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1. Introduction and statement of results
Let R" be the n-dimensional Euclidean space (n=2). We use the nota-
tion:
x =(x', x,)eR"1 xR1,
R = {x = (x', x,)€R"; x, > 0},
Ry = {x = (x', x,)eR"; x, = 0}.
Throughout this paper let 1<p<oo. We say that a function u is locally p-
precise on an open set G R" if u is p-precise on any relatively compact open

subset of G; for p-precise functions, see [10]. For a real number «, we consider
a locally p-precise function u on R% such that

(1) SXR” |grad u|Px2dx’'dx, < .

+

In case =0 and 1+a<p<n+a, we have already discussed the existence of
limu(x’, x,) as x, {0 ([6]). In the present paper, we shall discuss it in more
general cases. We denote by C, (0< ¢ <n) the Riesz capacity of order ¢ (which
refers to the kernel |x|~"), by C, the logarithmic capacity and by B, , (0< £ < 0)
the Bessel capacity of index (4, p) (cf. [4]).

First we state

THEOREM 1. Let u be a locally p-precise function on R% satisfying (1).
Then there is a Borel set Ec R} such that

B, (E) =0 if «<0,
Cpo-E)=0 if a>0andl+a<p=2,
Cp-o-E)=0 forany e with0 <e < p—ua

if a>0,p>2andl+a<p=n+a,

E is empty if 0<a<p—n
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and lim, ,ou(x’, x,) exists and is finite for every (x', 0)e R —E.
Theorem 1 is good as to the size of the exceptional set in the following sense.
THEOREM 2. Let E be a set in R such that
B, ,(E) = 0 and E is compact if a=<0,
By _4/p(E)=0 if a>0andl4+a<p=n+a.

Then there is a C*-function u on R% satisfying (1) such that lim,_, u(x’, x,)= 00
for any (x’, 0)eE.

REMARK 1. Theorems 1 and 2 do not deal with the case p<1+a. In
this case there is a C*-function u on RY satisfying (1) such that limgn ;- 0yu())
= o0 for every x’e R"1. For example, the function

u(x) = u(x’, x,) = exp(—|x|>){(logx,)* +1}*/?, 0<e<1-1/p,
has the required properties.

In case n=2, we are concerned with oblique limits. For a function u on
R2, £e R} and 0<f<m, we set

u(g, 6) = lilm u(é+(rcos 0, rsin0))
rio
if the limit exists.

THEOREM 3. Let u be a locally p-precise function on R% satisfying (1).
Then there is a Borel set Ec R} such that

By —a/po(E) =0 if a<ps2+a,
E is empty if 0fa<p-2,
E is at most countable if a<0 and a<p-2

and for each ¢ € R3—E there is a constant c; satisfying that
u(¢, 0) = c; for a.e. 0€(0, m).

In view of [2; Theorem A] and [5; Theorems 2.4 and 3.2], Theorem 3
implies

COROLLARY 1. Let u be as in Theorem 3. Then there is a Borel set Ec R}
such that

C,-(E)=0 if p<2 and a<p=s22+a

Cpa-E)=0 for any e with0 <e < p—a
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if p>2 and a<pZ=2+a,
E is empty if 0fa<p-2,
E is at most countable if a<0 and a<p-2
and for each { € R3—E there is a constant c, satisfying that
ul, 0 =c;, for ae 0e(0,n).

REMARK 2. For 0<¢<1, C,(R3)=0, so that in case p<a+1, E may be
the whole of R} (cf. Remark 1).

Combining Corollary 1 with Theorem 1, we have

COROLLARY 2. Suppose =0 and 1+a<p=2+a. Let u be a locally
p-precise function on R% satisfying (1). Then there is a Borel set Ec R} such
that

CpulE) = 0 if p<2,
Cpuo(E)=0 forany e with0 <e< p—a
if p>2
and u(é, n/2) is finite and u(é, O)=u(é, n/2) for a.e. 0€(0, n) if £ R3—E.

In case p=2, Corollary 2 gives the result corresponding to [3; Theorem 1].

2. Proof of Theorem 1
In case >0 and 14+a<p<n+a, Theorem 1 has already been shown in
[6; Theorem 1]. If x<0, then
S |grad u|Pdx < oo
G

for any bounded open set GeR%. Hence Theorem 1 is a consequence of [10;
Theorem 4.4] or [9; Theorem 2]. In case «a>0 and p—a=n, by using the
following lemmas instead of [6; Lemmas 2 and 3], we can show Theorem 1 in
the same way as [6; Theorem 1].

LEMMA 1. Let n=2and 0=y<1. Then

[x—y[""2|y,|"7dy < Mlog(2a/n)

Slx-ylzn, |y|<2a

whenever 0<n<a and |x|<a, where M is a constant independent of x, n and a.
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Proor. For simplicity, we denote by I(x) the left-hand side of the above
inequality. We note first that I(x)<I((0, x,))=1I((0, |x,|)), where x=(x;, x,).
Hence we may assume that x=(0, x,), x,>0. We divide the domain of in-
tegration into three parts, that is,

Dy ={y=0py)in <yl =2a lx=yl 2n, y, 2 x,/2},
Dy ={y=0py2)in <yl £2a,|x—yl 21, y, < x,/2},
Dy={y=0py2); VI =n |x—yl 2n}.
Then we note that
[, Gx=yr 2=l 2 iyl rdy <§ 41y == y1r 2}yl vdy
Hence

1= x= 2 lglrdy+ | x—yr2lyglordy
2 3

D

I\

SD;U
S lyl"zlyzl"’dyﬂﬂ‘zg [y2l~rdy
DiUD, D3

I\

S Iy|"2Iy2I‘Ydy+n"2S yalTdy
n<|y|s2a Iylén‘

= M,(log (2a/n) +1)
< M,log(2a/n)
for some constants M, and M, independent of a and 5 with O<n<a..

LEMMA 2. Let n=2and 0=<y<l1. Then

Slylszaix_ylylz—1‘z—y|7/2—l‘y2l'7dy -S_ Mlog(4a/[x—z|)

for |x|<a and |z)<a, where M is a constant independent of a, x and z.

ProOF. Set n=|x—z|/2. Then 0<np<a. We divide the domain of in-
tegration into four parts, that is, (i) |x—y|<n, |y|=2a, (i) |z—y|=1n, |y|=2a,
(i) |x—y|>n, [x—y| S|z —yl, Iy|=2a and (iv) |z— y|>n, |x—y|>|z =], |y| =2a.
The corresponding integrals are denoted by I,, I,, I and I,, respectively. Since
|x—y|<#n implies |z—y|=n,

Loswrt  xe gl

lx—yl=sn

From [6; Lemma 1] it follows that
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Il é Mln)'/2~ln—y/2+1 — M]’

where M, is a constant independent of x and u. Similarly I,<M,. For I;,
we have

1< [x =317 2yaldy

lx=yl2n, |y|S2a
By Lemma 1, there is a constant M, >0 independent of a, # and x such that
I3 < M,log(2a/n).

Similarly I,<M,log(2a/n). Thus we have

[ | cadx =127 2= 17272y Vdy < 2M, -+ Mylog (/)
< Mlog (4a/|x—z|)
for some constant M >0 independent of a, x and z.
In case 0<a < p—n, we have the following proposition.

PropPosITION 1. Suppose 0Sa<p—n. Then any locally p-precise func-
tion u on R satisfying (1) is continuous on R and has a continuous extension
to the whole space.

Proor. First, we note that p>n. Since all locally p-precise functions on
R are continuous if p>n, u is continuous on RZ. If we show that for any
@ e CP(R™), ou in R: has a continuous extension to the whole space, then we
see that the function i defined as follows is a continuous extension of u to the
whole space:

u(x’, x,) if x,>0,

lim u(y’, y,) if x,=0,

~ ! —
u(x ) xn) - l R73(y",yn)=(x",0)

u(x’, —x,) if x,<0.

Choose a number r such that 1 <r<p/(ex+1). Then by (1) and Holder’s inequality
we see that for any bounded open set G in R%

S lgradu|"dx < oo .

G

Hence by [8; Theorem 5.6] there exists an extension # of u to the whole space
so that # is locally r-precise on R*. Noting that @i is r-precise, we have the
following integral representation of @i by virtue of [5; Theorem 3.1]:
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_ n X;—y; _
2 oii(x) = Y SWI)},.I a/rf(y)dy fora.e. xeR",
i=1 -

where f; is a function in L? with compact support. Since |x;— y;| |x— y|™"|y,|~*/P €
L%, and

S bx—y[Pr =iy, | =P IPdy < S [Pt =my,|~er/?dy — O
|x=y|<8 <o

¥l

as 610, 1/p+1/p’=1, the right-hand side of (2) is continuous on R", and hence
it is a continuous extension of ¢u in R% to the whole space. Thus the proposition
is proved.

3. Proof of Theorem 2

Let <0 and E be a compact set in R} with B; (E)=0. Choose a sequence
{r;} of positive numbers such that r; | 0 as j— oo and set

E; = {x+(0, r)); xe E}

for each j. Then B, ,(E;)=0. Using [5; Theorem 2.4], for each j we choose a
function u;e C§(R") such that u;>j on E;, the support of u; is contained in
{x=(x', x,) €R"; (rj+r;3)2<x,<(rj—;+r;)/2} and Slgrad u;P|x,|*dx <274,
Then u=3 7,u; has the required properties. The remaining part of Theorem 2
follows from [7; Theorem 2] (see also [6; Theorem 2']).

4. Proof of Theorem 3

Let < p and u be a locally p-precise function on R? satisfying (1). Set
xg/?|grad u(x,, x,)| if x,>0,

f(xl’ x2) = .
otherwise.

Then fe LP(R?) by (1). We denote by g, the Bessel kernel of order ¢ and consider
the set

F = {xeR?; [g1-0y(x=)f(0)dy = o0}

Then B, _,;,(F)=0. Let {eRj—F. We note that the Bessel kernels have
the following properties (cf. [4; p. 279]):

c|x|e-2 for |x|<1 if 0< ¥ <2,

g(x) 2 [

c for |x|<1 if ¢=2,
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where c is a positive constant. Consequently,

© > S 01 —ap(E—2)f (X)dx

|é-x|<1,x2>0
= cg:(sin' 6)“/Pd6S l](grad u)(&+(rcos@, rsinB))|dr ,
(0]
so that

g:) 94 (&4 (r cosd, r sin 0))|dr

< gil(gradu)(£+(rcos6, rsin O))dr < oo

for a.e. 0e(0, ©). On the other hand, u(£+(rcosf, rsinf)) is an absolutely
continuous function of re (0, o) for a.e. (0, ). Thus u(¢, 6) exists and is
finite for a.e. (0, 7). We put

u(¢, 6,) and u(¢, 6,) are finite and
F' =1 £eR}-F, .
distinct for some 0, and 0, € (0, n)

By Bagemihl!’s theorem, F’ is at most countable (see [1; Chap. 4]). Set E=F'U
(FnR3). In case a<p=2+a, any single point x of R? has B,_,;, ({x})=0,
so that By _,;, (E)=0. If 2+a<p, then F is empty. If, in addition, =0, then
F' is empty by Proposition 1. Thus E has the required properties.

References

[1] E.F. Collingwood and A.J. Lohwater, The theory of cluster sets, Cambridge Univ.
Press, New York, 1966.

[2] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957),
171-219.

[3] V.L Gavrilof, On theorems of Beurling, Carleson and Tsuji on exceptional sets,
Math. USSR-Sb. 23 (1974), 1-12.

[4] N.G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes,
Math. Scand. 26 (1970), 255-292.

[5] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiro-
shima Math. J. 4 (1974), 375-396.

[6] Y.Mizuta, On the existence of boundary values of Beppo Levi functions defined in
the upper half space of R?, Hiroshima Math. J. 6 (1976), 61-72.

[7]1 Y. Mizuta, On the existence of non-tangential limits of harmonic functions, this
journal.

[8] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes,
Hiroshima Univ., 1973.



160 Takahide KuRokAWA and Yoshihiro Mizuta

[9] Yu.G. Reshetnyak, On the boundary behavior of functions with generalized de-
rivatives, Siberian Math. J. 13 (1972), 285-290.
[10] W.P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128.

Department of Mathematics,
Faculty of Science,
Hiroshima University





