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1. Introduction

Let us consider the Cauchy problem for a hyperbolic system

(1.1) ^(x,0=Σ3=ι^(

(1.2) iφc, 0) = WoO), w0(*)eL2,

where u(x, 0 and u0(x) are N-vectors and Aj(x) (j = 1, 2,..., n) are NxN matrices,
and assume that this problem is well posed. For the numerical solution of this
problem we consider the difference scheme

(1.3) φc, ί-f k) = Sh(x, h)v(x, 0 (0 g f <Ξ Γ, - oo < Xj < oo),

(1.4) φc, 0) = «o(*)> k = λh,

and study the stability of the scheme in the sense of Lax-Richtmyer, where Sfc(x, /i)
is a difference operator and h is a space mesh width.

The stability of schemes for symmetric hyperbolic systems was studied by
Lax [7], Lax and Wendroff [8, 9], Kreiss [5] and Parlett [12] in the case

(1-5) Sh(x9 h) = ΣΛCΛ(X, h)Tl

where α is a multi-index, CΛ is an N x N matrix and Th is the translation operator.
The stability for nonsymmetric hyperbolic systems was treated first by

Yamaguti and Nogi [20]. They defined a family of bounded linear operators
in L2 associated with an NxN matrix /c(x, ω) which is homogeneous of degree
zero in ω, is independent of x for \x\^R CR>0) and belongs to Cco(R^x(R^
— {0})). They studied the properties of the algebra of such families and applied
the results to the investigation of the stability of Friedrichs' scheme under the
assumption: The system (1.1) is regularly hyperbolic and Aj(x) (j = l, 2,..., n)
are independent of x for |x|^# and belong to C°°. Under the same assump-
tion, Vaillancourt [16, 17] obtained an improved stability condition for Friedrichs'
scheme and a condition for the modified Lax-Wendroff scheme; Kametaka [4]
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treated the regularly hyperbolic systems with nearly constant coefficients.
ϊn this paper we are concerned with the nonsymmetric hyperbolic systems

that satisfy the conditions: Eigenvalues of A(x, ξ) = Σlj=ιAj(x)ξjl\ξ\ (ξ^Q)
are all real and their multiplicities are independent of x and £•; elementary divisors
of A(x, ξ) are all linear; there exists a constant δ>0 such that

\λ£x, ξ)-λ/x, ξ)\ ^ δ (iϊji ij = 1, 2,..., n),

where λfa, ξ) (ί — 1, 2,..., s) are all the distinct eigenvalues of A(x, ξ).
We consider the case where Sh(x, h) is a sum of products of operators of the

form (1.5). Our proof of stability is based on the following result: If Sh(x, h)
and SΛ(x, 0) are the families of bounded linear operators in L2 and if there exist
positive constants c0 and cί and a norm ||| . ||| equivalent to the L2-norm || . || such
that

(1.6)

(1.7) \\(Sh(x9 K)-Sh(x, 0))ιι|| g Clh\\u\\ for all u eL2, h > 0,

then the scheme (1.3) is stable.
To construct such a norm ||| . |||, after Friedrichs [3] and Kumano-go [6]

we introduce a family of bounded linear operators in L2 associated with an N x N
matrix p(x, ώ) such that

p(x, ώ) = p0(x, ω)-hpoo(ω), lim p0(x, ω) = 0 for each ωe Rn

|.x|->oo

and the Fourier transform of ρ0(*, ω) with respect to x satisfies some conditions.
We construct an algebra JΓΛ of such families and show an analogue of Lax-
Nirenberg Theorem [10] for elements of JΓΛ in order to obtain sufficient condi-
tions under which (1.6) holds.

Taking the properties of JΓΛ into consideration, in Section 5 we construct an
algebra of difference operators Sh(x, h) for which (1.7) holds and in Section 6
the stability of the schemes with elements of this algebra is studied. For instance
Vaillancourt's result is valid under the assumption :

Aj(x) = AJO(x) + AJao, lim AJO(x) = 0 (j = 1, 2,..., n)
|*| -»oo

and (dm/dx%) A J0(x) (j, k = l, 2,..., n; ra = 0, 1,..., n + 3) are bounded, continuous
and integrable.

In Section 7 some examples of the schemes are given. Lemmas and theorems
stated without proof are proved in the last section.
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2. Notations and preliminaries

2.1. Notations

Let C be the field of complex numbers. Let c and c* stand for the con-
jugate and the conjugate transpose of a matrix c respectively. We denote by |α|,
|z| and p(ά) the spectral norm of an N x N matrix α, the Euclidean norm of an
N-vector z and the spectral radius of a respectively. For any hermitian matrices
a and b we use the notation a ̂  b if a — b is positive semi-definite.

We denote by R" the real n-space and write it as R", R^, etc. to specify its
space variables. Unless otherwise stated, we denote by w(x), <p(x), etc. the
N-vector functions defined on R".

The space Lp (pΞ> 1) consists of all measurable functions u(x) in Rn such that

|M(X)|P is integrable, i.e. \\u(x)\pdx<ao, where two functions are identified if they

coincide almost everywhere. The scalar product and the norm in L2 are denoted
by ( , ) and || || respectively.

Let Sf be the space of all C°° functions on Rn which, together with all their
derivatives, decrease faster than any negative power of |x| as |x|->oo. We denote
by ύ(ξ) (ξeRn) the Fourier transform of u(x). For each φ(x) in « ,̂ φ(ξ) can be
written as follows:

φ(ξ) = κ\e-ίχm*φ(x)dx for all φ e ̂ ,

where

(2.1) κ

We denote by p(ξ, ω) the Fourier transform of jφc, ω) with respect to x and by

α*fc(x) the convolution \a(x — t)b(t)dt of two measurable functions α(x) and b(x).

For simplicity we make use of the notations

n _ d Λ _ g
±J \ ~Λ * U i ~Λ .

* /Ί V . ' J /Π/Ί1

We denote by sup M(X, ω) and sup w(x, ω) the supremum of w(x, ω) on R% — {0}
ω^ 0 ω^z

and that on R^ — Z for each fixed x in Rn respectively.
Let S""1 be the unit spherical surface in #£, and let ω'— (ω\, ω'2, ..,ω^)

denote a point on S""1. Then we have |ω'| = 1.
We say that /(χ, ω) is absolutely continuous with respect to ωfc, if it is so on

any finite closed interval for each fixed χ and ω7 (7=1, 2,..., n\j^k). We say
that a scalar function c(x, ω) satisfies conditions imposed on matrix functions, if

c(x, ω)/ does.
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2.2. The difference approximations

We consider a mesh imposed on (x, f)-sρace with a spacing of h in each x7-
direction (/=!, 2,..., n) and a spacing of /c in the f-direction. The ratio λ = k/h
is to be kept constant as h varies. We approximate (1.1) and (1.2) by the differ-
ence scheme of the form :

(2.2) v(x, t + k) = Sh(x9 h)v(x9 t) (0 £ f £ T) ,

(2.3) v(x,ty = u0(x),

where

(2.4) Sft(x, Λ) = ΣmΠ}=ιQ,.(x, /z, Γ), m = (m1? m2,..., mv),

(2.5) Cm/x, /z, T) = ΣΛw/x, Λ)ΓJ, α = («!» <*2,...,
 α«)5

(2.6) TJ = ΓttΓ5i Γ;ϊ, Γ. Xx) = M(x l5..., xy. l f xy + /ι, xj+1,..., xn),

m^ (my ̂ 0; j = 0, 1,..., v) and α,- (7=1, 2,..., π) are integers and cΛmj(x, /ι)'s are
N xN matrices.

We approximate the partial differential operator hDj (l^j^ri) by the differ-
ence operator Ajh of the form

(2-7) 4»=Σι*ι(T5»-Γ7β/2,

where the summation is over a finite set of / (/g O) and b/s are real constants.
We put

(2.8) s/ω) = Σi fc/sin/ωy (7 = 1, 2,..., n),

and assume that for some positive integer r s/ω) can be written as follows:

(2.9) s/ω) = ω; + 0(|ω/+1) (|ω,.| g π).

From (2.9) it follows that for all u e &>

Ajhu(x) = ΛDχx) + 0(Λr+1) as h -* 0 (7 = 1, 2,..., n).

For example the following difference operators are well known:

(2.10) F

(2.Π) MΛ(x)



Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems 313

where

(2.12) Ph = Σ5-ι4X*)4» Ch = (l/n)Σ3-ι(7}Λ+ Tjί)/2,

Ajh = (Tjh-T^)/2 0=1,2,...,*).

The schemes (2.2) with operators (2.10) and (2.11) are called Friedrichs' scheme
and the modified Lax-Wendroff scheme respectively.

We say that the difference scheme (2.2) approximates (1.1) with accuracy of
order p [13, 15] if all smooth solutions u of (2.1) satisfy

(2.13) \u(x, f + fc)-SΛ(x, A)ι*(x, 01 = 0(hP+ί) (h -» 0).

In the sequel we consider only the schemes with p^ 1.
The difference scheme is said to be stable in the sense of Lax-Richtmyer if

for any Γ>0 there exists a constant M(T) such that

(2.14) || Sin || £M(T) \\u\\

for all u eL2 and for all A>0 and integers v^O satisfying O^v/c^ Γ, where M(Γ)
is a function of Tbut is independent of A. Since Sh is a family of bounded linear
operators in L2 depending on A, we have to investigate the boundedness of powers
of such families of operators.

Let jfh be the set of all families of bounded linear operators Hh that maps
L2 into itself and depends on a parameter A>0 and such that

(2.15) \\Hhu\\ ^c(A)| |w| | for all ueL 2 , A > 0,

where c(μ) is a continuous function on [0, oo).
For two families Kh and Lh of JFh we use the notation Kh = Lh if there exists

a constant c such that

(2.16) \\(Kh-LJu\\ ^ cA || ii || for all weL 2 , A > 0.

Then we have the following

THEOREM 2.1. Let LhEJ^h and suppose there exist a constant c0 and a
norm \\\ . ||| equivalent to the L2-norm such that

(2.17) |||LΛιι|||^(l + CoΛ)|||ιι| | | for all ueL29 A > 0.

Then for any Γ>0 there exists a constant M(T) such that

(2.18) IIL ju l l £M(T) \\u\\ for all ueL2, 0 ̂  vfc ^ Γ.

PROOF. By the assumption there exist positive constants c± and c2 such that
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(2.19) C ι N I ^ I N I I ^ c 2 | | t ι | | for all u e L2.

From (2.17) it follows that

|||Llιι|||^(l + c0Λ)1liιι||| for all ιιeL2, h > 0,

so that by (2.19) we have

c J I L l f i l l ^ H I L ϊ u l l l ^ C a l l l i i l l l g c j C a l l K l l ,

where c3 = exp(c0T/A). From this (2.18) follows with M = c2c3lcl.

COROLLARY 2.1. For any ShEJ^h let Lh e 3?h be a family such that Lh = Sh

and which satisfies the assumption of the theorem. Then for any T>0 there
exists a constant M(T) such that

(2.20) \\Sv

hu\\ ^M(T) \\u\\ for all w e L 2 , O ^ v f c ^ T .

PROOF. Since for some constant c4

||(LΛ-SΛ)ι*|| ^ c4A||ιι|| for all w e L 2 , h > 0,

by (2.17) and (2.19) we have

dist i l l £\\\Lhu\\\ + \\\(Sh-Lk)u\\\

^ |||LΛιι|| |-h.c 2c4/ι| |ιι | |.

where C5 = c0 + c2c4/c1. Hence (2.17) is satisfied and (2.20) follows from the
theorem.

By Theorem 2. 1 and its corollary, in proving the stability of the scheme (2.2),
the problem is to find a norm ||| . ||| and a family Lh e &P h such that Lh = Sh(x, h)
in order to establish (2.17).

Now we study the algebraic structure of 3? h. For Ah, Bh e J>ίfh and α e C
let Ah -f Bh, AhBh and aAh be defined by

(Ak + Bh)u = Ahu + Bhu, .(AhBh}u = Ah(Bhu\ (aAh)u = <x(Ahu) .'

Then J>ίfh is an algebra over C with unit element Ih. Since the adjoint A* of a
family Ah also belongs to 3fh, the operation * is an involution in 3Ph and 3F h is
an algebra with involution [2].
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3. One-parameter families of operators

3.1. Definitions

We introduce the set JΓ consisting of all N x N matrix functions p(x, ω)

defined on R x R% with the properties :

1 ) p(x, ω) can be written as

p(x, ω) = p0(x, ωj + pjω),

where pQ(x, ω) and p^(ω) are bounded and measurable on R$ x R^ and on R£

respectively, and lim pQ(x, ω) = 0 for each ωεRn\
|.x|->oc

2) p0(
χ> ω) is integrable as a function of x for each ω e K"

3) The Fourier transform β0(χ, ω) of p0(x, ω) is integrable as a function of

χ for each ωεRn and ess^sup|/?0(χ, ω)| is integrable.

(Two elements of JΓ are identified if they coincide almost everywhere.)

The element p(x, ω) of JΓ has the Fourier transform β(χ, ω) in the sense of

distributions, which can be written as follows :

(3.1) p(χ, ω)

where <5(χ) is the delta function. We define \\p\\ F by

(3.2) \\p\\F = ess sup |p0(χ, ω)\dχ + ess sup

In the following for simplicity we often omit x, ω and χ from p(x, ω), p(χ, ω),

M(X), w(ω), etc., when no confusion can arise.

We introduce into Jf matrix addition, matrix multiplication, scalar multi-

plication and conjugate transposition. Then we have

LEMMA 3.1. // p, q ε JΓ and αeC, then p + q, pq, ap, p* e 3C and

(3.3) \\P + q\\F^\\nF+\\q\\F, \\ϊp\\F= \*\ \\P\\F, 11^*1^=11^11^-

(3.4)

PROOF. It suffices to show that p^ejf and (3.4) holds. Put d = pq.

Then d can be written as d = d() + dao, where

By definition d satisfies conditions 1) and 2) of JΓ, and ^0(/» ω) can be written as

(3.5) <J0(χ, ω) = β0*
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Since

(3.6) |30teω)|^|V4ol + W o l k c o ί + I P «

integrating (3.6) with respect to χ and applying Young's Theorem, we have

ω)\dχ

Hence <50fe
 ω) is integrable as a function of χ for each ω.

Taking the essential suprema of both sides of (3.6) over R% and integrating
them with respect to χ, we have

Therefore d0 satisfies condition 3) of tf and the proof is complete.

By this lemma JΓ forms an algebra with involution over C.
To define a family of operators associated with p e JΓ, we show the follow-

ing

LEMMA 3.2. Let p e Jf and u e^. Then

(3.7) \}P(ξ-ξ',hξ')ύ(ξ')dξ' £\\β\\P\\ύ\\ for Λ > 0 ,

and for almost all x

(3.8) l.i.m. K- 1 \eix't \p(ξ - ξ', hξ')ύ(ξ')dξ'dξ

c, hξ)ύ(ξ)dξ for h > 0.

PROOF. For simplicity put

ro(%) = ess sup \p0(χ, ω)|, r^ = ess. sup |

Then for almost all ξ

(3.9)
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Integrating (3.9) with respect to ξ and changing the order of integration, we have

(3.10) J|ι#, h)\dξ ^ \\β\\Ptyύ(ξ)\dξ' For h > 0.

Since by Young's Theorem

from (3.9) it follows that

which shows (3.7).
By (3.7) and (3.10) v(ξ9 h) belongs to L t and to L2 as a function of ξ for each

fixed /ι>0. Therefore the inverse Fourier transform of v(ξ, h) in L t and that in
L2 coincide almost everywhere on R% and

, h)dξ = fr1?'*'*^, h)dξ

for almost all x. By the change of order of integration we have for almost all x

, h)dξ = κ-^eίχ ξp(x, hξ)ύ(ξ)dξ.

Thus (3.8) holds and the proof is complete.

With each p e tf we associate a one-parameter family of operators Ph by the
formula :

(3.11) Phu(x) = \Λ.m.κ-eix'p(ξ-ξ', hξ')U(ξ')dξ'dξ

for all tiEf, h > 0.

Then by (3.7) Ph is a family of bounded linear operators from £f into L2. Hence
it can be extended to the closure & — L2 with preservation of norm and the exten-
sion is unique. Denoting this extension of Ph again by PΛ, we call Ph the family
(of operators) associated with p and denote this mapping by φ i.e. Ph = φ(p).
Unless otherwise stated, we denote by Qh, LΛ, Wh, etc. the families associated with
q, 7, w"1, etc. respectively.

We note that by (3.8) Phu (ue&>) can be rewritten as follows:

(3.12) Phu(x) = κ-eix'ξp(x, hξ)ύ(ξ)dξ for all ue&9 h > 0.

Let JTΛ = 0(JΓ). Then we have
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LEMMA 3.3. The mapping φ is one-to-one.

PROOF. Suppose for some p e JΓ

Phv = 0 for all v e &>.

Then by (3.12) for almost all x

(e** *p(x9 hξ)6(ξ)dξ = 0 for all veS?, h > 0.

Since for each w(ξ) e & the inverse Fourier transform of w(ξ) belongs to £f, it
follows that for almost all x

\eiχ *p(x9 hξ)w(ξ)dξ = 0 for all w e &>, h> 0.

Put Kί) = Π3=ι(l + φ"1 Then for almost all x

(e** *p(x9 hξ)r(ξ)u(ξ)dξ = 0 for all u e -0",

because r({)ii(i) e £". Since p(x, ω) is bounded, p(x, hξ)r(ζ) belongs to Lt as a
function of ξ for almost all x. Hence for almost all (x, ξ)

Xx, hξ) = 0 for h > 0,

so that p(x9 ω) = 0 a.e., which completes the proof.

For φ(p)9 φ(q) e JΓΛ and α 6 C let

p = p9 α p = α p .

Then JΓA forms a unitary algebra over C with respect to the operations + and o,
and the operation * is an involution in jfh. It is readily seen that JΓΛ is an al-
gebra with involution and the mappings φ and φ'1 are morphisms [1].

3.2. Products and adjoints

To study the relations between the products PhQh and Ph°Qh we introduce the
following two conditions.

CONDITION I. 1)

2) Po(%, ω) and jpoo(ω) are absolutely continuous with respect to ω,- O' = l,
2,..., n) and djp0(χ, ω) and djp^ω) are measurable in /?J x R% and in ^2> respec-
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tively

3) ess- sup|d7p0(χ, ω)| O'=l, 2,..., ri) are integrable and ess . sup \djp^(ώ)\

(7=1, 2,..., ri) are finite.

CONDITION II. qeάf and ess sup(|χ| |#0(χ, ω)|) is integrable.

We have

THEOREM 3.1. Let p satisfy Condition I and q satisfy Condition II. Then

(3.13) P*Qk = Pk*Qk.

PROOF. By continuity of the L2-norm it suffices to prove the theorem in

the case u e ff. From the definition of PhQh it follows that

-ξ'9 hξ')U(ξ')dξ'dη

where

Changing the order of integration and setting t = η — ξ'9 we have

(3.14) naXO = JJβ0(X~ί, ω + ΛOίoft ώ)u(

χ, ω)ύ(ξ')dξ'

where χ = ξ-ξ'9ω = hξr.

Since PΛ°QΛ is a family associated with p^f,

(3.15) PβXί) = ίoίχ-ί, ω)40(ί, ω)u(ξ')dtdξ'

where χ = £ -<!;', ω = hξ'. Comparison of (3.14) and (3.15) shows that the proof

is complete by the first part of Lemma 3.2, if

(3.16) Jess isup|
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(3.17) Jess^supKpJω + Λ^-pJω^ίote ω)|dχ = O(Λ).

Since p0(/> ω) *s absolutely continuous with respect to ωp we have

\{fio(X-t, ω + ht)-pQ(χ-t, ω)}$0(f,.ω)|

= IΣ"=ι{£o(/-*> ω l5..., a);-!, ωj + θj, ωj+l+θj+ί9...9ωn + θj

= IΣy

where θj = htj. Taking the essential suprema of both sides over R% and integrat-
ing them with respect to χ, we have

-p0(χ-t, ώ)}ξ0(t, ω)\dχdt

χ-ίϊ ω)|)/ί|ίJ|esS(.suP(|40(ί, ω)|)dχΛ.

Hence (3.16) follows by 1-3) and II.1) Similarly we have (3.17).

From the proof of this theorem we have

COROLLARY 3.1. // α(x), b(ω), p(x, ω) ε Jf, then

(3.18) ΛPA = ΛOPΛ,

(3.19) PhBh = PΛoβΛ.

To study the relations between the adjoint Pf of PΛ and the family Pj[ we introduce

CONDITION III. 1) p e tf
2) A)(& ω) is absolutely continuous with respect to ωj (j = l, 2,..., n) and

djp0(χ9 ω) (j = 1, 2,..., n) are measurable in #; x Λ^;
3) ess^sup (\χj\ \djPo(χ9 ω)|) ( j = 1, 2,. . . , n) are integrable.

THEOREM 3.2. Let petf. Then

(3.20) PMx) = l.i.m.κ-^~ ^p(ξ--<r, hξ)ύ(ξ')dξ' dξ

for all wey, ft > 0.

1) The term Condition is often omitted when no confusion can arise.
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If p satisfies Condition III, then

(3.21) PΪ=Pl

PROOF. Since fi(ξ-ξ'9 hξ) = fi(ξ-ξ'9 hξ' + h(ξ-ξ'))9 by the same argu-
ment as in the proof of Lemma 3.2 we have for w e &

0.22)

For w, w 6 &*

(ιι, Pϊ w) = (PΛw, w) =

-ξf, hξ')w(ξ)dξ'dξ

From this (3.20) follows by (3.22).
It suffices to prove (3.21) in the case u e&>. From (3.20) and the definition

of PI it follows that

(3.23) P i ) - P M ί ) = ίSte ω + /ιχ)-g(χ, ω

where χ = ξ — ξf and ω = hξ'. By IΠ-2) we have

θj XX

where θj = hχj. Taking the essential suprema of both sides over R% and integrat-
ing them with respect to χ, we find

-pt(χ, ώ)\dχ ^ /ιΣ5

Hence (3.21) holds by IΠ-3) and Lemma 3.2.
From (3.23) we have

COROLLARY 3.2. // k(ω) e tf, then

(3.24) Kt = Kl-.
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3.3. Construction of a new norm

We construct a norm which is equivalent to the L2-norm and is useful for
establishing (2.17).

Let ε and R (R^έ) be positive numbers and let S(R, ε) = {x| \x\<R + ε}.

Let x(ί) (ΐ = l, 2,..., s) be all the lattice-points (εiy,, εf/2, » ε*?w) contained in
S(R, ε) (ηj = mjl^/n; my = 0, ±1, ±2,...; j=l, 2,..., n) and let

V0 = {x\ \x\ > R}9 Vi = {x\\x-χW\<ε} (/ = 1, 2,..., s).

Then we can construct a partition of unity {α?(X)}i=o,ι,...,s with the properties:

1) αί(x) ^ 0, oφOeC00, suppα^czK, (/ = 0, 1,..., 5);

2) Σl-o «?(*) = !;

3) α0(x) and all its partial derivatives are bounded uniformly with respect

to R for each ε.
We introduce the following

CONDITION N. 1) ge tf and Djg(x, ώ) 0 = 1, 2,..., ή) are bounded on Rn

x

x#2> and continuous on #J for each ω; Djg(x, ω) (J=l, 2,..., n) are integrable

as functions of x for each ω; D7 #(χ, ω) (7 = 1, 2,..., n) are integrable as functions

of χ for each ω and ess . sup \ Dj g(χ9 ω)\ (j = 1, 2,..., n) are integrable;

2) lim|(ίii||F = 0.
Λ-»oo

We have

THEOREM 3.3. Suppose
1) g(x9 ω) satisfies Condition N;

2) #(x, ω) ̂  el for some constant e >0.
Then for sufficiently large R and small ε f/iere ex/sί positive constants dt and d2

such that

(3.25) df ||u||2 ^ Σi-oRe(GΛιιf α,fi) ^ di| |w||2

for all M6L 2 , /ι > 0,

vv/iere dj 0 = 1, 2) are independent of u and ft.

This theorem enables us to introduce the norm

(3.26) l|w||Gh = {Σf=oRe(GAα ίu,α ίu)}1/2 for all ueL 2,
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and by (3.25) we have

(3.27) d .\\u\\ ^\\u\\Gh^d2\\u\\.

LEMMA 3.4. If p and q satisfy Condition N, so also do p + q, pq and p*.

PROOF. It suffices to prove the lemma in the case of pq. Put d = pq.
Then d satisfies Condition N-l). Since

it follows that

t9 ω)#0(ί, ω)dt

Taking the essential suprema of both sides over R% and integrating them with
respect to χ, we have by Young's Theorem

the right side of which tends to zero as R-+CO by N-2). Hence
as #-»oo and pq satisfies Condition N-2).

3.4. Lax-Nirenberg Theorem

We have the following analogue of Lax-Nirenberg Theorem [10] which plays
an important role in establishing (2.17).

THEOREM 3.4. Suppose pejf satisfies the conditions:

1) djPo(%ι ω) and Sjp^ω) (;' = !, 2,..., n) are continuous on R% for each χ
and absolutely continuous with respect to ωk(k=l, 2,..., «);

2) dkdjp0(χ, ω) and d^jp^ω) (j, k = l, 2,..., n) are measurable in R%
xR% and in R% respectively; ess^sup(\dkdjp0(χ, ω)|) (j, fe = l, 2,..., n) are

integrable and ess^supdδ^p^ίω)!) (j, fe = l, 2,..., n) are finite;

3) ess ^supdχPl^ofc ω)|) is integrable;

4) X*Tω)£0.
ί/zβre exists a positive constant c independent ofu and h such that

(3.28) Re(PΛw, M) ^ -c/ι||M||2 for all weL 2 , A > 0.
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4. Powers of families of operators

4.1. The family of operators Ah

In this section s(ω) denotes a real-valued vector function with the properties :
1) Sj(ω), 3/s/(ω) and dkdjSι(ω) (/, /c, / = !, 2,..., n) are bounded and con-

tinuous on Rn'9
2) Zeros of |s(ω)| are isolated points.

(The function s(ω) given in 2.2 has these properties.)
Let Z={ω| |s(ω)|=0}. Then R^ — Z is an open set by continuity of |s(ω)|

and by properties 1) and 2) |s(ω)| satisfies Condition I. Let Λh be the family
associated with \s(ώ)\I. Then by Corollary 3.2 we have

Ah = Λl = At,

Let p(x, ω) be an element of Jf* such that p(x, ω)/|5(ω)| is bounded on R;
x(R^ — Z). Then we seek sufficient conditions under which Ph can be written as
ph = QhoΛh for some Qh e Jfh. For any constant α let

[ p(x, ω)/|s(ω)| for
qa(x, ω) = I

t α/ for ωeZ,

and suppose ^fα(x, ω)e JΓ. Then

for all

where QαΛ and β^Λ are the families associated with qa and qβ (β^a) respectively.
Since Z is a set of measure zero, for all u e &* we have for almost all ξ

Hence QΛh and Qβh can be identified. In the following we identify qa(x, ω) and
qβ(x, ω) and denote them by /?(*, ω)/|5(ω)|. Then we have Ph = Pίh°Ah, where Plh

is the family associated with p/\s\.
When e(ω) is a scalar function with isolated zeros such that e(ω)I e JΓ, we

can define p(x, ω)/e(ώ) similarly by replacing |s(ω)| by β(ω).
In particular let r(ω) be a scalar function such that r(ω)I e jf* and for some

constant CQ

|r(ω)| ^ c0|s(ω)| for all ω 6 Rn.

Then r(ω)/|5(ω)| e JΓ and Rh = Rlh°Ah, where ΛΛ and 7?1Λ are the families associ-
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ated with rl and (r/|s|)/ respectively.
To study the relation between PhQhΛh and Ph°Qh°Λh and that between (PhΛh)*

and Pj|o/lΛ, we introduce the following conditions:

CONDITION Γ. 1)
2) β0(χ, ω) is bounded on Rn

χ x (K£-Z);
3) 8jl0(χ,ω) and .djl^ω) (./=!, 2,..., n) are bounded on £jx(R2,-Z)

and continuous on K£-Z for each χ, where /0(χ, ω) = p0|s|, /oo(ω) = pjs|;
4) ess . sup \dj\Q\ (j = 1, 2,..., rc) are integrable.

CONDITION IIΓ. 1), 2) the same as Γ- 1), Γ-2) respectively;
3) <Vofc ω) O' = l, 2,..., n) are bounded on Λjx^^ — Z) and continuous

on R^ — Z for each χ;
4) ess ^supdχ l \δjl0(χ, ω)|) 0=1, 2,..., n) are integrable.

We have

LEMMA 4.1. (i) If p satisfies Condition Γ, then p\s\ satisfies Condition I.
(ii) If p satisfies Condition IIΓ, then p\s\ satisfies Condition III.
Next we prove

LEMMA 4.2. (i) // p satisfies Condition Γ and q satisfies Condition II,
then

(4.1)

(ii) If p satisfies Condition IIΓ, then

(4.2) (P,A)* EE P^oyl,.

PROOF. The assertion (ii) follows from Lemma 4.1 and Theorem 3.2. By
Theorem 3.1 and its corollary

As ΛhoQh = QhoΛh, we have QhΛh = ΛhQh, so that

PkQkΛk Ξ PiΛkQk = (ΛMΛ)α/,

Since p\s\ satisfies Condition I by Lemma 4.1, by Theorem 3.1 we have

'(Ph°ΛJQk = (PhoΛh)oQh.

Hence

PhQhΛh = Ph°Λh°Qh = PhoQhoAh

and the proof is complete.
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Now we introduce the following conditions:

CONDITION IV. p e JΓ and ess. sup(|χ|2|p0(χ, ω)|) is integrable.

CONDITION V. 1) p satisfies Condition \'\
2) Skmj0(χ, ω) and dkmjao(ω) (j, fc=l, 2,..., ri) are bounded on R^x(R^

— Z) and continuous on R^ — Z for each χ, where mjΌ(χ, ω) = (̂  /0)|s|, mjoo(ω)

= (<3//oo)|s|, lo = Po\s\ and /00 = p00|s|;
3) ess^sυpdίVrc/ofe ω)l) (Λ fc = l» 2,..., n) are integrable.

Condition IV implies Condition II and we have

LEMMA 4.3. // p satisfies Conditions IV and V, then p(x, ω)|s(ω)|2

satisfies conditions 1), 2) and 3) o/ Theorem 3.4.

4.2. Subalgebras uf and & of JΓ

Let ̂  be the set of all elements of JΓ that satisfy Conditions V, II and III'

and let the set & consist of all elements of Jt that satisfy Conditions IV and V.
(Jt and 3? depend on s(ω).) For instance |s(ω)|/ and (Sj(ω)/\s(ώ)\)I O'=l, 2,...,

ri) belong to Jt and &.

LEMMA 4.4. (i) If p and q satisfy Condition II, so also do p + q, pq and

p*.
(ii) If p, qtJt, then p + q, pq, p* eΛ.
(iii) Ifp,qe^9thenp + q,pq9p*e^e.
We show

LEMMA 4.5. Let g(x, ω) satisfy Conditions I' and II, and let

(4.3) I(x9 ω) = c(ω)I + q(x, ω) |s(ω)|,

where q(x, co)eΛ and c(ώ) is a scalar function satisfying Condition I. Then

(4.4) LΛ*GΛLΛ EE L*h°GhoLh.

PROOF. Lh can be written as Lh = Ch + Qh°Λh, where Ch = φ(cl\ By Co-
rollary 3.2 and Lemma 4.2 we have

Cί = CZ, (Qh°Λh)* EE Q«oΛh.

Therefore Lf = Ljj, and

(4.5) LΛ*GΛLft = LJG^.

By Corollary 3.1 and Lemma 4,2 we have
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Hence GHLh = Gh°Lh and by (4.5)

(4.6)

Since gl satisfies Condition II by Lemma 4.4 and /* satisfies Condition I,
by Theorem 3.1, we have

(4.7)

Hence (4.4) follows from (4.6) and (4.7).

COROLLARY 4.1. Under the assumption of Lemma 4.5 let

g(x, ω) = w*(x, ω)w(x, ω) ,

where w, w"1 e JΓ. Then

(4.8) Gh-L*hGhLh = Gh-L*h°Gh°Lh = ^o(/Λ-Γ*oLΛ)o

(4.9) g-l*gl = w*(I-ΓΊ)w,

PROOF. Since

ΪW* = ^oϊfji = Λ,

we have from (4.4)

Hence (4.8) holds and we have (4.9) by matrix calculation.

4.3. Integrability of Fourier transforms

Our next step is to obtain sufficient conditions under which an N x N matrix
function p(x, ω) belongs to JΓ, Jt or & . To this end we introduce

CONDITION VI. 1) p(x, ω) can be written as

p(x, ω) = p0(x, ω) + ̂ (ω) ,

where pQ(x9 ω) and jpoo(ω) are bounded and measurable on R$ x R% and on R^
respectively, and lim p0(x, ω) = 0 for each ωεRn',

|x|-»oo

2) Dfp0(x9 ω) (/=!, 2,..., n\ m = 0, 1,..., n-f-3) are continuous on Rn

x

x(R% — Z) and continuous on R% for each ωeZ; supdDfpoίx, ω)|) (/=!, 2,...,
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n\ ra = 0, 1,..., n + 3) are bounded and integrable;
3) Dq

ldjpQ(x, ω) and djp^ω) (j9 /=!, 2,..., n; <? = 0, 1, ..., n + 2) are con-
tinuous on R% x (R% — Z)

4) sup(|Dffy>o(*> ω)| |s(ω)|) ( , /=!, 2,..., n; 4 = 0, 1,..., n + 2) are bound-
ωφZ

ed and integrable; supdd. /^ω)! |5(ω)|) 0=1, 2,..., n) are finite;
ωφZ

5) D\dkdjpQ(x, ω) and dkdjp^(ώ) (j, k, /=!, 2,..., n; r = 0, 1,..., n + 1) are
continuous on R x (RJ, — Z)

6) sup(|Dϊ3Jk3J.po(Λ,ω)||Xω)|2) 0, fe, / = !, 2, ..., n; r=0, l,...,n + l) are
ω^Z

bounded and integrable; supd^dp^co)! |5(ω)|2) (7, fe=l, 2,..., n) are finite.

We have the following results.

LEMMA 4.6. (i) If p satisfies Conditions VI-1) and VI-2), then p satisfies
Conditions II and IV.

(ii) If p satisfies Conditions VI-l)-VI-4), then peΛ.
(iii) //p satisfies Condition VI, f/ien pe J$f.

COROLLARY 4.2. Lei α(x) be an NxN matrix such that

α(x) = αoOO + α^,

lim α0(x) = 0. Suppose DfaQ(x) (/ = !, 2,..., n; m = 0, 1,..., n + l-f p; p =
|jc|-»oo .

0, 1,2) are bounded and continuous on Rn and are integrable. Then \χ\p\a0(χ)\
(p = 0, 1, 2) are integrable.

LEMMA 4.7. // g(x, ω) satisfies Conditions VI-1) and VI-2), then it
satisfies Condition N.

4.4. Powers of families of operators

To prove the boundedness of Lv

h (O^vA ^T), in view of Theorem 2.1, it
suffices to show that Lh satisfies (2.17). We show first the following

THEOREM 4.L Let g(x, ω) e & satisfy conditions of Theorem 3.3 and let

(4.10) /(x, ω) = c(ω)I + q(x, ω) |s(ω)| + r(x, ω) |s(ω)|2,

where q,re<£ and c(ώ) is a real-valued scalar function which is bounded and
continuous together with the first and second partial derivatives. Suppose

1) q*9+gq=0 for all ωejR"-Z;

2) l-c2(ω)

3) g-l*gl>bg
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4)

where a(ώ) and 6/ω) O' = l, 2,..., m) are real-valued scalar functions such that
bj(ω) 0=1, 2,..., m) satisfy Condition I and a(ω)I e&. Then for some c0^0

(4.11) \\LhuUh£ (I + c0h) \\uU-h far all ueL2, h > 0,

wftere || . ||Gh is the norm given by (3.26).

PROOF. By Lemma 4.5 we have

(4.12) LΪGhLh = L*hoGhoLh.

By conditions 1) and 2)

(4.13) g-l*gl = (ag-p)\s\2 + bg,

where

P = (q*gq + r*gc + cgr) + (q*gr + r*gq)\s\ + r*gr\s\2.

From condition 3) it follows that

(4.14) (ag-p}\s\2>0.

Since ag — pε&, by Lemma 4.3 and Theorem 3.4 we have for some c^O

(4.15) Re((ΛΛ°GΛ-PΛ)oΛ£ιι, M) ^ -c^h\\u\\2 for all w e L 2 , Λ > 0,

where Ah = φ(al).

Let {α?(x)}i=o,ι....,s be the partition of unity given in 3.3 and let Ω={x\
\x\ >R + ε}. Then α0(x)= 1 on Ω, so that 00(x) = α0(x) - 1 = 0 on Ω. Since β0(x)
and α/x) 0 = 1, 2,..., s) are smooth functions with compact supports, |χ|k|/?0(/)l
and |χ|*|4/χ)|(fc = 0, 1; .7 = 1,2,.. .,s) are integrable. Hence α^x) (i = 0, 1,...,
s) satisfy Condition II.

Let Bk = φ(bI)9Bjk=φ(bjl)(j=l92,.;.9m) and αl = φ(αl/) (i=0, 1,..., s).
Then by Theorem 3.1 0̂ 7, = 5^ and GhBJh = BjhGh. Since BJh = Bjh by Co-

rollary 3.2, for some c2, c3§;0 we have

Hence

(4.16)
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V<> ^Bjhu)-c4h\\u\\2

^ -c4/φ||2,

where dl is given by (3.25) and c4 = (s-f I)c3.
Since L^Ξα^ by Theorem 3.1, we have for some c5^

(4.17) KG^LfcW, ZiL^-^LMU, Lh^u)\

From (4.12) for some c6 ̂

(4.18) |(GΛL/lW,

Since by definition

by (4.17) and (4.18) there is a constant CΊ ^0 such that

(4.19)

By (4.13) we have

(4.20) (

Hence by (4.15), (4.16), (4.19) and (4.20)

(4.21) ||u||gh-||L,M||ah ^ Σf=o Re((GΛ-LίoGΛoL>ίM, α tt/)-c7/φ||2

where c8 = c t +c4 + c7. By (3.27) we have (4.11) with c0 = c8/c/f and the proof
is complete.

We note that the theorem remains valid even if condition 4) is replaced by the
condition

Σf=0 RetfG^X M, αίW) ^ -ch\\u\\2 for all u eL2, h > 0,

where c is a non-negative constant.

THEOREM 4.2. Let g.(x, ω)e^ satisfy conditions of Theorem 3.3 and let

(4.22) /(*, ω) = c(ω)/ + 4(x, ω) |s(ω)| ,

(4.23) g(x, ω)- /*(x, ω)^(x, ω)/(x, ω) = |e(ω)|2r(x, ω) ,

where qeΛ and c(ώ) and e(ω) are scalar functions satisfying Condition I.
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Suppose
1) r(x, ω) satisfies Conditions II and N;
2) r(x, ω) ^ βl for some β > 0.

or some CQ ̂  0

(4.24) l |L Λ ι ι | |2 h ^(l+c 0 ft) | | ι ι | ia f c /or a// κeL 2 , A > 0.

PROOF. By Theorem 3.3 there exist positive constants dp ε7 0* = 1, 2), ε
and β such that

(4.25) dl\\u\\2 ^ Σf

(4.26) e f l l i i p ^ Σf=oRe(Λ Λ f i , α|ιι) ^ ε2

2\\u\\2.

By Lemma 4.5 we have

(4.27)

By the same argument as in the proof of Theorem 4.1 there is a constant c^
such that

(4.28) ||LΛιι|iah ^ Σf=

By Corollary 3.2 for Eh = φ(el) we have

(4.29) Et = E*h

and by Theorem 3.1 and its corollary

(4.30) EloEkoRk = (E*h°Rh)°Eh = (£J=RA)£A = E*hRhEh.

Since by (4.23)

GΛ- L*h°Gh°Lh = E*h°Eh°Rh,

by (4.29) and (4.30) we have

(4.31) G ft-LϊoGΛoLΛ

Hence by (4.28) and (4.31) for some c2^

= Σ?=o Re (RhEh^u, £ftαίw)-c2/ι||u||2.

Since fi^jΞαjf,,, we have for some



332 Hisayoshi SHINTANI and Kenji TOMOEDA

so that by (4.26) with c4 = c2 + c3

\\uUh-\\LhuUh ^ εl\\Ehu\\2-c4h\\u\\2 ^ -c4h\\u\\2.

Thus (4.24) holds by (4.25) with c0 = c4/df .

5. Two algebras of difference operators

5.1. Algebra ̂ h

Let j/o be the set of all NxN matrix functions a(x) defined on Rn with
the properties :

1) a(x) can be written as

a(x) = floCxO + floo,

where lim α0(x) = 0;
1*1-*°°

2) a0(x) is bounded and integrable;

3) \χ\'\&o(ύ\ (P = 0, 1, 2) are integrable.
(Two elements of j&0 are identified if they coincide almost everywhere.)

We denote by α an n-tuple (αt, α2,..., αw) of integers, i.e. α = (α l5 α2,..., αrt).
Let j^ be the set of all matrices α(x, ω) such that α(x, ω)=Σααα(xy/α*ω, where
αα e ja/o and the summation is over a finite set of α. It is clear that α(x, ω) satisfies
Conditions I, II and III. Let

(5.1) a(x, ω) = Σ A(*y°"ω, b(x, ω) =

Then we have

(5.2) α(x, α») + fc(x, ω) = Z,(

(5.3) α(x, ω)fr(x, ω) = Σ7(Σ.

(5.4) α*(x, ω) = Σ ί̂ί̂ Γ' '".

Hence ja^ is a subalgebra of ^Γ with involution.
By (2.6) TI is a family of bounded linear operators mapping L2 into itself.

Since for a(x) e j&0

the family α(x)Γ£ belongs to 3fh. We define a mapping i/' from j& into ί̂"A by

and let ja/A =
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For ΣΛaΛ(x)eΪΛ'ωes/ let ΛΛ = φ(Σ<ΛCΦlβ"ω) Then for u

o(^-<Ty« Λ^

so that for u e Sf we have in L2

(5.5) Σ

By the uniqueness of the extension of operators (5.5) holds for all u e L2, so that
Σααα(*)^/ϊ and Ah can be identified. Hence ψ is the restriction ofφtojtf and is
a one-to-one mapping from j/ onto sfh. We call Σααα(x)eία'ω tne symbol of

Then their symbols α(x, ω) and b(x, ω) are given by (5.1). Since
+ Bh, Ah°Bh and >4J can be defined in JΓΛ and they are the families associated with
a + b, ab and 0* respectively. By (5. 2) -(5.4) we have

(5.6)

(5.7) Λ

(5.8) ί̂ = Σ.βίWTϊ .

Hence JS/Λ is a subalgebra of JΓΛ with involution and it follows that ψ and ψ~ l

are morphisms.

LEMMA 5.1. Let F j h E j t f h ( j = l, 2,..., r) and let

PROOF. We have

The symbol //x, ω) of Fjh satisfies Conditions I and II, because fj e Λ/. By
Lemma 4.4 fj+i(x9 ω)/J +2(x, ω) /r(x, ω) 0* = 1, 2,..., r— 1) satisfy Condition. II.
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Hence by Theorem 3.1

F;Λ(F,.+1Λo...oFrΛ) = Fjho(Fj+ίh° oFrh) (1 £j < r)

and so we have Fh = LΛ, which completes the proof.

Let ̂ h be the subalgebra of Jί%' generated by s/h. Then FΛ e &h can be ex-

pressed as

— . . . < αr h — λ * r Γ l h r 2 h r k h \r jh E *& h)

Corresponding to this we put

where f(f\x, ω) is the symbol of F$. Then LΛ e J/Λ, Fh = LA and /(x, ω) is

the symbol of LΛ. In the following we call /(x, ω) a symbol belonging to FΛ.

5.2. Algebra 0Λ

We consider the case where coefficient matrices of Γj depend not only on

x but also on ft.

Let ^o be the set of all N x N matrix functions b(x, μ) defined on β; x [0, oo)

with the properties :

2) ί>(x, μ) can be written as

b(x, μ) = b0(x,

where lim &0(x, μ) = 0 for each μ;
|*| -κx>

3) For each μ fo0(x, μ) is bounded on R and integrable

4) ^o(λ> J") is integrable for each μ;
5) For some c^O

l&ooGO - *αo(0)l ^ cμ for all μ ̂  0.

For instance Δjμa(x) (j = l, 2,..., n) belong to ̂ 0 f°
r «(x)e J2/0.

LEMMA 5.2. Let b(x,μ)e&0 and let Bh be the family associated vviίft

b(x, 0)eία ω. Then b(x, h)T*h e JFh and

(5.9) b(
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PROOF. Let w(x) e Sf. Then since

\\b(x9 Λ)Tj[ιι| |2 £ (esssup|b(x, Λ)|)2 | |ιι||2,

b(x, /I)ΓJM(X) belongs to L2 for each fixed A and its Fourier transform can be
written as follows:

U.m.κ(e~ix'*b(x9 h)T*hu(x)dx

= Jfio(£-^Λyβ '*«'ώ«> a.e..

Hence

By Young's Theorem and condition 5) we have

\\b(x9h)T ku-Bku\\.£2ch\\u\\9

which implies (5.9) if &(*,. /ι)Tj e Jί%. Since

b(x, h)Tl belongs to Jt? h and the proof is complete.

Let 33 h be the set of all finite sums of families of the form Σα^α(
(feα(x, μ) e &Q) and let &h be the subalgebra of JΊ?h generated by 3$h. It is clear
that J3 0̂ c ̂ 0 and &h CΞ <gh.

Let Eh e <&h. Then £Λ can be written as

where

£# = ΣΛX*. ft)τ? W*, A*) e ΛO)

Corresponding to these we put

Then F$ej*h by the definition of ^0 and £$ = F$ by Lemma 5.2. Hence
and £Λ = FΛ. Thus we have

THEOREM 5.1. Let Sh(x9 h) be the difference operator (2.4) with
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(5.10) cαm.(

Then

Let Lh be the family associated with a symbol belonging to Sh(x9 0). Then

Lh e rfh9 Sh(x9 h) = Sh(x, 0) ΞΞ Lh.

By this theorem and Corollary 2.1, in proving the stability of the scheme
(2.2) under the condition (5.10) the problem is to establish (2.17) for Lh.

Let

s(x, ω)=ΣJlJ=ιCm/x, ω),

where

cw.(x, ω) = Σ«c*mj(x> θy« •», cΛrn.(x9 μ) e ̂ 0

Then s(x9 ω) is a symbol belonging to SΛ(x, 0). For instance let

(5.11) f(x9 ω; λ) = c(ω)1 4- iλp(x9 ω),

(5.12) m(x, ω; A) = / + UXx, ω) [c(ω)J -f Up(x, ω)/2] ,

where

(5.13) p(x9 ω) = Σ^i^^Xω), c(ω) = (Σ3=ι cosω^/n,

(5.14) s/ω) = sin coj, ^/x) e j*Ό (y = 1, 2,. . ., n) .

Then/(x, ω; λ) and m(x, ω; λ) are symbols belonging to Fh and MΛ given by (2.10)
and (2.11) respectively.

6. Stability of difference schemes

6.1. Assumptions and lemmas

In this section we study the stability of the scheme (2.2). Let

(6.1) Λ(x,ω)= Σ^i^/xH

and let Δjh 0=1, 2,..., n) be the difference operators such that s/ω) (j = l, 2,...,
n) satisfy (2.9). Suppose the following conditions are satisfied:

CONDITION A. Aj(x) (j = l, 2,..., n) are bounded and continuous on JR;
and can be written as
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Aj(x) = Aj0(x) + AJaQ (j = 1, 2,..., n),

where

lim AJQ(X) = 0 (j = 1, 2,..., n).

CONDITION B. DγAj0(x) (/ = !, 2,..., n; m=0,1,..., n + 3) are bounded, con-
tinuous and integrable on R%.

CONDITION C. 1) Eigenvalues of A(x, ω') are all real and their multiplicities
are independent of x and ω'

2) There exists a constant <5>0 independent of x and ω' such that

\λfx, ω')-A/x, ω')| ^ <5 (i Φ j\ i, j = 1, 2,..., s),

where A,(x, ω') (z = 1, 2,..., s) are all the distinct eigenvalues of A(x, ω');
3) Elementary divisors of A(x9 ω') are all linear.

By Corollary 4.2 ,4/x) O' = l, 2,..., n) belong to j^0.
Let

(6.2) Ph = Σ3-

(6.3) Xx, ω) = ]

(6.4) A(*,ω)=Σ5

Then Ph e jtfh and ip(x, ω) is the symbol of Ph. By Lemmas 4.6 and 4.7 p2(x, ω)
belongs to & and satisfies Condition N. We have the following two lemmas.

LEMMA 6.1. There exists an element g(x, ω) of 3? satisfying the conditions
of Theorem 3.3 such that

(6.5) {g(x9 ω)pz(x, ω)}* = g(x, ω)pz(x9 ω) for ωeRn-Z.

LEMMA 6.2. There exist elements w(x, ω) and w-1(x, ω) of 3? satisfying
Condition N such that

(6.6) g(x, ω) = w*(x, ω)w(x, ω) .

For a e Jf we denote waw~ i by α. By these lemmas pz and p are hermitian
matrices on R$ x (JR2, - Z) and on JR; x R^ respectively. By Lemma 3.4 pz satisfies
Condition N and by Lemma 4.4 it belongs to <£.

In the following we assume that Sft(x, h) e &h. Then Sh(x9 0) e &h and a
symbol belonging to SΛ(x, 0) is an element of 3$.

From the results obtained in Sections 2, 4 and 5 we can conclude that if a
symbol belonging to SA(x, 0) satisfies conditions of Theorem 4.1 or 4.2, then the
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scheme (2.2) is stable by Theorem 2.1 and its corollary.
Let P[A; Jδf ] be the set of all polynomials in λ of the form

a(x, ω; λ) = Σ;=o^/*> ω), a/x, ω)e^ (7 = 0, 1,..., m),

and denote by P[A; p] the set of all polynomials in λ and p(x, ω). The set
is defined similarly. For a scalar function ί(ω) we use the notation

α(x, ω; A)/ί(ω) = Σj-o^/ί e Jf (or jSP, uf)

if α/x, ω)/t(ω) e tf (or :5f, uf) 0 = 0, 1,..., m).

6.2. Special schemes

We have the following [17]

THEOREM 6.1. Friedrichs' scheme is stable, if λρ(pz(x, ω))^!/^//!. The
modified Lax-Wendroff scheme is stable if λp(pz(x, ω))^

PROOF. For Friedrichs' scheme by (5.11) /(x, ω; λ) can be rewritten in
as

/(x, ω; λ) = c(ω)l + iλpz(x, ώ) |s(ω)| ,

which is of the form (4.10). By the fact p~e& and by Lemma 6.1 the first part
of the assumptions and condition 1) of Theorem 4.1 are satisfied.

From (5.13) and (5.14) it follows that

l-c2(ω) = n-M5(ω)|2 + fc(ω), b(ω) =

bjk(ώ) = (cos ω j — cos ωk)/n .

Hence conditions 2) and 4) of Theorem 4.1 are satisfied.
By Corollary 4.1 we have

Since λρ(pz)^l/^n, we have g-f*gf^bg and condition 3) of Theorem 4.1 is
satisfied. Hence Friedrichs' scheme is stable.

By (5.12) m(x, ω; λ) can be rewritten in jf* as

m(x, ω; λ) = I+iλpzc\s\-λ2p*\s\2l2.

Since p2 e.S? by Lemma 4.4, the assumptions of Theorem 4.1 are satisfied except
condition 3).

By Corollary 4.1 we have

g-m*gm =
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Since λp(pz)<s2/^n, we have g-m*gm^ΰ. Hence the modified Lax-Wendroff
scheme is stable.

6.3. Stability theorems

We consider the schemes (2.2) with accuracy of order r j£> 1 and state stability
conditions in terms of a symbol /(x, ω; λ) belonging to Sή(x, 0). Suppose
s(ω) satisfies (2.9) and let

{ 1 if r is odd,
X*, ω; A) = Σ5=2(^y|5μ-2/;!.

2 if ris even,

Then since pz, |s|ί e J27, by Lemma 4.4 y e &.
We denote by A0, c t and c2 positive constants and by t(ω) a scalar function

such that ί(ω)ίejT.

THEOREM 6.2. Let

(6.7) /(x, ω; A) = Σ5»o(ίλpV//!,

where r = 4m~l or 4m (m^l). T/ien ί/ie scheme (2.2) is stable for sufficiently
small λ.

PROOF. / can be rewritten in Jf* as

and the assumptions of Theorem 4.1 are satisfied except condition 3).
We have

9-1*91 = c2w*
where c2 = 2/(rld) and ^eP[A; p]. Hence there exists A0 such that
for A^A 0 . Thus the scheme (2.2) is stable for λ^λ0.

THEOREM 6.3. Let

(6.8) /(x, ω; A) = Σ'j-o

where r^2m (m^.1) and v(x, ω; A)eP[λ; Jδf]. ' Suppose

2) t ^x, ω; λ) = y/

3) M(X, ω; λ) ̂  c2t(ω)I for λ ^ A0,
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where σ=d-2m and u = v* + v-ΰ*(λp)2mϋ. Then the scheme (2.2) is stable for
sufficiently small λ.

PROOF. / can be rewritten in ^Γ as

(6.9) /(x,ω;A)

where

By Lemma 4.4 /i,./aeJS?.
It suffices to show that condition 3) of Theorem 4.1 is satisfied. We have

g-l*gl =

where #3eP[A; />],

(6.10) 42 = £*£

By condition 1) we can define (̂ω) = |5(ω)|ff/ί(ω) as in 4.1 and it follows that
e(ω)I e Jf and

g -Ί gl = w

where

Hence by condition 3) there exists λt (0<λί^λ0) such that g — l*gl^Q for λ^A l β

Thus the scheme is stable for

THEOREM 6.4. Let

(6.11) /(x, ω; A) = Σ5-o(^y/jΊ-(iAp)2»+1fl-(Ap)«+1ι<Ap)- +1

f

r^2m+2 (m^O), ϋ(x, ω; A)eP[A; .Sf] and a(ω) is a real-valued scalar
function such that a(ω)/6Jδf and (a(ω)/t(ω))I e Jf . Suppose conditions 1), 2)
and 3) o/ Theorem 6.3 are satisfied, where σ = d — 2m — 29

Then the scheme (2.2) is stable for sufficiently small A.

PROOF. / can be rewritten in JΓ as (6.9), where

/ι = iλA(l-α), /2 = y-(λA)f<AA) if m = 0,
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/ι = 'Άpz, f2 = y-(λpz)
mb(λp2r

+ί\s\2m-i if m £ l .

By Lemma 4.4 fί9 f2 e 3? . We have

g-l*gl =

where σ ̂  2, q4 e P[A p],

By condition 1) we can define e(ω)=|s(ω)|σ/ί(ω) and we have e(ώ)I e Jf,

g-l*gl = w*(λpr+Hίc2I + iλq3i + (λpzYq

+ w*(λp)m+ ί (u - c2tl) (λp)m+ 1 w,

where

, α r = α/ί.

Hence by condition 3) there exists λi (0<A1^A0) such that ^f-/*gfl^0 for
Thus by Theorem 4.1 the scheme is stable

COROLLARY 6.1. Let

(6.12) /(x, ω; λ) = Σ'j

where r=4m-fl or 4m + 2 (m^.1), e(ώ) is a scalar function such that |s(ω)|2

^Cie(co) for some cί>Q and e(ω\ dje(ω) and dkdje(ω)(j,k=l92^..ίn) are
bounded and continuous on jR£. Then the scheme (2.2) is stable for sufficiently
small λ.

THEOREM 6.5. Let

(6.13) I(x9 ω; A) - Σ'j-oWpVlfl-Λ.2**,

where r^2m (m^O, r^l),

v(x9 ω; A) = a + λ*b (α ^ 0),

α(x, ω; A)eP[λ; ĵ ], b(x, ω; A)eP[A; J2f],

α^x, ω; A) = α/|s|2 e Jδf , b^x, ω; A) =

Suppose
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2) |s(ω)|«-2

3) α2(x, ω; A) = αJίejT, b2(x, ω; λ) = bjte JΓ;

4) tι(x, ω; A) £ c2φ|2/ /or A g A0,

where u = ά*-}-ά — λ2mv*v. Then the scheme (2.2) is stable for sufficiently small

λ.

PROOF. / can be rewritten in ̂  as (6.9), where

By Lemma 4.4 /ι,/2ej^. By (6.5) and condition 1) we have

/ί

Hence the assumptions of Theorem 4.1 are satisfied except condition 3).
We have

g-l*gl = A2mw*(M-f A^2 + λσp^3)w,

where σ = d — 2m ̂ 2, #3 eF[A; p] and ^f2 is given by (6.10). By condition. 2) we
can define e(ω) = |s(Q})|d"2/ί(ω).and e(ω)I e 3T. Put

Then

^f2 1(x,ω; A) =

g-l*gl = A 2 w

and by condition 4) there exists ^ (0<A1^A0) such that g — l*gl^.O for /l^
Thus the scheme is stable for A ^ λ j .

THEOREM 6.6. Lei

(6.14) /(x, ω; A) = Σj-oO^y/JI-A i;,

where

φc, ω; A) = ml + λea + λyb (β,y^0),

m(ω A) = Σ'5»o^mχω)/, γ ^ α ^ 0,

a(x, ω; A)eP[A; uT], fe(x, ω; A)eP[A;

αj(x, ω; λ) = α/|s| e ̂ ? b{(x, co; A) =
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/n ; (ω) O' = 0, 1,..., μ) are scalar functions satisfying Condition I. Suppose

1) 6* + β = 0;

2) t(ω) satisfies Condition I;

3) \s(ω}\d g C!ί2(ω), |m/ω)| ^ c^ω) (7 = 0, 1,..., μ);

4) α2(x, ω; A) = α/ί2 e JΓ, fo2(x, ω; A) = b\s\/t2 e Jf and a2,
satisfy Conditions N and II;

5) w(x, ω; A) ̂  c2ί
2/ /or A g A0,

w=(m*-h m)/ 4^^(5*4- a) — Aaί;*ί;. T/ten the scheme (2.2) is stable for suffi-
ciently small A.

PROOF. / can be rewritten in JΓ as

where

c(ω; A) = /-Aαm, /= /Ajpz

By Lemma 4.4 /e ̂  and c(ω; A) satisfies Condition I. By (6.5) and condition 1)
we have

g-l*gl = A aw*(w + Ag 2 + A^^3)w,

where σ = d — α^l, ^ 3eP[A; p] and g2 is given by (6.10).
By condition 3) we can define

e,(ω) = \s(ω)\dlt*(ω\ e2(ω; A) = Σ5

and ejlejf 0 = 1, 2). Put

Then g21(x, ω; A) = g4H-^56 JΓ and we have

0-/*<7/ = A*ί2(ω)φc, ω A),

where

M^JC, ω; A) -
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By condition 4) vί and v satisfy Conditions N and II, so that r satisfies the
same conditions. Since by condition 5)

M^X, ω; λ) ^ c2I for λ ^ A0,

there exist c3>0 and A x (0<λi^λ0) such that

r(x, ω) ̂  c3w*w g: c3el for A ̂  A x .

Hence conditions 1) and 2) of Theorem 4.2 are satisfied and the scheme is stable

for A ^ A i .

6.4. Case of a regularly hyperbolic system

In this section we assume that Aj(x) (j— 1, 2,..., n) are real matrices and that
(1.1) is a regularly hyperbolic system, that is, eigenvalues of A(x, ω') are all real
and distinct (s = N in Condition C) [19].

THEOREM 6.7. For a regularly hyperbolic system with real coefficients let

(6.15) I(x9 ω; λ) = 7-fiAXx, ω) + A24(x, ω; A)|s(ω)|2,

w/zere f̂ is α polynomial in λ with coefficients satisfying Condition VI. Suppose

(6.16) p(/(x, ω; A)) ^ 1 /or A ̂  A0.

77ιen ί/ie scheme (2.2) is stable for sufficiently small A.
To prove the theorem we need the following

LEMMA 6.3. Under the assumptions of the theorem there exist λ^ (0<Ar

<;A0) and a nonsingular matrix u(x9 ω; A) such that

i) u and u'1 belong to & for each A
ii) g(x, ω; λ) = u*u satisfies Condition N/or each λ

iii) For some el>0

g(x, ω; A) *> ej for λ <* A A

iv) u(pz-iλq\s\)u-1 = ί/ + A|s|/ /or ωeRw-Z, A g A l s

vv/iere d(x, ω; A) and /(x, ω; A) are diagonal matrices belonging to & and d is
a real matrix.

PROOF OF THEOREM 6.7. By Lemma 4.5 and its corollary,
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where Ί(x9 ω; A) = u/u~ 1. We have in Jf

which satisfies conditions 1), 2) and 3) of Theorem 3.4 for λ^λi by Lemma 4.3.
Since ? is a diagonal matrix by Lemma 6.3, from (6.16) it follows that

7~Π^(1 -/?(/))/ ^0 for λ^λ,.

Hence u*(I—Ί*T)u satisfies all conditions of Theorem 3.4 and we have for some

for all v e L2, h > 0.

By the same argument as in the proof of Theorem 4.1 we have for some c2

so that

Hence for some c0^

and by Corollary 2.1 the scheme is stable for λ^λίf

7. Examples of schemes

In this section Conditions A, B and C are assumed. To construct difference

schemes with accuracy of order r, we assume that ^4/x) (j = 1, 2,..., n) are bounded
and continuous together with their partial derivatives up to the r-th order, where
r = 3 in examples 2 and 3 and r = 4 in examples 4 and 5.

We introduce the following difference operators :

A2j =

(j = 1, 2,..., n),

(m = 1, 2),
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Qh(x, h) =

Since by Corollary 4.2 Aj{x)ej/0 and AmJAj(x)e3i0(j=l,2,...,n;m = l,2),

Pm*W (w = l, 2) belong to jfh and Fmk(x, h), Kmh(x, h) (m = l, 2) and Qh(x, ft)
belong to ^ft.

In connection with these operators we define the following functions:

α/ω) = sin ωp βj(ω) = sin2 (ωy/2) ,

(7.1) ^(x, ω) = Z"=i^A,

(7.2) nl(x,ω) = 4Σ"j=lAjβj, «2(x, ω) =

(7.3) /(*, ω) = (4l9)Σ"j=ιAjajβj,

(7.4) U ,̂ «) = -p2

m-nm (m = 1, 2), 9(x, ω) = -pl+/,

(7.5) r,(x, ω) = (2/3)Σ3-ιVΛ. ΓJ+ι(* ω) = P2θ + rιPί O ' = l » 2 ) .

Matrices ipm(x, ω), /cm(x, ω) (m = 1 , 2) and q(x, ω) are symbols belonging to
PmΛ(x), KmΛ(x, 0) (m = l, 2) and Qh(x, 0) respectively. By Lemmas 4.6 and 4.7

Pm, "m> ^m (m = 1> 2), i*y (y = l, 2, 3), / and ήr belong to 3? and satisfy Condition
N.

Put

M = (Σj=1α))1/2, \β\ =

Then we have

(7.6) |α| g |s| g 5|α|/3,

|α|2 ^ 4 V«|/?|, |/η ^ τ, \β\3 g Vnσ2, 9|s|2/100 g Jn\β\ .

From these it follows that

(7.7) (α, /|s|)/ (y = l,2,...,«), (

(7.8) (α,./|cφ/, ^/l/?!)/ ( = 1, 2,..,, «), (
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(|fl/τ)/, (|/?|3/σ2)/, (|s|2/|/?|)7, (|s|2/τ)/

Hence by (7.1)-(7.8)

(7.9) pj\s\ (m = 1, 2), r,/|s|'(7 = 1, 2, 3),

(7.10) nj\β\"+* (m = 1, 2), ry/(|α|>|/ϊ|) (j = 1, 2, 3), //(|α|2|/?|2)e Jf,

and they satisfy Conditions N and II. It is clear that \β(ώ)\ and σ(ω) satisfy
Condition I and

r/x, ω) = pJ

2-p{ (7 = 1, 2, 3).

For simplicity we put μ=\/n. For a difference operator Sft(x, /i) let /(x, ω;
A) be a symbol belonging to SA(x, 0) and let M(x, ω; A) denote a hermitian element

of JT.

EXAMPLE 1. Let

(7.11) Sh(x) = Σr7»o(λP2*V//!,

where r = 3 or 4. Then /(x, ω; A) can be written as (6.7). By Theorem 6.2 the
scheme (2.2) with the operator (7.11) is stable if λp(pz)^^/

/3d/^/n in the case r = 3

and is so if λp(pz)^2^/2d/^/n in the case r = 4, where pz = j p 2 /l s l» d —

(2/25)V40v6-15.

EXAMPLE 2. Let

(7.12) S,(x) = I-εh + λP2h + λ2P2hPlh/2 + λ*Plh/6,

where £Λ = μ 2Σ|/=ι^ijΣίc I=ι^ Then /(x, ω; A) can be written in JΓ as

(7.13) /(x, ω; A) = Σ^o(ttp2y/7'!-ι>,

where

v(x, ω; A) = e/-A2p2r1/2~ιλ3r3/6 J

<ω) = μ2|α|2ί, ί = τ.

By (7.7)-(7.10) t?/|s|26 Jδf and ι?/(ί|s|2)6 jr. Since μ2 |α|2ίgl, by (7.6) we have
for some A0 and M

u = t;*4 ί5 —ί?*ϋ

= φ|2[μ2(2-μ2 |α |20(lα|/|5 |)
2/^A2M]^0 for A g A0.

Application of Theorem 6.5 with α(x> ω; A) = y, ί?(x, ω; A) = 0, r = 3 and ra = (
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shows that the scheme (2.2) with the operator (7.12) is stable for sufficiently small
λ.

EXAMPLE 3. Let

(7.14) Sh(x, h) = /-

where CA=μΣ5=ι^y Then we have (7.13), where

υ(x, ω; λ) =

α(x, co; λ) = -

Put ί = |j8|. Then by (7.7) -(7. 10) α/|s| euf and 0/*2 satisfies Conditions N and
II. Hence for some λ0 and M we have

0 for λ ̂  λ0.

Application of Theorem 6.6 with m(ω; l) = c, ί>(x, ω; A) = 0 and r = 3 yields the
stability of the scheme (2.2) with the operator (7.14) for sufficiently small λ.

EXAMPLE 4. Let

(7.15) Sh(x, h) = I + Eh + λ(I + λP2J2 + λ*QJ6 + λ*Plh!24)P2h,

where £Λ = μ 2Σy=ι^ι;Σfc=ι<5fc Then we have in JΓ

(7.16) /(*, ω; A) = ΣJ»o(Wp2V//!-ι;,

where

t<x, ω; A) = e/-α3/P2/6 + A4r3p2/24, β = μ2|α|2|j?|2.

Put t = \β\2. Then by (7.7) -(7. 10) t;/|s|2 e&, and t?/(ί|s|2)e JΓ. Hence by (7.6)
we have for some λ0 and M

u = £*-fί;-t)*t;

= φ|2[μ2(2-μ2|αi20(|α|/|s|)2/-A2M] ^0 for λ ̂  λ0.

Thus the scheme (2.2) with the operator (7.15) is stable for sufficiently small λ
by applying Theorem 6.5 with r = 4 and m = 0.

EXAMPLE 5. Let

(7.17) Sh(x, h) = I + Eh + λ(I + λP2J2 + λ*K

where £A=μΣ 3=ι <5| Then we have (7.16), where
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v(x, ω; λ) = el + λ3a, e = μσ2,

a(x, ω; λ) = [in2 + A(r3~w1p1)/4]p2/6.

Put ί = σ. Then by (7.7) -(7. 10) a/\s\ belongs to Jt and a/t2 satisfies Conditions
N and II. Hence for some A0 and M we have

a* + ά)-v*v

^ 0 for λ ̂  λ0.

By Theorem 6.6 the scheme (2.2) with the operator (7.17) is stable for sufficiently
small λ.

8. Proofs

In 8.1-8.5 we denote ess. sup by sup for short.
ω ω

8.1. Proof of Theorem 3.3

Let a,. (0 ̂  i ̂  s) be the family associated with α^x)/. Then αf(x)w(x) = (αfw) (x)
(0<;i<;s). Since

we have the second inequality of (3.25).
By continuity of the L2-norm it suffices to prove the first inequality in the

case u e &*. We consider first the case 1 g i ̂  s. From (3.12) it follows that

Without loss of generality we may assume that x(ί) is the origin. By the
mean value theorem we have

0(x, hξ) = 0(0, ΛO + Σ Λ / β x , hξ)dθ,

where gj(x9 ω) = DJ^(x, ω). Since 0(0, hξ)^.el by condition 2), it follows that

(8. 1) 2 -

where

G>ίM(x) = K-e>*'
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Let {εk} be any sequence such that ε fc>0 and εfe-»0 as k-+co. Then by the

boundedness of QJ we have

(8.2) (G^α^, XjCtμ) = lim(vv, fc, Xy
Λ-»oo

where

gjk(x9ω) = \ 0 / 0 x , ω)dθ.

Since supp (K^U) c FJ, we have

\\xfW\\ ^ε||α ίM | |.

Combining this with the estimate (to be shown later)

(8.3) ||w,.fe|| ^ c^lαjiill, Cj = sup |̂ .(χ, ω)\dχ,

we obtain

which yields by (8.2)

|(G}Aα,tι, Xj

From this and (8.1) with c=Σj = 1 Cj we have

Re(GΛαίW, α|ιι) ^ ellα^p-

so that

(8.4) Σf=ι Re(GΛιι, oyi) ̂

Next we consider the case / = 0. Let G^ and GOΛ be the families associated

with 0oo(ω) and #0(X <w) respectively. Then

Re(GΛα0w, α0w) =

(G^αow, α0w) ̂  e||α0M||2,

because g^(ω)^.el. Since by definition

αoGOΛα0M = α0(GOΛ(α0w)) = (α0GOΛ)(α0M)

and α0G0h=α0oGOΛ by Corollary 3.1, we have
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= (α0°GOΛ)(α0ι/).

Hence it follows that

Re(GΛα0ιι, α0«) ̂

From this and (8.4) we have

Λιι, α|tι) £ e|iM| | 2~c£ | iW | | 2-

Now we choose ε small so that cεge/4, and then choose R large so that ||α0#0||F
^ e/4. This choice of R is possible by N-2). For such ε and R we have

(8.5) Σί-o Re(GΛαίW, α,u) £ (*/2) N|2,

which is the first inequality of (3.25).
It remains to show (8.3). Since gj(x9ω) is continuous and integrable with

respect to x for each α>, by the change of order of integration we have

jάx, ω)\dx ^ Iβjiθx, ω) \dxdθ = lflf/*, ω)\d

Hence gjk(x, ω) is integrable for each ω, and

(8.6) §jk(χ, ω) = *Γ {er** *gj(θx, ω)dxdθ

Since §j(χ, ω) is integrable for each ω, it follows that

*. ω)|dχ ^ ^/χ/θ, ω)|/|θ| dβdχ

, ω)|dχ.

Hence ^j t(χ, ω) is integrable for each ω and by N-l) we have from (8.6)

J sup l^jkOt, ω)|<iχ ^ c, 0 = 1, 2,. . ., n) .

Put
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Then by the same argument as in the proof of Lemma 3.2 we have

(8.7)

Since vjkeLl ΠL2,

a.e.

Thus \\ΌJk\\ = \\wjk\\ and (8.3) holds by (8.7).

8.2. Proof of Theorem 3.4

By continuity of the L2-norm it suffices to prove the theorem in the case
u E &*. Let σ be a space variable in Rn, B0 - {σ\ |σ| :g 1} and q(σ) be a C°° even
function such that

i) 4(σ)^0, supp^(σ) c= J50;

ii) (q2(σ)dσ = 1.

After Vaillancourt [16] we introduce the functions

a(x, ω) = c--χx, ζ)e2(a>9

b(ώ, x, ω) = c~n(ώ, ζ)p(x, ζ)e(ω, ζ)dζ,

where

c = /i1/2, ζ = ω~cσ, e(ω, Q = q(c~l[ω-ζ\).

As will be shown in the proof of Lemma A, the families of operators Ah and Bh

can be defined by

(8.8) Ahu(x) = Li.m.K- ξξ-ξ', hξ')ύ(ξ')dξ'dξ9

(8.9) Bhu(x) = l.Lm.κ-^e'* *fahξ, ξ-ξ', hξ')ύ(ξ')dξ'dξ

for all u e &*,

where β(ώ, χ, ω) is the Fourier transform of b(ώ, x, ω) with respect to x.

LEMMA A. Ah and Bh are families of bounded linear operators mapping
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y into L2 and

(8.10) (Bhu, w) ^ 0 for all u e S f ,

(8.11) Λ = Ph,

(8.12) Ah + At=2Bh.

By this lemma we have

Re(PΛM, u) ^ Re(PA«, «)-(B»u, u)

-2B»)«, u)/2

Hence (3.28) holds by (8.11) and (8.12).

PROOF OF LEMMA A. Let

Then

where

r0(χ, ω) =

rjω) = c

By condition i) we have

]sup|r0(χ, ώ)\dχ £

^ L sup ̂

where L=m&\q2(η)\ 1 dσ.
" >HSI

By the same argument as in the proof of Lemma 3.2 we have ||w|| g
Hence w e L2, and the formula (8.9) defines a family of bounded linear operators
Bh. The same reasoning applies also to Ah.

We show (8.10). Put
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(8.13) v(ξ,ζ) = e(hξ9ζ)U(ξ)

Then \ϋ(ξ, 01 2 is integrable for each fixed ζ. Hence there exists the Fourier in-
verse transform v(x, ζ) such that |φc, 01 2 is integrable for each fixed ζ. Since

P(X, 0^0, it follows that

ι>*(x, OX*, CM*, 0 ^ 0.

Integration of this inequality with respect to x yields by PlanchereΓs formula

(8.14) J»*(x, OX*, CM*, OΛc

ξ * o.

Substituting (8.13) into (8.14) and then integrating it with respect to C> by the
change of order of integration we have (#, w)^0, which shows (8.10), because

by (8.9).

Since

a(x, ω) =

from (8.8) it follows that

(8.15)

where χ = {-{', ω = hξ'.
Owing to condition 1) we have by the mean value theorem

(8.16) p0(χ, ω)-ί0te ω) = c n j = i < * j j P o ( X > ω-θcσ)q2(σ)dθdσ.

Since djβ0(χ, ω) is absolutely continuous with respect to ωk,

(8.17) 3 0̂(χ, ώ)-djp0(χ, ω-p)

χ, ιj, ω),

where p = θcσ, η = ω — p,
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(PI
wik/χ, η, ω) = -^δkdjp0(χ, ωί9..., ωk.l9 ωk-tk9 ηk+l,..., ηn)dtk.

Hence by (8.16) and (8.17)

(8.18)

where

fcfc ω) = jΣ3-ι*jJ*Σ*m*Xx, ly, ω)q2(σ)dθdσ.

The first term on the right side of (8.18) vanishes, because q2(σ) is even. Since

g ΛΣj.k sup \dkdjPo(χ9 ω)| a. e.,

from (8.18) it follows that

) - fi0(χ, ω)| g h ΣM S^P \d*djPo(X> ω)l a e

Similarly we have

IpooM-flαoίω)! g ΛΣΛ*sSPl3*fyPoo(ω)| a.e..

The same argument as in the proof of Lemma 3.2 yields from (8.15)

\\(Ph-Ah)u\\^Mh\\U\\9

where

Hence (8.11) holds.

From (8.8) and (3.20) it follows that

(8.19) (Ah + A*h-2Bh)u(ξ)

, ζ)-e(ω, ζ)}2ύ(ξ')dζdξ',
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where χ'=cχ, χ=ζ — ξ', ω=hξ', ζ = ω—cσ. By the mean value theorem we have

)|) a.e.,

where

KI =Λmax{max(Ί-|Z-(ιy) 2}\( 1 dσ.
j I 1 \ l 3f/y /UMSSI

From (8.19) it follows as in the proof of (8.11) that

where K2 = J mp(\χ\2\P0(χ, ω)\)dχ. Hence (8.12) holds.

In the following for simplicity we put

o _ DW o __ On __γ C _ D W o _ D/I C _ D «Oω — Aω, Oz — J\ω — £"> Oχ — J\χ9 Ox — iv^., Or — i\ f,

and let

where α, fe and c denote ω, z, χ, x, t or 0. We denote by M[x, χ, z] the set of
all bounded and measurable N x N matrix functions on Sxχz and denote by C[χ,
z] the set of all bounded and continuous N x N matrix functions on Sχz. The sets
M [z], M[χ, z], C[0], C[χ, 0], etc. are also defined in the same manner.

8.3. Proof of Lemma 4.1

We show (i). Let /(χ, ω) = j)|s|. Then by Γ-l) / belongs to tf and satisfies
1-1). Let Cj (j = 1, 2, 3) be constants such that

Iθjs^ω^^c, on Sω Q, fc = 1, 2,..., n),

|^/o(χ, ω)| g c2, lίote ω)| ^ c3 on Sχ2 (j = 1, 2,..., n).

Denote by L(ώ, ω) the line segment joining the points ώ and ω, where

ώ = (ωlv.., ω i , ώ, ω+1,..., ωw), ω = (ωl5 ω2,..., ωn).
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When there lies no point of Z on L(ώ, ω), by Γ-3) we have

(8.20) /0(χ, ώ) - /0(χ, ω) = (ώj - ωj)djl0(χ, ή) ,

where η is some point on L(ώ, ω).
When a point ώ of Z lies on L(ώ, ω), we have |s(ώ)| =0 and

where the first (or second) term on the right side vanishes if ώ e Z (or ω e Z).
Hence it follows that

(8.21) |/0(χ, ώ)-/0(χ, ω)| ^ c3(|s(ώ)

From (8.20) and (8.21) we have

Mote ω)-/0(x» ω)| <Ξ cjώy-ω/l for ώ,

where c4 = max(c2, λ,//ιc1c3). Thus /0(χ, ω) is absolutely continuous with respect
to cθj. Hence /0 satisfies 1-2), because βy/0eM[χ, z]. Similarly l^ satisfies
1-2).

From Γ-3) and Γ-4) it follows that / satisfies 1-3).
The assertion (ii) can be shown similarly.

8.4. Proof of Lemma 4.3

Since sup(|χ|2|j?0|s|2|) is integrable by IV, it suffices to show that conditions

1) and 2) of Theorem 3.4 are satisfied. By Γ-l)-Γ-3) and V-2) δy/0(χ, ω), dkmjo

(χ,ω)eM[χ, z]; sup|^l0te ω)|, sup|5kmjo(χ, ω)| eM[χ] and djl^co), dkmjaΰ(ω)

eM[z].

Let r0 = jys|2 and r^^^ls]2. Then by Γ-l) and Γ-2) r0eM[χ, ω] and

r^ω) e M[ω]. By Γ-3) we have for ω e Sz

(8.22) djr0 = mjo + I0(dj\s\), djrn = mjoo + l^djW) .

Since the terms on the right sides are continuous on Sz for each χ, so are djΓ0

and djΓ^
Let ω(0) be any point of Z. Then 5/r0(χ, ω(0)) and dyr^α^0*) are calcu-

lated to be zero. By Γ-2) and Γ-3) p0 and djl0 are bounded on 5χz; p^, δj/^
and dj\s\ are bounded on Sz. Hence the terms on the right sides of (8.22) tend to
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zero as ω-»ω(0). Therefore dfQ and df^ are continuous on Sω for each χ.
By the same argument as in the proof of Lemma 4.1 mjθ9 lQ(dj\s\)9 mjςo and

foo(d/|s|) are absolutely continuous with respect to ωk. Hence by (8.22) dj r0 and
djΓ^ have the same property and condition 1) is satisfied.

By Γ-3) and V-2) we have from (8.22) for ω e Sτ

and dkdjΓ0 e M[χ, z], dkdf^ e M[z], sup | dkdj r0\ e M[χ]. By the conditions

sup\dkdjΓ0\ is integrable and supld^-r^l is finite, so that condition 2) is satis-

fied.

8.5. Proof of Lemma 4.4

We prove that if p and q satisfy (a) II (or IV) (b) Γ (c) Γ, II and ΠΓ or (d) V,
then p + q, pq and p* satisfy the corresponding conditions. For properties (i)
and (ii) of the lemma follow from (a) and (c) respectively; property (iii) follows
from (a), (c) and (d). It suffices to show these assertions only for pq.

Put d = pq. Then by Lemma 3.1 de Jf, d^ eM[ω] and sup|<20(χ, ω)| is

integrable.
We prove (a). Since

(8.23) ά0(χ, ω) = A

we have

(8.24) |χ| |30| ^ |χ-ί| \Po<χ-t, ω)| \fa(t, ω)|Jί + 0(χ-ί, ω)| \t\ \fa(t, ω)\dt

(8.25) \χ\*\a0\ £ 2\χ-t\*\p0(χ-t9 ω)| |40(ί, ω)|Λ

Taking the essential suprema of both sides of (8.24) and (8.25) over Sω and inte-

grating them with respect to χ, we find that sup(|χ|k|<30fe
 ω)l) is integrable in

the case k= 1 (or fc = 2) if p and q satisfy II (or IV).
We prove (b). Let

t>o(X» ω) = 4ol s l» yoo(ω) = g Js|, β0(χ, ω) = 30|s|, e^(ω) = d^ls] .
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Then djl0(χ, ω), djΌ0(χ9 ω)eM[χ, z] and djl^ω), djV^ eC[z]; d, /0(χ, ω) and
djV0(x, ω) are measurable on Sχ for each ω e Sz.

It can be shown that if f ( χ , ω) is measurable on Sχz and is continuous on Sz

for each χ, then sup |/(χ, ω)| is measurable on Sχ and

(8.26) |/(χ,ω)|:gsupL/(χ,ω)| on Sχz.

Hence by Γ-l)-Γ-3) sup |β0(χ, ω)|, sup |40(χ, ω)|, sup l^/oOt, ω)| and sup \djΌ0(χ9

ώ)\ belong to Λί[χ].

Let cfc (fc = 1, 2, 3, 4) be constants such that

|s(ω)| g cj on Sω,

(8.27) |d;|s(ω)|| g c2 ( = 1, 2,..., n) on Sx,

|p0(χ, ω)| g c3, |d, /0(χ, ω)| g c4 (j = 1, 2,..., n) on Sχz.

Then by (8.26)

- ί, ω)4oO, ω)| g c3 sup |ή0(ί, ω)| for (ί, χ, ω) e Sίχ2.

Integration of both sides with respect to t shows that Po*$o is bounded on Sχz.
By Γ-l) and Γ-2) p^qQ and p0^oo are bounded on Sχz. Hence Γ-2) is satisfied
by (8.23).

By (8.23) we have

(8.28) e0 = /o*4o + O«cx, + / a o4o> *«> = Όotfoo

By Γ-l) and Γ-2) I0(χ-t, ω)Q0(t, ω) belong to M[ί, χ, z] and is integrable with
respect to t for each (χ, ω) e Sχz. By Γ-3) we have for ω e 5Z

(8.29) dj{l0(χ-t,

so that by (8.26)

where

φ(ί) = (c2c3 + c4)sup|40(f,

which is integrable by Γ-l) and Γ-4). Hence

(8.30) a//0*4o) = ^{/0(χ - ̂  ω)40(ί, ω)}Λ for (χ, ω) e SX99
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, z] and

By Γ-3) and (8.29) dj{l0(χ-t, ω)40(Λ ω)} is continuous on 5Z for each (χ, ί) and
is dominated by φ(t), so that 3, (/0*#0) is continuous on Sz for each χ.

By l'-l)-Γ-3) ^/^oMX/o^JeMCx, z] and a/^JeMCz]; they are
continuous on Sz for each χ. Hence by (8.28) d satisfies Γ-3).

Since d satisfies Γ-l) and Γ-3), sup\dje0\eM[χ]. From (8.29) it follows

that

(8.31) sup|3y{/0(χ-f, ώ)ξ0(t, ω)}\ ̂

-ί, ώ)\(sup\djV0(t9

By Γ-l) and Γ-4) the terms on the right side are integrable with respect to χ
and f. Hence from (8.30) and (8.31) we have

O l l F

and sup|3//o*4o)l is integrable.

Since

by Γ-l), Γ-3) and Γ-4) supl^/^^o)! is integrable. Similarly

integrable. Hence by (8.28) sup |d/e0| is integrable and Γ-4) is satisfied.

We prove (c). By (a) and (b) it suffices to show that d satisfies IIΓ-4).
From (8.29) it follows that

(8.32) \χj\ \dj{l0(χ-t, ω)ίoO, ω)}|

*> ω)| \tj\ \q0(t,

Each term of (8.32) is measurable on Sίχz and its essential supremum over Sω

is measurable on Stχ, so that the integrability of sup(|χy| |3//0*40)|) follows from

the conditions.
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By Γ, II and ΠΓ it can be shown that sup(1/^1 |5//oo4o)l) and S UP(I#/I

|d/(/o<?oo)l) are also integrable. Hence by (8.28) suρ(|χ, | \d]eQ\) is integrable and

IIΓ-4) is satisfied.
We prove (d). By (b) it suffices to show that d satisfies V-2) and V-3).

Let wjo(χ, ω) = (djV0)\s\. Then by V-l) and V-2) dkmj0(χ, ω) and dkwj0(χ, ω)
belong to M[χ, z] and are measurable on Sχ for each ωeS2; sup|3fcmjΌ(χ, ω)|,

sup IδfcWjofa, ω)|eM[χ].

Multiplying both sides of (8.30) by |s(ω)|, we have by (8.29)

(8.33) {3/(/o*4o)}M = ^o*4o + Po*^o-('o*4o)(^|5|).

By the same argument as in the proof of (b) dfc(mjO*g0) belongs to M[χ, z] and

is continuous on Sz for each χ; sup|dk(mj0*<?o)l belongs to M[χ] and is integrable.

Similarly for dk(pQ*wjo) and ̂ {(/o*4o)(^ lsl)} we have tne same results. There-
fore by (8.33) p0q0 satisfies V-2) and V-3).

It is readily verified that p^q^ p0<?oo and PaoQao satisfy the same conditions.
Hence by (8.28) d satisfies V-2) and V-3).

In the following sup does not stand for ess. sup.

8.6. Proof of Lemma 4.6

We prove (i). By VI-1) and VI-2) p satisfies conditions 1) and 2) of JT.
Since

(8.34) |poGs ω)| g icj sup \Po(x, ώ)\dx,

by VI-2) p0(χ, ω) belongs to M[χ, ω]; it belongs to M[ω] for each χ and is con-

tinuous on Sχ for each ω. Hence ess . sup \p0(χ, ω)|, sup \p0(χ9 ω)| e M[χ].

By integration by parts we have for each ω

, ω) =

so that

Let d be a positive constant such that Σ"=ιlXίl"+ 3^^lxl"+ 3 Then since
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we have for any fixed A>0

\ supdxHpoGί, ω)\)dχ ^ c\ \/\χ\n+^kdχ (k = 0, 1, 2),
J\X\*A ω J \ X \ ^ A

where

c =

Hence sup(|χ|fc|p0(χ, ω)|) (/c = 0, 1, 2) are integrable, because by (8.34)

ώ)\)dχ < oo.

Thus p satisfies condition 3) of JΓ, II and IV.
We prove (ii). Since p belongs to Jf* and p0(χ, ω) is bounded on Sχz by (i),

p satisfies Γ-l), Γ-2), IIΓ-1) and IIΓ-2). By VI-3) and VI-4) essώsup(|5^| |s|),

sup(&| M)eM[χ] 0 = 1, 2,..., n).

By VI-2) e~ix'xpQ(x9 ω)|s(ω)| is measurable on Sxχz and is integrable with
respect to x for each (χ, ω) e Sχz. By VI-3) we have for ω e Sz

so that

|3/β-" *p0|s|)l ^ φ(x) for

where

and c2 is given by (8.27). By VI-2) and VI-4) φ(x) is integrable. Hence

(8.35) 3/β0|s|) = aχ^M) for (χ,

(8.36) 3 / ί o l s | ) = N + MN for

By VI-2) and VI-3) dj(e~ix'xp0\s\) is continuous on S^ and is dominated
by φ(x), so that Sj(p0\s\) is continuous on Sχz and p0 satisfies Γ-3) and IIΓ-3).
Since by VI-3)

(8.37) dj(P<x>\s\) — id/Poo) I s! +Paodj\s\ f°r

by VI-1), VI-3) and VI-4) p^ (djpj \s\ e C[z] and p^ satisfies Γ-3). Thus
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Γ-3) and IIΓ-3) are satisfied.
By integration by parts we have

, ω) |s(ω)| for ω € SX9

and &up(\χ\k\djpΌ\\s\)(k*=Q,l) are integrable by the same argument as for

sup(| A0(χ, ω)|). Hence by (i) and (8.36) sup(|χ|%(p0|s|)|) (fc = 0, 1) are inte-

grable and p satisfies Γ-4) and IIΓ-4). Therefore by (i) p e Jt'.
We prove (iii). By (ii) it suffices to show that V-2) and V-3) are satisfied.

By VI-5) and VI-6) ess.sup(|5^| |S|
2), sup(|5^| |s|2)eM[χ] (j, k=l,

ω ωφZ
2,,.., n).

Multiplying both sides of (8.36) by |s(ω)|, we have

(8.38) {d{p0\s\)}\s\='d^\s\2 + p0\s\dj\s\ for ωeSz.

By the same argument as in the proof of (8.35)

WjPo\s\2) = SkWjPo) M2} for ωeSz

2)6C[χ,z].
Since p satisfies V-l), we have for ωeSz

which belongs to C[χ, z]. Hence by (8.38) dk[{dj(p0\s\)} |s|] e C[χ, z] and p0

satisfies V-2).
Multiplying both sides of (8.37) by |s(ω)|, we have

(8.39) {3/poolsl)} |s| = (djpJ\s\* + Pao\s\dj\s\.

Calculating the partial derivatives of (8.39) with respect to ωfe, by VI-3)-VI-6)
we find δfc[{a/p Js|)} |s|] € C[z]. Hence p^ satisfies V-2).

From (8.38) it follows for (χ, ω) e Sχz that

(8.40)

By the same argument as for sup(|^p0| |s|) we have the integrability of su

|s|2). Since sup \dk(p0\s\)\ ismtegrable by (ii), so is sup \dkl{dtf0\s\)} \s\]\ by (8.40)
ωφZ ωφZ

and V-3) is satisfied.
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8.7. Proof of Lemma 4.7

By VI-1) and VI-2) DfgQ(x, ω) e M[x, ω] and supD%r0(x, ω)eM[x]
*S^*^*~^, ^

(/ = !, 2,...,n; m = 0, 1,..., n + 3). Hence 0Q(χ, ώ), D^0(χ, ω)e M[χ, ω]; ess ^

sup|0o(X» ω)|, esssuρ|D^0(χ, ω)|, suρ'|£0fo ω)| and suρ|Z)^0(χ, ω)| belong to

By Lemma 4.6 #e JΓ. Since D $=•&$& by VI-2) D^(x, ω) is bounded on
Sxω, and is continuous and integrable with respect to x for each ω.

From VI-2) it follows as in the proof of Lemma 4.6 that Dlg(χ, ω) (/=!,

2, .., ft) are integrable with respect to χ and that ess.suρ|D^(χ, ω)| (/=!, 2,...,

n) are also integrable. Thus g satisfies N-l).
By the same argument as in the proof of Lemma 4.6 we have for any fixed

j ^ sup |α00ofe ω)\dχ £ ct(J

\ sup |α0#0(χ, ω)|dχ g c0(K)\ 1 dχ,
J\K\£A J\X\£A

where

c^/O = (ιc/d')ΣF-ι J sup iD?+1(αoW^o(^5 α

C ( Ϊ?Λ ~— ty \ ciιr\ 1/γ i Y l/7 | V /"ίli I/7V
OVΛ/ — K- \ bUP lαovΛyί/θvΛ5 CL»^|αΛ

and ί/' is a positive constant such that Σf=ι lx/ l n + 1 =d'\χ\n+ί.
Since the supports of sup |α0(x)#0(x, ω)| and sup|Df+1α0(x)^0(x, ω)| (/ = !,

2,..., n) are contained in V0 and Df α0(x) (m = 0, 1,..., n +1) are bounded uniformly
with respect to R, by the integrability of sup |Df g0(x, ω)\ we have

R) = 0 (7 = 0,1).

Hence

and Condition N-2) is satisfied.
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8.8. Proof of Lemma 6.1

8.8.1. Preliminary results and proof

Assume that λl<λ2<~><λs and let ^(Igίgs) be the multiplicity of A f.
We denote by supw(x, ω') the supremum of w(x, ω') over S""1. Unless other-

wise stated, in this section we denote by j9 k, /, m, q and r the integers such that
l^Λ fe, l^n, Ogm^n + 3, 0<^q<*n + 2 and O g r g n + 1. To prove Lemma
6.1 we need the following three lemmas.

LEMMA B. Under Conditions A and C there exists a hermitian matrix
S(x, ω') such that

(8.41) S(x, ω') = SQ(x, ω') + SJω') ,

(8.42) S(x9 ω') £ rf,

(8.43) {S(x, ω'M(x, ω')}* = S(x, ω')A(x, ω') ,

where S0(x9 ωr)-^0 uniformly with respect to ω' as |x|->oo and e is a positive
constant which does not depend on x and ω' .

Let a(x9 ω) be a scalar function defined on Sx0. Then we introduce the fol-
lowing

Property D. 1) a(x, ω) can be written as

α(x, ω) = a0(x9 ω)4-α00(ω),

where lim aQ(x, ω) = 0 for ωeS0;
|x|-*oo

2) Df α0(x, ω), Df3jfl0(x, ω) and Dr

ldkdja0(x, ω) are continuous on 5x0;
δyflooCω) and dkdja^(ω) are continuous on S0;

3) sup(|Dfα0(x, ω)|), sup(|Df3;Λ0(x, ω)| |ω|) and sup (|Df^α0(^, ω)| |ω|2)
ω^O ω^O ω^O

are bounded and integrable; sup(|α00(ω)|), supd^α^fω)! |ω|) and supdd^djέi^ω)!.
ω^O ω^O ω ^ O

|ω|2) are finite.

LEMMA C. Let a(x, ω) and b(x, ω) be scalar functions with property
D. Then

( i ) a + b9 ab and a have property D;
(ii) //|i?|^α/0r some α>0, then a\b has property D;
(iii) If a^β for some /?>0, then ^/a has property D.

LEMMA D. Under Conditions A, B and C the eigenvalues λt(x9 ω/|ω|)
(ί = l, 2,..., s) of A(x, ω/|ω|) (lωl^O) and the entries of S(x9 (o/\ω\) have property
D.
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PROOF OF LEMMA 6.1. Let

S(x9 s(ω)/|s(ω)|) if
(8.44) g(x, ω) = ,

el if ω e Z.

We show that g(x, ώ) satisfies VI. Since by Lemma D the entries of S(x, ω/|ω|)
have property D, by D-l) we have

S(x9 ω/|ω|) = S0(x, ω/MHS^ω/lωl),

where lim 50(x, ω/|ω|) = 0. Let
|x|-»oo

( S^sM/Kω)!) if ωeSz,
(8.45) <7oo(ω) =

[ e/ if ωeZ,

and put #0(x, ω)=g(x, ω)-^00(ω). Then

lim 00(X ω) = 0 for ωe Rn,
|X|-ΌO

(8.46) 00(*> ω) = 0 for ωeZ.

By D-2) and D-3) g0(x, ω)eC[x, z] and 0oo(ω)eC[z]. Hence by (8.45) and
(8.46) ^0(

x» ω)eM[x, ω] and ^oo(ω)eM[ω]. Thus g satisfies VI-1).

Since sup|DfS0(x, ω/\ω\)\ belongs to M[x] and is integrable by D-2) and
ω*0

D-3), sup \Dfg0(x9 ω)| is bounded and integrable. Hence g satisfies VI-2).
ωφZ

For ω e Sz we have

(8.47) DJdjg0(x9 ω) = ΣZ=ι{^fc(ω)} [Df5kS0(x, ω/|ω|)]ω=s(ω),

(8.48) djg^ω) = ΣZ=ι{3^(ω)} [^^(ω/lωl)],^^) ,

so that by D-2) Df3^0(x, ω) and δj ̂ 00(ω) are continuous on Sxz and on 5Z

respectively. Thus g satisfies VI-3).
From (8.47) and (8.48) it follows that for (x, ω) e SX2

where c is a constant such that \djSk(ω)\^c. Hence by D-3) sup(|Df5^0| |s|)

is bounded and integrable and sup(|3y0J |s|) is finite. Thus 0 satisfies VI-4).
ωφZ

Similarly it can be shown that g fulfills VI-5) and VI-6).
By Lemma 4.6 g e &. Since by (8.42) and (8.44)
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by Lemma 4.7 g satisfies the conditions of Theorem 3.3. Finally (6.5) follows
from (8.43).

8.8.2. Proof of Lemma B

Let

(8.49) d(λ \ x, ω') = det (λl -A) = Π;= i (A - λj)pj,

dλ(λ\ x, ω') = Dλd(λ; x, ω') (Dλ = 3/3λ),

As λj (7 = 1, 2,..., s) are real, we have

(8.50) dλ(λ , x, ωo =
where μk(x9 ω') (fe=l, 2,..., s— 1) are real and A f c<μ f e<A f e + 1 .

By Condition A A(x9ω')-*AσQ(ω') uniformly with respect to ω' as |x|-»oo.
Hence by continuity of eigenvalues of matrices we have the following results :

1) Eigenvalues of A^(ωf) are all real and their multiplicities are independent

of ω';
2) \λ^(ω')-λjoo(ω')\^δ (i*j;i,j = l,2,...9s),

(8.51) λ/x, ω') - > λjao(ω') (j = 1, 2,..., s)

uniformly with respect to ω' as |x|-»oo, where λjao(ω') O'=l, 2,..., s) are all the
distinct eigenvalues of A^(ωf) and A } ^ < λ2 αj < < Asoo

3) μk(x, ω')-*μk(X>(ω') (fc= 1, 2,..., s— 1) uniformly with respect to ω' as |x|
-*oo, where μkao(ω') (fc = l, 2,..., 5 — 1) are zeros of dλoo(λ, ω') such that A fcoo<μ fcoo

< ̂ fc -I- 1 oo I

4) There exists a constant p>0 independent of x and ω' such that

|A/x, ω')-μk(x, ω')\ ^ 2p (7 = 1, 2,..., 5; fe = 1, 2,..., s-1).

Put ;iyo(*> ω') = λ</- Ayoo (j = 1, 2,..., s). Then from (8.51) it follows that

(8.52) A/x, ω') = λjo(x, ω') + λjaΰ(ω'\ lim λj0(x, ω') = 0.
|x|->oo

Let Dj(p) and Djao(ρ) (j = 1, 2,..., s) be the open disks on the complex A-plane with
radius p and centers at λj and AJoo respectively. Let JB(A; x, ω') and £oo(A; ω')
be the matrices whose (i, j) entries are (7, ί) cofactors of λl— A(x, ω') and λl
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— A^ω') respectively. Then E(λ\ x, ω')-*E^(λ\ ω') uniformly with respect to
ω' for each fixed A as | x \ -> oo.

By C-3) (λ!-A(x, ωf))~l has a simple pole at A = A/x, ω') (l^ ^s). Let
Cj(x9 ω') be the residue of (λl — A(x, ω'))"1 at λ = λj and let

r/A; x, ω') = Πl-i.i*/*-^)", oJA; ω') = Γ^i.^/A-A,.^.

Then

r/Aj ; x, ω') - > 0°o(A/oo ω') as |x| -> oo

and we have

(8.53) |r/A,.; x, ω')| ^ <5̂ , k JA^; ω')| ^ 5"-".

Since

(A/-X(x, ω'))-1 = £(A; x, ω')/d(A; x, ω'),

£(A; x, ω') can be written on D/p) as

(8.54) E(λ; x, ω') = (λ-λj(x, ω'^-^/A; x, ω'),

where the entries of B/A; x, ω') are sums of products of λ, λj(x, ω') and entries
of A(x, ω'). Hence Bj(λ; x, ω') converges to a matrix, say BJao(λ 9 ω'), uniformly
with re'spect to ω' as |x|->oo for each fixed λ. It follows that

(8.55) C/x, ω') = Bj(λj; x, ω')/r/^; x, ω') ,

(8.56) B/αoίλjαo; ω') = lim B/A^; x, ω'),
μ|-»oo

and by (8.54) we have on Djao(ρ)

(8.57) EJA; ω') = (A-A^ω'^-^^A; ω')

Let

(8.58) Cyoo(ω') = B/00(A;oo ω')/Ooo(Ayoo ω') .

Then by (8.53) and (8.56) C/x, ω'^Cj^ω') uniformly with respect to ω' as
|x|-»oo. Since

(AJ-^ίω'))-1 = £oo(A; ω')/</β(λ; ω'),

by (8.57) and (8.58) we have

lim (λl-A^ω'ΪTW-λjJ = Cjao(ω').
A-»λjoo

Hence (AJ-yl^ίω'))"1 has simple poles at λ = λjao (j = l, 2,..., s).
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We prove (8.41) -(8.43). After Friedrichs [3] we define S(x, ω') by

S(x, ω') = Σ 5 » ι - 2 τ r (λI-A*(x, ω')f*(λI-A(x, to'))'1

xd^l(λ;x, ω')d(λ;x, ω')dλ,

where Γ j (1 ̂  j^s) is the positively oriented path running along the circumference
of Dj(p). Then it follows that

(8.59) S(x, ω') = Σ5-ι \i
-

Hence

(8.60) S(x, ω') — > S^ω') s Σ5-ιP71Cy<β(ω')CJoo(ω')

uniformly with respect to ω' as |x|-^oo. Put S0(x, ω') = S(x, ω'^-S^ω').
Then (8.41) holds.

We show (8.42). From (8.59) we 'have S(x, ω')^0. Suppose S(x, ω')
>0 does not hold. Then there exist a point (x, ώ') and a vector u (w^O) such
that S(x, ώ>=0, and (8.59) yields

C/Jc, ώ> = 0 (7 = 1,2,..., s).

Since in general

it follows that w = Σj =ι^/ x:

9 G>')M, and so we have w = 0, which is a contradiction.
Hence

S(x, ω')>0 for all xe#w, co'eS"-1.

By the same argument it follows from continuity of SΌo(ω') that S^ωO^α/ for
some α > 0.

By (8.60) there is #0 > 0 such that

, ω') ̂  (α/2)7 for |x| ̂

By continuity of S(x, ω') there exists /?>0 such that

S(x,ω')^βl for |x| ^ .R0 and

Hence (8.42) holds with e = min(α/2, β).
Finally we have
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[S(x, ω')A(x9 ω')}* = A*(x, ω')S(x, ω')

- (λI-A*)(λI-A*Γl(λI-ATldϊlddλ}
J Γ j

= S(x, ω')A(x9 ω') ,

because the second integral vanishes.

8.8.3. Proof of Lemma C

It is clear that a + b and a have property D. Let d = ab. Then d =
where

From this it follows that d has property D.
In the case (ii) let e(x, ώ) = a/b. Then e = e0-{-eco, where

e0(x, ω) = K/I7, ^^ = ααo/b^,

w(x, ω) = tfo&oo - fco^oo. Φ, ω) = k&oo

By (i) u and t? have property D. Since

it follows that e has property D.
In the case (iii) let/(x, ω)= ^Ja and y= ^/jS. Then/=/0+/00, where

/0(x, ω) = 7«- Vαoo? /oo(ω) = V^oo

Since

has property D. As /0 = ΛO/( >/α + VΛ°o) and / = 7» /o nas property D.

8.8.4. Proof of Lemma D

Since by (8.52) ^(x, ω/|ω|) (Igigs) has property D-l), we show first that
it has property D-2). The coefficients of the polynomial d(λ; x, ω/|ω|) are sums
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of products of entries of A(x9 ω/|ω|), which have property D by Lemma C.
Hence Af(x, ω/|ω|) e C[x, 0]. Similarly we have Aίoo(ω/|ω|) 6 C[0].

Put

(8.61) q(λ; x, ω/|ω|) = Dl^d(λ\ x, ω/|ω|) (Dλ = 3/δA),

(8.62) 4oo(^; ω/|ω|) = DJ'-1^; ω/|ω|), p = N-Λ.

Then ^(A^x, ω/|ω|); x, ω/|ω|) = 0, 4oo(Aίoo(ω/|ω|); ω/|ω|) = 0 and by C-2) we have
for (x, ω) e Sx0

(8.63) \Dλq(λ£x9 ω/|ω|); x, ω/|ω|)| = ΠUi.wi |λ|-AlpfcP,! £ p,!̂  > 0,

(8.64) IDrfooίλiαoίω/M); ω/|ω|)| = ΠUι.k*,l4»-λkJ
Pkft! ^ P,!* > 0.

Hence by the implicit function theorem Af(x, ω/\ω\) has partial derivatives
and δyAj on Sxθ9 which can be written as

(8.65)

(8.66) aμt<x, ω/|ω|) = - \djq(λ\ x,

Similarly Afoo(ω/|ω|) has a partial derivative δy/ίίoc)(ω/|ω|) on 50, which can be
written as

(8.67) SAJω/M) = ~ [fl^ooίA; ω/lωD/D^Jλ; ω/|ω|)]λ=Λίoo.

On the other hand by (8.61) and (8.62) q(λ\ x, ω/|ω|) and ^^(1; ω/|ω|) can
be written as follows :

(8.68) ^(A;

(8.69) (̂

where b = N!/(p+l)l, α, (ί = 0, 1,..., p) have property D and can be written as
at = ato + atao. Hence by (8.63) and (8.65) D^x, ω/|ω|)eC[x, 0], because Af(x,
ω/|ω|)eC[x, 0]. By consideration of the successive derivatives of (8.65) with
respect to xf Dγλi0(x9 ω/|ω|) belongs to C[x, 0],

Since by (8.66) and (8.67) d/A^x, ω/|ω|) and d/A joo(ω/|ω|) are continuous
on Sx0, so is djλi0(x9 ω/|ω|). Calculating the successive derivatives of (8.66)
with respect to xl9 we see that Dψdjλi0(x9 ω/\ω\) is continuous on Sx0.

By consideration of the derivatives of (8.66) and (8.67) with respect to ωk

dkdjλfa, ω/|ω|) and Skdjλiao(ω/\ω\) are continuous on Sx0 and on S0 respectively.
Hence dkdjλiQ(x9 ω/|ω|) is continuous on Sx0. Similarly Dr

tdkd yAί0(x, ω/|ω|)
is continuous on Sx0. Thus Af(x, ω/|ω|) has property D-2).

We prove that A/x, ω/|ω|) has property D-3). Put qfa, ω) = #(Aίoo(ω/|ω|);
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x, ω/|ω|). Then from (8.61) and (8.49) we have

(8.70) <?,<*, ω) = Aί0(x, ω/\ω\)e£x, ω),

where

efa ω) = -Πj-i.y^ Aoo-^p,! + A<0?(x, ω)

and g(x, ω) is a sum of products of λίao and Af ( f=l , 2,..., s) which are bounded
on Sx0. Hence there exists X>0 such that

(8.71) >f(x, ω)| £ (5/4)? for |x| ^ X.

From (8.68) and (8.69) it follows that

(8.72) qjx, ω) =

and from (8.70)-(8.72) we have for |x| ̂

(8.73) μ/0(x, ω/|ω|)|. ̂  (Σί=okol

Since Λί0(x> ω/|ω|) and at0(x, ω/\ω\) (f = 0, !,...-, /?) belong to C[x, 0],
sup |Aί0(x, ω/|ω|)| and sup|αί0(x, ω/|ω|)| (ί = 0, 1,..., p) belong to M[x]. Put

Cf(x) = sup|Ai0(x, ω/|ω|)|ω'ά0Then f ' c,(;c)dfx<oo, and by (8.73) ( ct(x)dx
ω*o ^|χUA: J\χ\*κ'

< oo, because \sup |af0(^, ω/|ω|)|dx< oo (ί = 0, 1,..., p). Hence c^x) is integrable.
J.ω*0..

Since D^i0(x9 ω/|ω|)eC[x, 0], we have suplD^oίx, ω/|ω|)| eM[x]. As
ω*0

λi(x9 ω/|ω|) is bounded on Sx0, by (8.65) and (8.63) sup|DzAί0(x, ω/|ω|)| is integra-
ω*0

ble. By calculating the successive derivatives of (8.65) with respect to x,, it can be
shown similarly that sup \Dγλί0(x, ω/|ω|)| is bounded and integrable.

ω*0

As ^(x, ω/|ω|) (ί = 0, 1,..., p) have property D, {djat(x, ω/|ω|)}|ω| eC[x,
0] (t = 0, 1,..., p) and by (8.66) and (8.63) {djλfa, ω/|ω|)}|ω| e C[x, 0]. Similar-
ly ίdjλtoo(ωl\ω\)} \ω\ e C[0]. Therefore suρ(|δμί0(x, ω/|ω|)| |ω|) e M[x] and

ω=£0
sup(|5 Aίoo(ω/|ω|)| |ω|) is finite.
ωΦO

From (8.70) we have

(8.74) Sjqί(x9ώ) = (djλi0)ei + λi0djei.

By D-3) sup(|^.af0(x, ω/|ω|)| |ω|) and suρ|αf0(x, ω/|ω|)| (ί = 0, 1,..., p) are
ωΦQ ωΦQ

integrable. Hence from (8.72) it follows that supfld^x, ω)| |ω|) is integrable.

By (8.73) and (8.74) we have for \x\^K

\ω\ + |AIO| \dfi\ |

so that sup(|δ/Aί0(x, ω/|ω|)| |ω|) is integrable.
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Calculating the successive derivatives of (8.74) with respect to xh we see that

{DJdjλiQ(x9 ω/|ω|)} |ω| e M[x, 0] and that sup(|Z>fδ/lΌ(x, ω/|ω|)| |ω|) is integrable.

Similarly it can be shown that sup(\Dr

tdkdjλi0(x9 ω/|ω|)| |ω|2) is bounded and in-

tegrable and that sup (|δfeδyAίoo(ω/|ωi)||α)|2) is finite. Hence λf(x, ω/|α>|) has

property D-3).
By (8.55) the entries of Q(x, ω/|ω|) have property D by Lemma C, because

the entries of B^λ^ x, ω/|ω|) and η(Af; x, ω/|ω|) are sums of products of A£(x,
ω/|ω|) and entries of A(x, ω/|ω|). Hence the entries of 5(x, ω/|ω|) have property
D.

8.9. Proof of Lemma 6.2

Let S(x, ω/|ω|) = (sίj (x, ω)) and

s ι Γ " s i f c
qk(x, ώ) = det | |

_ skl'"skk

Since 5(x, ω/|ω|) is positive definite, it can be written as 5(x, ω/|ω|) = W*W,
where W(x, ω) = (wf ) is an upper triangular matrix and

(i = 1, 2,..., N; ^0 = 1),

wy = ί/fw0 (7 > ί ϊ = 1, 2,..., ΛΓ-1),

Mu = (stj - Σ1= i ^k ΰkiukj)ldf.

Put

, s(ω)) for ω e S-,
w(x, ω) = ,

for ωeZ.

Then #(x, ω) can be written as (6.6).

As S(x, ω/|ω|)jg:e/, there exist positive constants Cj (j = l, 2, 3) such that

Ci ^ qk(x, ω) ̂  c2, c3 ^ dk(x, ω) (/c = 1, 2,..., N).

Since 5fJ (ί, j=l, 2,..., JV) have property D by Lemma D, it follows that w^
OΊ^*; ί = l, 2,..., N) have property D and as in the proof of Lemma 6.1 w(x, ω)
satisfies VI.

Since detw(x, ω)^min(Λ/c1, Λ/e)>0, w-1(x, ω) exists and satisfies VI.
Hence w(x, ω) and w-1(x, ω) belong to & and fulfill Condition N by Lemmas

4.6 and 4.7.



374 Hisayoshi SHINTANI and Kenji TOMOEDA

8.10. Proof of Lemma 6.3

We construct first the matrix u which diagonalizes pz—iλq\s\ for ω e Sz. By
regular hyperbolicity there exist a nonsingular matrix w(x, ω) and a real diagonal

matrix d(x, ω) with the following

Property E. 1) w, w"1 and d satisfy Condition VI;

2) For some constant e0>0

(8.75) w*(x, ω)M<x, ω)^e 0 /;

3) d=wpzw~l for ωeS^.

Put

e(x, ω; λ) = ^(p.-iλq^Dw-1.

Then by E-3) we have

(8.76) e(x,ωιλ) = d-λ\s\q,

where q(x9 ω; λ) = iwqw~l. Let q=(qij) and d = diag(d1? d2,..., d#). By the
condition of Theorem 6.7 and E-l) qtj (/, 7=1, 2,..., AT) are bounded on Sxω

x(0, A0]. Hence for some λ2

(8.77) λ\s\Σ1-ι\qkj\£W (k=l,29...,N) for A ̂  A2,

and by C-2)

(8.78) Wi-djl^δ for ωe52 (ΐ ^ ; 1,7 = 1, 2,..., JV).

By Gershgorin's Theorem the eigenvalues μf(x, ω; λ) (ι' = l, 2,..., JV) of β(x, ω; A)
can be numbered so that

1/^-^1^(5/4 (ί = 1, 2,..., N) for ωeSz, A ^ A2.

Therefore they are bounded on Sxz x (0, λ2~] and

(8.79) l^^μ^l^δ/2, l^-d/^35/4 for ωeSz, λ^λ2

(1967; U= 1, 2,..., N).

We construct an eigenvector of e corresponding to /

1) The construction of w(x, ω) is given in [11] and it follows as in the proof of Lemma 6.1
that w(x, ω) has property E.
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From (8.76) we have

(8.80) Πy-iW-AO) = det{(4f-<0 + A|s|<?} = λ\s\yi9

where yt(x, ω; λ) is a sum of products of dk, qkl (fe, /= 1, 2,..., N) and A|s|. Let

φi(:x, ω; A) = Π7=ι,y*i(d|-/f/)

Since by (8.79) | φ, | ̂  (3.5/4)*- * for A g A 2 , from (8.80) it follows that

(8.81) di-μi = λ\s\ψi for A g A2,

where ^(x, ω; λ) = yi/φi.
Let ^//x, ω; λ) (7 = 1, 2,..., N) be the (/, 7) cofactors of the matrix μil — e.

Since

by (8.81) we have

, ω; A) = Π?=ι,j*;(^-d/)>

where vu(x, ω; A) O' = l, 2,..., TV) are sums of products of A|s|, φf, dk and
(/c, / = ! , 2,,.., TV). Hence for some A3 (0<A3^A2)

(8.82) λ\s\\Όil\£δN-*l2 for A g A3.

Since by (8.78) |e,| ̂ δN~ l, it follows that

(8.83) \Re(Au)\^δN-l/2 for A ̂  A3.

Hence (/da, /dί2,. 9 ^ijv)Γ ^s an eigenvector of e corresponding to μf.
We normalize this eigenvector and find its expression. Since εt is of constant

sign, we may assume that εf>0. Then ε^δ"-1 and by (8.82)

for A^A 3 . Setting ^ί = (Σί r=ιMifcl 2) 1 / 2

) we have

(8.84) At^δN-l/29 iZu + AA^δ"-1 for A g A3.

The vector m^ίm^, mί2,..., mίjv)
τ is defined as follows:

(8.85) mj(x, ω ; A ) = 0 for ωeZ,

(8.86) mίf(x, ω; A) = βf/fef for ωeSz,

(8.87) mίy(x, ω; A) = i^ (j ^ /) for ω e S,,

where
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α^x, ω; λ) = A&Όu-vώ-λlslηi, ηt = Σ*=ι,fc*

bi(x, ω; λ) = Atfu + A i ) .

Then

(8.88) ΔilIΔi = l+A|s |m ί Γ for ωeSz,

(8.89) ^ /Jf = A|s|m/7. 0 'τ^O for ωeSz.

Hence σj + AlsIm; is a normalized eigenvector of e corresponding to μi9 where
is the /-th column vector of /.

We define matrices ra(x, ω; A), /l(x, ω; A) and ί(x, ω; A) as follows:

m = (m1? m2,..., m^), A = di

(8.90) ί = / + A|s |m for A ̂  A3.

Then

(8.91) et = tλ for ωeS2, A g A3.

Since by (8. 84) -(8. 87) m(x, ω; A) is bounded on Sxω x (0, A3], we have for some
A 4(0<A 4<A 3)

(8.92) |detί| ^ 1/2 for A ̂  A4.

Hence Γ"1 exists for A^A 4 and is bounded on Sxωx(Q9 A4]. From (8.90) and
(8.91) it follows that

(8.93) Λ = Γlet for A ̂  A4,

(8.94) r1 =/-A|s |r 1 m.

Therefore for some A x (0< A t ̂  A4)

(8.95) (r1)**-1 ^(1/2)7 for A g A t .

Letiφc, ω; A) = r1w. Then from (8.93)

(8.96) /I = ii^-iA^lsDi/-1 for ωe5z, A g A 1 ?

so that u transforms pz — iλq\s\ into a diagonal matrix.
We show that u has properties of Lemma 6.3. By (8.75) and (8.95) we have

w*w^(e0/2)7 for (x,ω)eSxω9 λ ̂  λί9

and so u has property iii).
By the argument similar to that in 8.9 t and r1 satisfy VI and belong to &.
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Hence by E-l) and Lemma 4.4 u and u"1 belong to & and by Lemmas 4.7 and
3.4 satisfy conditions of Theorem 3.3.

By (8.76), (8.90), (8.93) and (8.94) we have

(8.97) Λ = Γ*et = d + λ\s\f9

where /= dm — t~imdt — t~ίqt. Since A and d are diagonal, so is/. It is clear
that/e &. Thus by (8.96) and (8.97) u has property iv).
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