \omega \in S_{z}, \quad \lambda \leqq \lambda_{3} . \tag{8.91}
\end{equation*}
$$

Since by (8.84)-(8.87) $m(x, \omega ; \lambda)$ is bounded on $S_{x \omega} \times\left(0, \lambda_{3}\right]$, we have for some $\lambda_{4}\left(0<\lambda_{4} \leqq \lambda_{3}\right)$

$$
\begin{equation*}
|\operatorname{det} t| \geqq 1 / 2 \quad \text { for } \quad \lambda \leqq \lambda_{4} . \tag{8.92}
\end{equation*}
$$

Hence t^{-1} exists for $\lambda \leqq \lambda_{4}$ and is bounded on $S_{x \omega} \times\left(0, \lambda_{4}\right]$. From (8.90) and (8.91) it follows that

$$
\begin{equation*}
\Lambda=t^{-1} e t \quad \text { for } \quad \lambda \leqq \lambda_{4}, \tag{8.93}
\end{equation*}
$$

$$
\begin{equation*}
t^{-1}=I-\lambda|s| t^{-1} m . \tag{8.94}
\end{equation*}
$$

Therefore for some $\lambda_{1}\left(0<\lambda_{1} \leqq \lambda_{4}\right)$

$$
\begin{equation*}
\left(t^{-1}\right)^{*} t^{-1} \geqq(1 / 2) I \quad \text { for } \quad \lambda \leqq \lambda_{1} . \tag{8.95}
\end{equation*}
$$

Let $u(x, \omega ; \lambda)=t^{-1} w$. Then from (8.93)

$$
\begin{equation*}
\Lambda=u\left(p_{z}-i \lambda q|s|\right) u^{-1} \quad \text { for } \quad \omega \in S_{z}, \quad \lambda \leqq \lambda_{1}, \tag{8.96}
\end{equation*}
$$

so that u transforms $p_{z}-i \lambda q|s|$ into a diagonal matrix.
We show that u has properties of Lemma 6.3. By (8.75) and (8.95) we have

$$
u^{*} u \geqq\left(e_{0} / 2\right) I \quad \text { for } \quad(x, \omega) \in S_{x \omega}, \quad \lambda \leqq \lambda_{1},
$$

and so u has property iii).
By the argument similar to that in $8.9 t$ and t^{-1} satisfy VI and belong to \mathscr{L}.

Hence by E-1) and Lemma $4.4 u$ and u^{-1} belong to \mathscr{L} and by Lemmas 4.7 and 3.4 satisfy conditions of Theorem 3.3.

By (8.76), (8.90), (8.93) and (8.94) we have

$$
\begin{equation*}
\Lambda=t^{-1} e t=d+\lambda|s| f \tag{8.97}
\end{equation*}
$$

where $f=d m-t^{-1} m d t-t^{-1} \tilde{q} t$. Since Λ and d are diagonal, so is f. It is clear that $f \in \mathscr{L}$. Thus by (8.96) and (8.97) u has property iv).

References

[1] N. Bourbaki, Théories spectrales, Hermann, Paris, 1967.
[2] D. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
[3] K. O. Friedrichs, Pseudo-differential operators, Lecture notes, Courant Inst. Math. Sci., New York Univ., 1968.
[4] Y. Kametaka, On the stability of finite difference schemes which approximate regularly hyperbolic systems with nearly constant coefficients, Publ. RIMS, Kyoto Univ., Ser. A, 4 (1968), 1-12.
[5] H.O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math., 17 (1964), 335-353.
[6] H. Kumano-go, Pseudo differential operators and the uniqueness of the Cauchy problem, Ibid., 22 (1969), 73-129.
[7] P. D. Lax, On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients, Ibid., 14 (1961), 497-520.
[8] P. D. Lax and B. Wendroff, On the stability of difference schemes, Ibid., 15 (1962), 363-371.
[9] P. D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Ibid., 17 (1964), 381-398.
[10] P. D. Lax and L. Nirenberg, On stability for difference schemes; a sharp form of Gårding's inequality, Ibid., 19 (1966), 473-492.
[11] S. Mizohata, The theory of partial differential equations, Cambridge Univ. Press, Cambridge, 1973.
[12] B. Parlett, Accuracy and dissipation in difference schemes, Comm. Pure Appl. Math., 19 (1966), 111-123.
[13] J. Peetre and V. Thomée, On the rate of convergence for discrete initial-value problems, Math. Scand., 21 (1967), 159-176.
[14] R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, Interscience, New York, 1967.
[15] V. Thomée, Stability theory for partial difference operators, SIAM Rev., 11 (1969), 152-195.
[16] R. Vaillancourt, A strong form of Yamaguti and Nogi's stability theorem for Friedrichs' scheme, Publ. RIMS, Kyoto Univ., 5 (1969), 113-117.
[17] R. Vaillancourt, On the stability of Friedrichs' scheme and the modified Lax-Wendroff scheme, Math. Comp., 24 (1970), 767-770.
[18] R. Vaillancourt, A simple proof of Lax-Nirenberg theorems, Comm. Pure Appl. Math., 23 (1970), 151-163.
[19] M. Yamaguti, Some remarks on the Lax-Wendroff finite-difference scheme for nonsymmetric hyperbolic systems, Math. Comp., 21 (1967), 611-619.
[20] M. Yamaguti and T. Nogi, An algebra of pseudo difference schemes and its application, Publ. RIMS, Kyoto Univ., Ser A, 3 (1967), 151-166.

Department of Mathematics, Faculty of Science, Hiroshima University

[^0]: 1) The construction of $w(x, \omega)$ is given in [11] and it follows as in the proof of Lemma 6.1 that $w(x, \omega)$ has property E .
