On the Existence of Boundary Values of p-Precise Functions

Takahide Kurokawa and Yoshihiro Mizuta

(Received September 6, 1976)

1. Introduction and statement of results

Let R^{n} be the n-dimensional Euclidean space ($n \geqq 2$). We use the notation:

$$
\begin{aligned}
& x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1}, \\
& R_{+}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n} ; x_{n}>0\right\}, \\
& R_{0}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n} ; x_{n}=0\right\} .
\end{aligned}
$$

Throughout this paper let $1<p<\infty$. We say that a function u is locally p precise on an open set $G \subset R^{n}$ if u is p-precise on any relatively compact open subset of G; for p-precise functions, see [10]. For a real number α, we consider a locally p-precise function u on R_{+}^{n} such that

$$
\begin{equation*}
\iint_{R_{+}^{n}}|\operatorname{grad} u|^{p} x_{n}^{\alpha} d x^{\prime} d x_{n}<\infty \tag{1}
\end{equation*}
$$

In case $\alpha \geqq 0$ and $1+\alpha<p<n+\alpha$, we have already discussed the existence of $\lim u\left(x^{\prime}, x_{n}\right)$ as $x_{n} \downarrow 0([6])$. In the present paper, we shall discuss it in more general cases. We denote by $C_{\ell}(0<\ell<n)$ the Riesz capacity of order ℓ (which refers to the kernel $\left.|x|^{\ell^{-n}}\right)$, by C_{n} the logarithmic capacity and by $B_{\ell, p}(0<\ell<\infty)$ the Bessel capacity of index (ℓ, p) (cf. [4]).

First we state
Theorem 1. Let u be a locally p-precise function on R_{+}^{n} satisfying (1). Then there is a Borel set $E \subset R_{0}^{n}$ such that

$$
\begin{array}{ll}
B_{1, p}(E)=0 & \text { if } \alpha \leqq 0, \\
C_{p-\alpha}(E)=0 & \text { if } \alpha>0 \text { and } 1+\alpha<p \leqq 2, \\
C_{p-\alpha-\varepsilon}(E)=0 & \text { for any } \varepsilon \text { with } 0<\varepsilon<p-\alpha \\
& \text { if } \alpha>0, p>2 \text { and } 1+\alpha<p \leqq n+\alpha, \\
E \text { is empty } & \text { if } 0<\alpha<p-n
\end{array}
$$

and $\lim _{x_{n} \downarrow 0} u\left(x^{\prime}, x_{n}\right)$ exists and is finite for every $\left(x^{\prime}, 0\right) \in R_{0}^{n}-E$.
Theorem 1 is good as to the size of the exceptional set in the following sense.
Theorem 2. Let E be a set in R_{0}^{n} such that

$$
\begin{array}{ll}
B_{1, p}(E)=0 \text { and } E \text { is compact } & \text { if } \alpha \leqq 0, \\
B_{1-\alpha / p, p}(E)=0 & \text { if } \alpha>0 \text { and } 1+\alpha<p \leqq n+\alpha .
\end{array}
$$

Then there is a C^{∞}-function u on R_{+}^{n} satisfying (1) such that $\overline{\lim }_{x_{n} \downarrow 0} u\left(x^{\prime}, x_{n}\right)=\infty$ for any $\left(x^{\prime}, 0\right) \in E$.

Remark 1. Theorems 1 and 2 do not deal with the case $p \leqq 1+\alpha$. In this case there is a C^{∞}-function u on R_{+}^{n} satisfying (1) such that $\lim _{R_{+}^{n} \ni y \rightarrow\left(x^{\prime}, 0\right)} u(y)$ $=\infty$ for every $x^{\prime} \in R^{n-1}$. For example, the function

$$
u(x)=u\left(x^{\prime}, x_{n}\right)=\exp \left(-|x|^{2}\right)\left\{\left(\log x_{n}\right)^{2}+1\right\}^{\varepsilon / 2}, \quad 0<\varepsilon<1-1 / p,
$$

has the required properties.
In case $n=2$, we are concerned with oblique limits. For a function u on $R_{+}^{2}, \xi \in R_{0}^{2}$ and $0<\theta<\pi$, we set

$$
u(\xi, \theta)=\lim _{r \downarrow 0} u(\xi+(r \cos \theta, r \sin \theta))
$$

if the limit exists.
Theorem 3. Let u be a locally p-precise function on R_{+}^{2} satisfying (1). Then there is a Borel set $E \subset R_{0}^{2}$ such that

$$
\begin{array}{ll}
B_{1-\alpha / p, p}(E)=0 & \text { if } \alpha<p \leqq 2+\alpha, \\
E \text { is empty } & \text { if } 0 \leqq \alpha<p-2, \\
E \text { is at most countable } & \text { if } \alpha<0 \text { and } \alpha<p-2
\end{array}
$$

and for each $\xi \in R_{0}^{2}-E$ there is a constant c_{ξ} satisfying that

$$
u(\xi, \theta)=c_{\xi} \quad \text { for } \quad \text { a.e. } \theta \in(0, \pi) .
$$

In view of [2; Theorem A] and [5; Theorems 2.4 and 3.2], Theorem 3 implies

Corollary 1. Let u be as in Theorem 3. Then there is a Borel set $E \subset R_{0}^{2}$ such that

$$
\begin{array}{ll}
C_{p-\alpha}(E)=0 & \text { if } p \leqq 2 \text { and } \alpha<p \leqq 2+\alpha, \\
C_{p-\alpha-\varepsilon}(E)=0 & \text { for any } \varepsilon \text { with } 0<\varepsilon<p-\alpha
\end{array}
$$

	if $p>2$ and $\alpha<p \leqq 2+\alpha$,
E is empty	if $0 \leqq \alpha<p-2$,
E is at most countable	if $\alpha<0$ and $\alpha<p-2$

and for each $\xi \in R_{0}^{2}-E$ there is a constant c_{ξ} satisfying that

$$
u(\xi, \theta)=c_{\xi} \quad \text { for } \quad \text { a.e. } \theta \in(0, \pi) .
$$

Remark 2. For $0<\ell \leqq 1, C_{\ell}\left(R_{0}^{2}\right)=0$, so that in case $p \leqq \alpha+1, E$ may be the whole of R_{0}^{2} (cf. Remark 1).

Combining Corollary 1 with Theorem 1, we have
Corollary 2. Suppose $\alpha \geqq 0$ and $1+\alpha<p \leqq 2+\alpha$. Let u be a locally p-precise function on R_{+}^{2} satisfying (1). Then there is a Borel set $E \subset R_{0}^{2}$ such that

$$
\begin{array}{ll}
C_{p-\alpha}(E)=0 & \text { if } p \leqq 2 \\
C_{p-\alpha-\varepsilon}(E)=0 & \text { for any } \varepsilon \text { with } 0<\varepsilon<p-\alpha \\
& \text { if } p>2
\end{array}
$$

and $u(\xi, \pi / 2)$ is finite and $u(\xi, \theta)=u(\xi, \pi / 2)$ for a.e. $\theta \in(0, \pi)$ if $\xi \in R_{0}^{2}-E$.
In case $p=2$, Corollary 2 gives the result corresponding to [3; Theorem 1].

2. Proof of Theorem 1

In case $\alpha>0$ and $1+\alpha<p<n+\alpha$, Theorem 1 has already been shown in [6; Theorem 1]. If $\alpha \leqq 0$, then

$$
\int_{G}|\operatorname{grad} u|^{p} d x<\infty
$$

for any bounded open set $G \subset R_{+}^{n}$. Hence Theorem 1 is a consequence of [10; Theorem 4.4] or [9; Theorem 2]. In case $\alpha>0$ and $p-\alpha=n$, by using the following lemmas instead of [6; Lemmas 2 and 3], we can show Theorem 1 in the same way as [6; Theorem 1].

Lemma 1. Let $n=2$ and $0 \leqq \gamma<1$. Then

$$
\int_{|x-y| \geqq \eta,|y| \leqq 2 a}|x-y|^{\gamma-2}\left|y_{2}\right|^{-\gamma} d y \leqq M \log (2 a / \eta)
$$

whenever $0<\eta<a$ and $|x|<a$, where M is a constant independent of x, η and a.

Proof. For simplicity, we denote by $I(x)$ the left-hand side of the above inequality. We note first that $I(x) \leqq I\left(\left(0, x_{2}\right)\right)=I\left(\left(0,\left|x_{2}\right|\right)\right)$, where $x=\left(x_{1}, x_{2}\right)$. Hence we may assume that $x=\left(0, x_{2}\right), x_{2}>0$. We divide the domain of integration into three parts, that is,

$$
\begin{aligned}
& D_{1}=\left\{y=\left(y_{1}, y_{2}\right) ; \eta<|y| \leqq 2 a,|x-y| \geqq \eta, y_{2} \geqq x_{2} / 2\right\}, \\
& D_{2}=\left\{y=\left(y_{1}, y_{2}\right) ; \eta<|y| \leqq 2 a,|x-y| \geqq \eta, y_{2}<x_{2} / 2\right\}, \\
& D_{3}=\left\{y=\left(y_{1}, y_{2}\right) ;|y| \leqq \eta,|x-y| \geqq \eta\right\} .
\end{aligned}
$$

Then we note that

$$
\int_{D_{1}}\left\{|x-y|^{\gamma-2}-|y|^{\gamma-2}\right\}\left|y_{2}\right|^{-\gamma} d y \leqq \int_{D_{2}}\left\{|y|^{\gamma-2}-|x-y|^{\gamma-2}\right\}\left|y_{2}\right|^{-\gamma} d y .
$$

Hence

$$
\begin{aligned}
I(x) & =\int_{D_{1} \cup D_{2}}|x-y|^{\gamma-2}\left|y_{2}\right|^{-\gamma} d y+\int_{D_{3}}|x-y|^{\gamma-2}\left|y_{2}\right|^{-\gamma} d y \\
& \leqq \int_{D_{1} \cup D_{2}}|y|^{\gamma-2}\left|y_{2}\right|^{-\gamma} d y+\eta^{\gamma-2} \int_{D_{3}}\left|y_{2}\right|^{-\gamma} d y \\
& \leqq \int_{\eta<|y| \leqq 2 a}|y|^{\gamma-2}\left|y_{2}\right|^{-\gamma} d y+\eta^{\gamma-2} \int_{|y| \leqq \eta}\left|y_{2}\right|^{-\gamma} d y \\
& \leqq M_{1}(\log (2 a \mid \eta)+1) \\
& \leqq M_{2} \log (2 a / \eta)
\end{aligned}
$$

for some constants M_{1} and M_{2} independent of a and η with $0<\eta<a$.
Lemma 2. Let $n=2$ and $0 \leqq \gamma<1$. Then

$$
\int_{|y| \leqq 2 a}|x-y|^{\gamma / 2-1}|z-y|^{\gamma / 2-1}\left|y_{2}\right|^{-\gamma} d y \leqq M \log (4 a /|x-z|)
$$

for $|x|<a$ and $|z|<a$, where M is a constant independent of a, x and z.
Proof. Set $\eta=|x-z| / 2$. Then $0 \leqq \eta<a$. We divide the domain of integration into four parts, that is, (i) $|x-y| \leqq \eta,|y| \leqq 2 a$, (ii) $|z-y| \leqq \eta,|y| \leqq 2 a$, (iii) $|x-y|>\eta,|x-y| \leqq|z-y|,|y| \leqq 2 a$ and (iv) $|z-y|>\eta,|x-y|>|z-y|,|y| \leqq 2 a$. The corresponding integrals are denoted by I_{1}, I_{2}, I_{3} and I_{4}, respectively. Since $|x-y| \leqq \eta$ implies $|z-y| \geqq \eta$,

$$
I_{1} \leqq \eta^{\gamma / 2-1} \int_{|x-y| \leqq \eta}|x-y|^{\gamma / 2-1}\left|y_{2}\right|^{-\gamma} d y
$$

From [6; Lemma 1] it follows that

$$
I_{1} \leqq M_{1} \eta^{\gamma / 2-1} \eta^{-\gamma / 2+1}=M_{1}
$$

where M_{1} is a constant independent of x and η. Similarly $I_{2} \leqq M_{1}$. For I_{3}, we have

$$
I_{3} \leqq \int_{|x-y| \geqq \eta,|y| \leqq 2 a}|x-y|^{\gamma-2}\left|y_{2}\right|^{-\gamma} d y .
$$

By Lemma 1 , there is a constant $M_{2}>0$ independent of a, η and x such that

$$
I_{3} \leqq M_{2} \log (2 a / \eta)
$$

Similarly $I_{4} \leqq M_{2} \log (2 a / \eta)$. Thus we have

$$
\begin{aligned}
\int_{|y| \leqq 2 a}|x-y|^{\gamma / 2-1}|z-y|^{\gamma / 2-1}\left|y_{2}\right|^{-\gamma} d y & \leqq 2\left(M_{1}+M_{2} \log (2 a / \eta)\right) \\
& \leqq M \log (4 a /|x-z|)
\end{aligned}
$$

for some constant $M>0$ independent of a, x and z.
In case $0 \leqq \alpha<p-n$, we have the following proposition.
Proposition 1. Suppose $0 \leqq \alpha<p-n$. Then any locally p-precise function u on R_{+}^{n} satisfying (1) is continuous on R_{+}^{n} and has a continuous extension to the whole space.

Proof. First, we note that $p>n$. Since all locally p-precise functions on R_{+}^{n} are continuous if $p>n, u$ is continuous on R_{+}^{n}. If we show that for any $\varphi \in C_{0}^{\infty}\left(R^{n}\right), \varphi u$ in R_{+}^{n} has a continuous extension to the whole space, then we see that the function \tilde{u} defined as follows is a continuous extension of u to the whole space:

$$
\tilde{u}\left(x^{\prime}, x_{n}\right)=\left\{\begin{array}{lr}
u\left(x^{\prime}, x_{n}\right) & \text { if } x_{n}>0, \\
\lim _{R_{+}^{n} \ni\left(y^{\prime}, y_{n}\right) \rightarrow\left(x^{\prime}, 0\right)} u\left(y^{\prime}, y_{n}\right) & \text { if } \quad x_{n}=0, \\
u\left(x^{\prime},-x_{n}\right) & \text { if } \quad x_{n}<0 .
\end{array}\right.
$$

Choose a number r such that $1<r<p /(\alpha+1)$. Then by (1) and Hölder's inequality we see that for any bounded open set G in R_{+}^{n}

$$
\int_{G}|\operatorname{grad} u|^{r} d x<\infty
$$

Hence by [8; Theorem 5.6] there exists an extension \bar{u} of u to the whole space so that \bar{u} is locally r-precise on R^{n}. Noting that $\varphi \bar{u}$ is r-precise, we have the following integral representation of $\varphi \bar{u}$ by virtue of [5; Theorem 3.1]:

$$
\begin{equation*}
\varphi \bar{u}(x)=\sum_{i=1}^{n} \int \frac{x_{i}-y_{i}}{|x-y|^{n}}\left|y_{n}\right|^{-\alpha / p} f_{i}(y) d y \quad \text { for a.e. } x \in R^{n} \tag{2}
\end{equation*}
$$

where f_{i} is a function in L^{p} with compact support. Since $\left|x_{i}-y_{i}\right||x-y|^{-n}\left|y_{n}\right|^{-\alpha / p} \in$ $L_{\text {loc }}^{p^{\prime}}$ and

$$
\left.\int_{|x-y|<\delta}|x-y|\right|^{p^{\prime}(1-n)}\left|y_{n}\right|^{-\alpha p^{\prime} / p} d y \leqq \int_{|y|<\delta}|y|^{p^{\prime}(1-n)}\left|y_{n}\right|^{-\alpha p^{\prime} / p} d y \longrightarrow 0
$$

as $\delta \downarrow 0,1 / p+1 / p^{\prime}=1$, the right-hand side of (2) is continuous on R^{n}, and hence it is a continuous extension of φu in R_{+}^{n} to the whole space. Thus the proposition is proved.

3. Proof of Theorem 2

Let $\alpha \leqq 0$ and E be a compact set in R_{o}^{n} with $B_{1, p}(E)=0$. Choose a sequence $\left\{r_{j}\right\}$ of positive numbers such that $r_{j} \downarrow 0$ as $j \rightarrow \infty$ and set

$$
E_{j}=\left\{x+\left(0, r_{j}\right) ; x \in E\right\}
$$

for each j. Then $B_{1, p}\left(E_{j}\right)=0$. Using [5; Theorem 2.4], for each j we choose a function $u_{j} \in C_{0}^{\infty}\left(R^{n}\right)$ such that $u_{j} \geqq j$ on E_{j}, the support of u_{j} is contained in $\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n} ;\left(r_{j}+r_{j+1}\right) / 2<x_{n}<\left(r_{j-1}+r_{j}\right) / 2\right\} \quad$ and $\int\left|\operatorname{grad} u_{j}\right|^{p}\left|x_{n}\right|^{\alpha} d x<2^{-j}$. Then $u=\sum_{j=1}^{\infty} u_{j}$ has the required properties. The remaining part of Theorem 2 follows from [7; Theorem 2] (see also [6; Theorem 2']).

4. Proof of Theorem 3

Let $\alpha<p$ and u be a locally p-precise function on R_{+}^{2} satisfying (1). Set

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{lc}
x_{2}^{\alpha / p}\left|\operatorname{grad} u\left(x_{1}, x_{2}\right)\right| & \text { if } x_{2}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then $f \in L^{p}\left(R^{2}\right)$ by (1). We denote by g_{ℓ} the Bessel kernel of order ℓ and consider the set

$$
F=\left\{x \in R^{2} ; \int g_{1-\alpha / p}(x-y) f(y) d y=\infty\right\}
$$

Then $B_{1-\alpha / p, p}(F)=0$. Let $\xi \in R_{0}^{2}-F$. We note that the Bessel kernels have the following properties (cf. [4; p. 279]):

$$
g_{\ell}(x) \geqq\left\{\begin{array}{ll}
c|x|^{\ell-2} & \text { for } \quad|x|<1 \\
c & \text { if } 0<\ell<2 \\
c & \text { for } \quad|x|<1
\end{array} \text { if } \ell \geqq 2\right.
$$

where c is a positive constant. Consequently,

$$
\begin{aligned}
\infty & >\int_{|\xi-x|<1, x_{2}>0} g_{1-\alpha / p}(\xi-x) f(x) d x \\
& \geqq c \int_{0}^{\pi}(\sin \theta)^{\alpha / p} d \theta \int_{0}^{1}|(\operatorname{grad} u)(\xi+(r \cos \theta, r \sin \theta))| d r
\end{aligned}
$$

so that

$$
\begin{aligned}
& \int_{0}^{1}\left|\frac{\partial u}{\partial r}(\xi+(r \cos \theta, r \sin \theta))\right| d r \\
\leqq & \int_{0}^{1}|(\operatorname{grad} u)(\xi+(r \cos \theta, r \sin \theta))| d r<\infty
\end{aligned}
$$

for a.e. $\theta \in(0, \pi)$. On the other hand, $u(\xi+(r \cos \theta, r \sin \theta))$ is an absolutely continuous function of $r \in(0, \infty)$ for a.e. $\theta \in(0, \pi)$. Thus $u(\xi, \theta)$ exists and is finite for a.e. $\theta \in(0, \pi)$. We put

$$
F^{\prime}=\left\{\begin{array}{lc}
\xi \in R_{0}^{2}-F ; & u\left(\xi, \theta_{1}\right) \text { and } u\left(\xi, \theta_{2}\right) \text { are finite and } \\
\text { distinct for some } \theta_{1} \text { and } \theta_{2} \in(0, \pi)
\end{array}\right\} .
$$

By Bagemihl's theorem, F^{\prime} is at most countable (see [1; Chap. 4]). Set $E=F^{\prime} \cup$ ($F \cap R_{0}^{2}$). In case $\alpha<p \leqq 2+\alpha$, any single point x of R^{2} has $B_{1-\alpha / p, p}(\{x\})=0$, so that $B_{1-\alpha / p, p}(E)=0$. If $2+\alpha<p$, then F is empty. If, in addition, $\alpha \geqq 0$, then F^{\prime} is empty by Proposition 1. Thus E has the required properties.

References

[1] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Univ. Press, New York, 1966.
[2] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
[3] V. I. Gavrilof, On theorems of Beurling, Carleson and Tsuji on exceptional sets, Math. USSR-Sb. 23 (1974), 1-12.
[4] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[5] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
[6] Y. Mizuta, On the existence of boundary values of Beppo Levi functions defined in the upper half space of R^{n}, Hiroshima Math. J. 6 (1976), 61-72.
[7] Y. Mizuta, On the existence of non-tangential limits of harmonic functions, this journal.
[8] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
[9] Yu. G. Reshetnyak, On the boundary behavior of functions with generalized derivatives, Siberian Math. J. 13 (1972), 285-290.
[10] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128.

> Department of Mathematics,
> Faculty of Science,
> Hiroshima University

