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In the preceding paper [1], M. Yamasaki introduced the notion of parabolic
index of infinite networks. He proposed (orally) a problem to determine the
parabolic index of the infinite network N, formed by the lattice points and the
segments parallel to coordinate axes in the d-dimensional euclidean space. The
purpose of the present paper is to show that the parabolic index of N, is equal to
the dimension d. This is a discrete analogue of the well-known fact that

infg |grad f|Pdx = 0
nd

if and only if p=d, where the infimum is taken over all C!-functions f on R?
with compact support such that f>1 on a fixed ball in R¢.
For notation and terminologies, we mainly follow [1].

1. Description of the network

Let R4 be the d-dimensional euclidean space (d=1). Let X( be the set
of all lattice points, i.e.,

X = 74 (Z: the set of integers).

Let e,,..., e; be the standard base of R4, i.e., the k-th component of e; is 1 for
k=j and O for k#j. For a, beR4, let [a, b] denote the directed line segment
from a to b. For each j (=1,..., d), set

S = {[x, x+€;1; X = (Vy,..., V)€ XD, v; 2 0},
S = {[x, x—e;]; x = (v,..., V)€ XD, v; £ 0}
and
S = S U St
We define Y@ by

d
YD = S@.
i=1

For xe X and y=[x,, x,]€ Y, let
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1, if x,=x,
Kx, )= ( —1, if x, =x,
0, if x;, #xandx, # x.

With r(y)=1, Ny={X@®, Y@, K, r} is an infinite network in the sense of [1].
What we shall prove is

THEOREM. Ind N,=d.

Here Ind N, is the parabolic index of N, (see [1, §5]). The case d=1 is
proved in [1, Example 4.1]. The proof for d =2 consists of two parts:

(I) If p=d, then N, is of parabolic type of order p;

(I) If 1<p<d, then N, is of hyperbolic type of order p.

For simplicity, we shall omit the superscript (d) in the notation. For x=
(V15 V) €X, we write |x|=(|v,],..., [v4]) and [x|| =max;|v;l. For y=[x,, x,]
€Y, the point x; will be denoted by a(y); if y € S;, then the index j will be
denoted by j(y).

2. Proof of (I)
Let

X,={xeX; x| £n}, n=0,1,...
and
Y, = {[x, x,]€Y; x4, x,€X,}, n=12,...
Then {<X,, Y,>} is an exhaustion of N,. It is elementary to see that
Card Y, = 2dn(2n+1)4-1, n=1,2,...

(Here, Card stands for the cadinal.) Hence, if we put Z,=Y,—Y,_, (Yo=0),
then

CardZ, = Card Y,—Card Y,_; < 2d4%?(2n+1)4"1, n=1,2,....
Since r(y)=1,
uip) = zzj r(y)!=p= Card Z, < 2d*(2n+1)4-1, n=1,2,....
Y€Ln

Hence, if p=d and 1/p+1/g=1, then

T (uP)i-1 2 (2d2)171 3 Qn41)E-DU-D = 4 oo,
n=1 n=1
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since (d—1)(1—q)=—1. Therefore, by [1, Corollary 1 to Theorem 4.1], N,
is of parabolic type of order p if p>d.

3. Proof of (II)

We shall prove (II) in several steps. Let & be the set of all permutations of
{1,...,d} and for x=(vy,..., v) and ne P, let T*Xx=(Vo1)seees Vuay)-

(i) For y, y' ey, if there is e 2 such that n*|a(y)|=|a(y’)| and j(y)=
n(j(y’)), then we say that y and )’ are equivalent and write y~y’. Obviously,
this is an equivalence relation in Y. Now we put

X*={x*=(up - t)eXs 0y 2 Z 1y

i\

0}
and
Y* = {[x,, x,]€Y; xy, x,€ X*}.

Observe that for x*=(uy,..., uy) € X*, x*+e;e X* (resp. x*—e; € X*) if and
only if

j=min{k; u, = p;} (resp. pu; # 0 and j = max {k; u, = yj})'.

Using this fact, we can easily see that Y* is a set of representatives with respect
to the equivalence relation ~, i.e., for every ye Y, there is exactly one y*e Y*
such that y*~ y.

(ii) In order to construct a flow from {0} to oo, we consider the following
values defined inductively:

F(n; 1) = 2n—1)74,
(D
F(n; j+1) = 2"t (d—j)""{Qn—DF(n; )—Qn+1)t-4), j=1,2,.,d—1,
n=1, 2,.... Ina closed form, F(n; j) is expressed as
= (- 1Y! l—dd—j< d-1 > k(25— 1)-k—1
F(n,j)—<j_l> @+ 3 (471 )ren-n,

which is verified by induction on j. Observing that

(=1 (451 )5 (), ke0, 1 dos,

we obtain

) Fin; ) <@n—174,  j=1,..,d;n=12,....
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(iii) Given x*=(u,,..., uy) € X*, let k(x*) denote the largest integer k
such that y,=u,. We define a function w on Y as follows:

(@) If y=[x* x*+e,]e Y* and x*=(u,..., #y), then

w(y) = 2d)~'2p, + D'
(b) If y=[x* x*+e;]€ Y* with j>1 and x*=(u,,..., y ), then
w(y) = Qd)~'Qu;+ DF(uy5 k(x*)+1)
(¢) If ye Y—Y* then w(y)=w(y*) for y* € Y* such that y*~ y.

Now we shall prove that w is a flow (see [1, §4]) from {0} to co with strength
I(w)=1.

(iii-1) Every ye Y(0) is equivalent to y*=[0, e,]Je Y* (see [1, (1.3)] for
Y(x)). Therefore, w(y)=w(y*)=(2d)~! for all y e Y(0), and hence

Iw)= = T KO pw(y) = —2d(=1) 5 =1.
yeY(0)

(iii-2) Let x=(v,..., v;)€ X and x#0. Choose x*=(uy,..., 4y) € X* such
that n*|x|=x* for some ne 2. For each j, let us compute ¥, 5, K(x, y)w(y)

= Zye}’(x)ﬂsj K(x, y)w(p).
If v;>0 (resp. v;<0), then

Y(x) n S; = {[x, x+e;], [x—e;, x]} (resp. = {[x, x—e;], [x+e;, x]}).
For y, =[x, x+e¢;] (resp. [x, x—e;]), choose = so that
n~1(j) = min {k; Vel = |Vj|} .

Then y¥=[x*, x*+e,] (n=7n"1(j)) belongs to Y* and is equivalent to y,.
Since p,=|v;| and m=1 if and only if |v;|=p,,

Qd)'Qu+ DY, iyl = py,
@D+ DF(uys k(x*)+1),  if vl < py.

w(yy) = w(yt) =

For y,=[x—e;, x] (resp. [x+e;, x]), choose n so that

1)) = max {k; [Vl = vl}-
Then y%¥=[x*—e,, x*] (n=n"1(j)) belongs to Y* and is equivalent to y,. The
m-th component of x*—e,, is equal to |v;|—1; m=1 if and only if |v;|=p,; and
k(x*)=1. Furthermore,

k(x*)—1, if |v;l =p, and k(x*)> I,

k(x*'_'em) =
Kot i Iyl <.
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Hence

Qd)y"'Qu—1)179 = (2d)™' Quy — DF (g5 k(x*)),

if vl =p; and k(x*) =1,

w(yz) = w(y3) = .
Qd)~'Quy— DF(uy; k(x*)), if |v;] = p, and k(x*) > 1,

Ay 'Q@Ivl = DF(pys k(x*)+1), if |v| < py.
Therefore, in case v;#0, using (1) we have

3) Z K(x, W) = w(yz)—w(y,)
[ d)- HQ@uy—=DF(py ;5 k(x*)—Q2p, +1)174}

_ — d—k(x*) k(x* ~ =
= - dk(x*) F(#l’k(x )+l)s if lv1| = U1

—dF(ug; kxR, i vl <y
If v;=0, then
Y(x) n S; = {[x, x+e¢;], [x, x—e;]}

and by an argument similar to the above, we see that both y, =[x, x+e;] and
y2=[x, x—e;] are equivalent to y*=[x* x*+e,]eY* Since v;=0, m#1.
Hence, in case v;=0, we have

@ yz;jK(x, W) = =w(y)—w(yy) = —2w(y*) = —d™ " F(uy; k(x*)+1).

Combining (3) and (4), we have in any case

Ji;k’g—i;)nul;k(x*)Jrl), if 1v,] =44,

yEZ K(x, y)w(y) =

1 ——‘ll—F(ul;k(x*)H), if [vil<py.
Since Card {j; |v;l=p,} =k(x*),
d
2 K, yw(y) = 2 3 K(x, y)w(y)
yeY Jj=1 yeS;

= (xS s k(69 + 1)~ {d= k() Py k() + D)

=0.

Therefore, w is a flow from {0} to co.



152 Fumi-Yuki MAEDA

(iv) Finally, we show that if | <p<d and 1/p+1/q=1, then

> w(y)? < +o0.

yeY

If y~y*e Y* and a(y*)=(uy,..., fg), then py=a(y)|. Hence if j(y*)=1
and p, =1, then

w(y) = w(y*) = 2d)"'Cu, + D74 < QA 2lla(y) | - D'
and if j(y*)>1, then p;, <, —1, so that by virtue of (2),
w(y) = w(y*) = 2d)™' 2pj(ym + DF(uy 5 k(a(y*)) + 1)
S QA 'Quy =D @uy— D7 = Q2d) ' Qlla(y) - D'

Now let T,={yeY; fa(y)|=n}, n=0,1,.... Then Y=\U%,T,. For each
x € X with ||x]| =n, there are at most 2d elements y in Ysuch that a(y)=x. Hence,

CardTy=2d and CardT, £2dCard(X,—X,-,), n=1,2,....
On the other hand, Card X,=(2n+1)4. Hence
Card T, £ 4d?(2n+1)41, n=1,2,...

Therefore

Twyi= ¥ ¥ wy)e

veY n=0 yeTn :
<2dQ2d)y 1+ S 4d22n+1)-12d)~9Q2n - 1)(1=D1 < + o0,

n=1

since p<d implies d—1+(1—-d)g< —1.
(v) Now the statement of (II) follows from [1, Theorem 4.3].
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