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1. Introduction and statement of results

Let Rn be the n-dimensional Euclidean space (n^.2). We use the nota-

tion :

x = (x'9 xjetf"-1 xfl1,

R ± = {* = (*', xJeΛ"; jc β >0},

Throughout this paper let l<p<oo. We say that a function u is locally p-

precise on an open set G^Rn if u is p-precise on any relatively compact open
subset of G; for ^-precise functions, see [10]. For a real number α, we consider

a locally p-precise function u on R$ such that

(1) (( n\padu\Pχ*dx'dxn< oo .
J Jκ+

In case α ̂  0 and l+α<p<n + α, we have already discussed the existence of
lim w(x', xn) as xn I 0 ([6]). In the present paper, we shall discuss it in more

general cases. We denote by Ce (Q<£<n) the Riesz capacity of order & (which

refers to the kernel |*K~")> by Cn the logarithmic capacity and by B^jp (0<^< oo)
the Bessel capacity of index (^, p) (cf. [4]).

First we state

THEOREM 1. Let u be α locally p-precise function on R$ satisfying (1).
Then there is a Borel set Ec:.Rg such that

= 0 if α ^ O ,

Cp-*(E) = 0 if α > 0 and 1 + α < p g 2,

Cp_α_ε(£) = 0 for any ε with 0 < ε < p — α

ί/ α > 0, p > 2

£ is empty if 0 < a < p — n
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and limXnι0u(x', xn) exists and is finite for every (x', 0)e.#o — £.

Theorem 1 is good as to the size of the exceptional set in the following sense.

THEOREM 2. Let E be a set in #J such that

Bltp(E) = 0 and E is compact if α g 0,

Bι-*/p,P(E) = Q tf « > 0 α n d 1+α < p g

Then there is a C^-function u on R+ satisfying (1) such that UmXnι0u(x'9 xn) = oo
for any (x', 0)e£.

REMARK 1. Theorems 1 and 2 do not deal with the case p^l+α. In

this case there is a C°°-function u on R$ satisfying (1) such that limΛj9J,_>(JC> f0)MθO

= oo for every x' e Rn~ ί. For example, the function

ι/(x) = u(x'9 xn) = exp(-|x|2){(logxπ)2 + l}ε/2, 0 < ε < 1-1/p,
has the required properties.

In case n = 2, we are concerned with oblique limits. For a function u on

R}9 ξeR% and 0<0<π, we set

r i O

if the limit exists.

THEOREM 3. Let u be a locally p-precise function on R$ satisfying (1).
Then there is a Borel set EaRft such that

£i-«/p,P(£) = 0 if α < p

E is empty if 0 ^ α < p — 2,

E is at most countable if α < 0 and a < p — 2

and for each ξeRQ—E there is a constant cξ satisfying that

u(ξ, Θ) = cξ for a.e. θ E (0, π).

In view of [2; Theorem A] and [5 Theorems 2.4 and 3.2], Theorem 3

implies

COROLLARY 1. Let u be as in Theorem 3. Then there is a Borel set
such that

Cp_α(£) = 0 if p^2 and α < p ^ 2 + α,

Cp_α_ε(£) = 0 for any ε with 0 < ε < p — α
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if p > 2 and α < p ^ 2 + α,

E is empty if 0 ^ α < p — 2,

E is at most countable if α < 0 and α < jp — 2

and for each ξ e R$ — E there is a constant cξ satisfying that

u(ξ,Θ) = cξ for a.e.θe(09π).

REMARK 2. For 0<^gl, C/Λ§) = 0, so that in case p^α+1, E may be
the whole of R$ (cf. Remark 1).

Combining Corollary 1 with Theorem 1, we have

COROLLARY 2. Suppose α^O and l + α<p^2-fα. Let u be a locally
p-precise function on R% satisfying (1). Then there is a Borel set E^.R^ such
that

Cp_α(£) = 0 if p^29

Cp_α_ε(£) = 0 for any s with 0 < ε < p — α

if p>2

and u(ξ, π/2) is finite and u(ξ, θ) = u(ξ, π/2) for a.e. 0e(0, π) if ξeR%-E.

In case p = 29 Corollary 2 gives the result corresponding to [3; Theorem 1].

2. Proof of Theorem 1

In case α>0 and l + α<p</t + α, Theorem 1 has already been shown in
[6 Theorem 1 ] . If α ̂  0, then

\ \graa u\pdx < oo
JG

for any bounded open set Gc#£. Hence Theorem 1 is a consequence of [10;
Theorem 4.4] or [9; Theorem 2]. In case α>0 and p — α = n, by using the
following lemmas instead of [6; Lemmas 2 and 3], we can show Theorem 1 in
the same way as [6; Theorem 1].

LEMMA!. Let n = 2 and 0^y<l. Then

whenever 0<η<a and \x\<a, where M is a constant independent of x, η and α.
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PROOF. For simplicity, we denote by I(x) the left-hand side of the above
inequality. We note first that /(x)^/((0, x2)) = /((0, |x2|)), where x = (x l5 x2).
Hence we may assume that x = (0, x2), x2>0. We divide the domain of in-
tegration into three parts, that is,

£>ι = {y = GΊ, y2}\ n < \y\ £ 2a, \χ-y\^ η, y2 ̂

D2 = (y = (Jir y2)l η < M ^ 2a, \x-y\^ ^ y2 <

#3 = {y = Oi, y2)i \y\ ^ n, \χ-y\ ̂  η}

Then we note that

JD2

Hence

.
Dl(ίD2

for some constants M± and M2 independent of a and η with Q<η<a.

LEMMA 2. Let n = 2 and O g y < l . Then

\y2\~ydy ^ Mlog(4α/|x-z|)

for |x|<α and |z|<α, where M is a constant independent of a, x and z.

PROOF. Set η = \x — z\/2. Then 0^f/<α. We divide the domain of in-
tegration into four parts, that is, (i) \x — y\^η, \y\^2a9 (ii) \z — y\£η, \y\£2a,
(iii) \x-y\>η, \x-y\^\z-y\, \y\^2a and (iv) \z-y\>η, \x-y\>\z-y\, \y\^2a.
The corresponding integrals are denoted by 71? 72, 73 and /4, respectively. Since
|x - y I g η implies \z-y\^η,

From [6; Lemma 1] it follows that
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= M,,

where Ml is a constant independent of x and η. Similarly I2^Ml. For 73,

we have

By Lemma 1, there is a constant M2>0 independent of a, η and x such that

/ 3^M 2log(2fl/ι/).

Similarly 74 ̂  M2 log (2a/η). Thus we have

M^Γ^ ̂  2(M1+M2log(2^))

for some constant M>0 independent of a, x and z.

In case 0^α<p — n, we have the following proposition.

PROPOSITION 1. Suppose 0^α<p— n. Then any locally p-precise func-
tion u on R+ satisfying (1) is continuous on Ry. and has a continuous extension
to the whole space.

PROOF. First, we note that p>n. Since all locally p-precise functions on
RΊ are continuous if p>n, u is continuous on R$. If we show that for any
φ e C'ξ(Rn)9 φu in R+ has a continuous extension to the whole space, then we
see that the function u defined as follows is a continuous extension of u to the
whole space:

w(x', xπ) if xn > 0,

£(χ> χ ) = j Urn "(/, yn) if xn = °»
I .;.<,',,.,̂  .o>

I u(χ' —χ\ if v < 0
\ if \^Λ , /I/ " "^/I ^^ ^

Choose a number r such that 1 < r < pl(u 4-1). Then by (1) and Holder's inequality
we see that for any bounded open set G in R^

\rdx < oo .

Hence by [8; Theorem 5.6] there exists an extension ΰ of u to the whole space
so that ΰ is locally r-precise on Rn. Noting that φΰ is r-precise, we have the
following integral representation of φΐi by virtue of [5; Theorem 3.1]:
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(2) φiϊ(x) = ^ Iy\n \yn\-*lpfi(y)dy for a.e. xeR\

where ft is a function in Lp with compact support. Since |xf — yt\ |x — y\~n\yn\~a/p

L£c and

f \x-y\p'(i-n)\yn\-«p'/Pdy ^ (
}\x-y\<δ }\y\<

0
\x-y\<δ }\y\<δ

as δ 4 0, l/p+l/p' = l, the right-hand side of (2) is continuous on Rn, and hence
it is a continuous extension of φw in Rf. to the whole space. Thus the proposition
is proved.

3. Proof of Theorem 2

Let α^O and E be a compact set in R% with B1)P(£) = 0. Choose a sequence
{r,-} of positive numbers such that r,- J, 0 as j->oo and set

for each 7. Then BltJ)(Ej) = Q. Using [5; Theorem 2.4], for each j we choose a
function WyeCJ^") such that u^j on £7, the support of uj is contained in

and

Then w = Σ?=ιMj nas tne required properties. The remaining part of Theorem 2
follows from [7; Theorem 2] (see also [6; Theorem 27]).

4. Proof of Theorem 3

Let α<p and u be a locally p-precise function on R% satisfying (1). Set

(x l 5x2)| if x2 > 0,
f(xl9 x2) = ,

0 otherwise.

Then /e LP(R2) by (1). We denote by 0^ the Bessel kernel of order £ and consider
the set

F = {xeR2; ^gί-Λ/p(χ-y)f(y)dy = 00}.

Then B1_α/p>p(F)=0. Let f eΛg-F. We note that the Bessel kernels have
the following properties (cf. [4; p. 279]):

c\x\*~2 for |x| < 1 if 0 < A < 2,

c for |x| < 1 if A ̂  2,
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where c is a positive constant. Consequently,

°° > \ gί-Λ/p(ξ-x)f(x)dx
J|«-*|<1,JC2>0

^ c(π(sinθy/Pdθ(l\(gradu)(ξ + (rcosθ, rsinθ))|dr,
Jo Jo

so that

du
dr

, rsinθ)) dr

< oo

for a.e. 0e(0, π). On the other hand, u(ξ + (rcosθ, rsinθ)) is an absolutely
continuous function of re(0, oo) for a.e. θe(0, π). Thus u(ξ, θ) exists and is
finite for a.e. θ e (0, π). We put

ί u(ξ, 0j) and u(ξ, Θ2) are finite and ]
ξεR2o-F;

distinct for some Θ1 and Θ2 e(0, π) J

By BagemihΓs theorem, F' is at most countable (see [1 Chap. 4]). Set E = F' U
(Fn#o) In case α<p^2-hα, any single point x of R2 has B1_Λ/ptp({x}) = Q,
so that β1_α/p>p(£) = 0. If 2-f α<p, then F is empty. If, in addition, α^O, then
F' is empty by Proposition 1. Thus E has the required properties.
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