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Introduction

We shall classify in this paper a set of infinite networks into parabolic net-
works and hyperbolic networks of order p.

More precisely, let N = {X, Y, X, r} be an infinite network which is connected

and locally finite and which has no self-loop, let D(P)(N) be the set of all real
functions on X with finite Dirichlet integrals Dp(ύ) of order p (l<p^oo) and let

L0(X) be the set of all real functions on X with finite supports. We say that N

is of parabolic type of order p if there exists a nonempty finite subset A of X
such that the value dp(A, oo) of the following extremum problem (*) on N relative

to A and the ideal boundary oo of N vanishes:

(*) Find dp(A, oo) = inf {Dp(u)\ ueL0(X) and u = 1 on A} .

We say that N is of hyperbolic type of order p if it is not of parabolic type of

order p.

We shall prove in § 3 that N is of parabolic type of order p (1 <p< oo) if and
only if any one of the following conditions is fulfilled: (C. 1) 1 eD(

0

p)(N), (C. 2)

D^>(N) = Dί

0

p)(ΛΓ), where Ό(

0

P\N) is the closure of L0(X) in D<P>(N) with

respect to the norm \\u\\ p = [Dp(u)+\u(x0)\p~]ί/p (*oe^0 Some practical criteria
which assure that the network is of parabolic type of order p will be given in § 4
by means of some results in [4] and [6] concerning the extremal length of an

infinite network.
In case p — 29 this classification problem, which was partially studied by C.

Blanc [2], is very analogous to the classification problem of Riemann surfaces
(see for instance [1], [3] and [5]).

It will be shown in § 5 that if N is of parabolic type of order pl and if 1 <

Pi < p2, then N is of parabolic type of order p2. By this fact, we define a parabolic
index ind N of N as the infimum of p > 1 for which N is of parabolic type of

order p. Some geometric meaning of ind N will be shown by two examples.

§ 1. Some definitions related to an infinite network

Let X and Y be countable (infinite) sets and K be a function on X x Y satisfy-
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ing the following conditions :
(1.1) The range of K is {-1, 0, 1}.
(1.2) For each ye Y9 e(y) = {xeX'9 K(x9 j)^0} consists of exactly two points
xl9 x2 and K(xl9 y)K(x2, y) = - 1.
(1.3) For each xeX9 Y(x) = {y e 7; K(x9 ^)^0} is a nonempty finite set.
(1.4) For any x9xΈX9 there are xί9...9xneX and yi9...9 yn+ί e 7 such that

e(yj) = {Xj-ι> Xj},j = l,. 9 n + 1 with x0 = x and xn+l=xf.
Let r be a strictly positive function on Y. Then N = {X9 7, X, r} is called

an infinite network.
Let X' and Y' be subsets of X and 7 respectively and let K' and r' be the

restrictions of K and r onto X' x Y' and 7' respectively. Then Nr = { X', 7',
X', r'} is called a subnetwork of the network N if conditions (1.2)-( 1.4) are
fulfilled replacing X, Y and K by X'9 Y' and .K' respectively. Let us put for
simplicity <X'9 Y'> =N'. In case X' (or 7') is a finite set, <X'9 Y'> is a finite
subnetwork.

A sequence { < XΛ9 Yn>} of finite subnetworks of N is called an exhaustion

o f Λ Γ i f * = U Xn, 7= U 7nand
n=l n=l

For a subset A of X9 denote by εA the characteristic function of A9 i.e., εA(x)
= 1 if x e A and εA(x) = O i f x e X — A. Throughout this paper, let 1 < p ̂  oo and

§ 2. Functional spaces on an infinite network

Denote by L(X) the set of all real functions on X. For u e L(X)9 its support

Su and its Dirichlet integral Dp(u) of order p are defined by

SM = {xeX9 u(x) ^ 0},

DJμ) = Σ rW~p\ Σ K(x9 y)u(x)\* (K p < oo),
yeY jceX

Dβ(ιι) = suprGO-'l Σ K(x, y)u(x)\.
yeY xeX

Let us put

= {M e L(Z); 5w is a finite set},

= {u E L(X)'9 Dp(u) < 00} .

For a nonempty subset A of ί̂, we set

Ό(P\N9 A) = {u eD<p)(N); w = 0 on A},
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Note that Ό(P)(N; A) (!</?< oo) is a reflexive Banach space with respect to the
norm [_Dp(u)γip (cf. [4]) and that D^N; A) is a Banach space with respect
to the norm DJw). Denote by D(

0

P)(JV; A) the closure of L$(X) in
^4) with respect to the above norm.

Let jc0 e JT be fixed. We define \\u\\ p by

(2.1) H u l l , = [Dp(w) + K*0)lp]1/p (1< P < oo),

(2.2) Nl * = £«(") + M*o)|.

By the same reasoning as in the proof of Lemma 1 in [6], we can prove

LEMMA 2.1. For every finite subset F of X, there exists a constant M(F)
such that

for alluεΌ(p\N).

COROLLARY. // ι/M, u eD(p)(N) and \\u — wjp->0 as n->oo, f/ten {wj
converges pointwise to M, i.e., MΠ(JC)->M(X) as n-»oo/0r eac/r xeA'.

We can prove by a standard argument

PROPOSITION 2.1. D(P)(AΓ) is α Banach space with respect to the norm
||a||p. Moreover Ό(p)(N) (1 <p< oo) is reflexive.

Denote by D(

0

P)(ΛΓ) the closure of L0(X) in D(P)(N) with respect to the
norm ||w||p, i.e., weD(

0

p)(N) if and only if there is a sequence {/„} in L0(X) such

that ||M—/π||p->0 as n-»oo.

LEMMA 2.2. For α nonempty finite subset A of X, D(

0

p)(JV; A)*=

X ) Π

PROOF. Clearly D(

0

P)(N 4) c D(/7)(]V A) n D(

0

P)(N). Let u e D(p)(N A) n

We can find a sequence {/„} in L0(X) such that ||tt-/J|p-^0 as
n->oo. Then /π(x)->0 as n->oo for each X 6 v 4 by Lemma 2.1. Define gn

eL(X) by ^rt = 0 on A and Λ=/Λ on X-A. Then ^eL^(X) and ||̂ -/J|̂ 0
as n-»oo, since /I is a finite set. Therefore ||M — 0Jp-»0 as n->oo, and hence
u E Ό\f\N A). Thus D(p)(W A) n D(

0

p)(N) c D(

0

p)(N A).

REMARK 2.1. Let aeX and denote by D(

0

p)(]V, α) the closure of L0(X)
with respect to the norm which is defined by (2.1) and (2.2) replacing x0 by α.
Then Όφ(N9 α) = D(

0

p)(Λr).

We shall call a function T on the real line /£ into itself a normal contraction
of R if Γ0 = 0 and |7x1-Γx2 |g|x1-x2 | for any x l 9 x 2 eK. Define ΓweL(X)
for ti e LW by (7i/)(x)= ΓM(X).
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We can easily prove

LEMMA 2.3. Let The a normal contraction of R and weD ( p )(JV). Then
α Dp(Tu)^Dp(u) and \\Tu\\ p^\\u\\p.

We shall use the following normal contractions:

Γ(+bc = max(x, 0) and T<->JC = max(-x, 0).

§ 3. Classification of infinite networks

For a nonempty finite subset A of X, let us consider the following extremum
problem relative to the ideal boundary oo of TV:

Find dp(A9 oo) = inf {Dp(u)\ uεL0(X) and u = 1 on A}.

First we shall prove

THEOREM 3.1. Let A be a nonempty finite subset of X. Then dp(A, oo) = 0
if and only if leΌ(

0

p\N).

PROOF. Assume that dp(A, oo) = 0. Then there exists a sequence {un}

in L0(X) such that un=l on A and Dp(uJ->0 as n^co. Since \\un — un(x0)\\p-+Q
as W-+00, we see by Proposition 2.1 and the corollary of Lemma 2.1 that {un}
converges pointwise to 1. Therefore \\un— l||p->0 as n->oo, i.e., leD(

0

p)(AΓ).
Next we assume that 1 e Ό\?\N). There is a sequence {/„} in L0(X) such that

I|l~/Jp~*0 as w->oo. Notice that {/„} converges pointwise to 1 and Dp(/M)->0
as n -> oo. Define gn e L(X) by #n = 1 on ^4 and gn =fn on X — A. Then gn e L0(X)

and ||0n—/J|p-»0 as n-^oo, since A is a finite set. Therefore Dp(gn—fn)^0 as
n-κx), and hence Dp(#,,)-»0 as n-»oo. Since dp(A, co)^Dp(gn)9 we conclude that

dp(A9 oo) = 0.

COROLLARY. Lβί ^4 and A' be nonempty finite subsets of X. Then dp(A,
oo) = 0 if and only ίfdp(A'9 oo) = 0.

On account of this result, we can classify the set of all infinite networks as

follows:

DEFINITION 3.1. We say that an infinite network Λf = {̂ , 7, K, r} is of
parabolic type of order p if there exists a nonempty finite subset A of X such
that dp(A, oo) = 0. We say that N is of hyperbolic type of order p if it is not of
parabolic type of order p, i.e., dp(A, oo)>0 for any nonempty finite subset A of

X.
We prepare

LEMMA 3.1. Let i<p<ao and let weD ( p )(ΛΓ) be non-negative. If
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{υn} is a sequence in Ό(p\N) such that vn^0 on X, {vn} converges pointwise to

oo and Dp(vn)-*Q as n->oo, then \\u — min(M, vn)\\p-*Q as n-+co.

PROOF. Let us put ww = min(w, t;π), Btt = {xeXι u(x)>vn(x)} and Vn =

U {Y(x)'9 xeBn}. Notice that for every finite subset F of Y, there exists n0

such that FcY— Vn for all n^n0, since uπ(:x)->αo as n->oo for every xeX. If

If y e Kn and e(j) = {α, fo}, then

Thus we have

Df(u-un) = Σ ί-OO1-"! Σ K(x,

1 Σ rOO1-"! Σ «(*, J)«WI" -> o
yeVn xeXye

as n->oo. Since {wj converges pointwise to w, we conclude that ||tι — MW | |P->OO
as n->oo.

Now we shall prove

THEOREM 3.2. Lei l</?<oo. An infinite network N is of parabolic type
of order p if and only if any one of the following conditions is f u l f i l l e d :

(C.I) l

(C. 2) D(

0

P)(N) = Ό(P\N) .

PROOF. On account of Theorem 3.1, we have only to prove that (C. 1)
implies (C. 2). Assume that 1 e D(

0

p)(ΛΓ). Then we can find a sequence {/„}

in L0(X) such that ||1 —fn\\p< l / n 2 for all n. By Lemma 2.3, we may assume that
/π^0 on X. Put vn = nfn. Then vn^Q on X, t;M(x)->oo as n-»oo for every xeX
and Dp(fπ) = npDp(/n)^l/np->0 as n^ao. For any weD ( p )(ΛΓ) which is non-

negative, ||u — min(w, Ollp ̂ ^ as n^co by Lemma 3.1. Since min(w, ι;rt)6L0(X),
ueΌ(

0

p\N). By Lemma 2.3, every weD ( p )(ΛΓ) belongs to Ό(£\N). There-
fore

COROLLARY. Lei l<p<oo αnc/ /eί A be a nonempty finite subset of X.
An infinite network N is of parabolic type of order p if and only if any one of the
following conditions is f u l f i l l e d :
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(C.3) Bx-

(C. 4) Ό(

0

P)(N A) = Ό(p\N A) .

PROOF. (C. 2) implies (C. 4) by Lemma 2.2. Clearly (C. 4) implies (C. 3).

Assume that (C.3) holds. Since εA eD(

0

p)(AΓ), we have l=εx-A + εA eD(

0

p)(N).
Namely (C. 1) holds. Our corollary is thus proved.

REMARK 3.1. In case # = oo, (C. 1) does not imply (C. 2) in general. This
will be shown by Example 4.1 in the next section.

§ 4. Practical criteria

In order to obtain some practical criteria which assure that N is of parabolic

type of order jp, we recall the extremal distance and the extremal width of an infinite

network studied in [4] and [6].
Denote by L(Y) the set of all real functions on Y. For weL(y), its energy

Hp(w) of order p is defined by

Denote by Lp(7; r) the set of all weL(y) such that Hp(w)<co and by L+(Y; r)

the subset of Lp(Y'9 r) which consists of non-negative functions.
For a nonempty finite subset A of X, denote by PAf00 the set of all paths from

A to the ideal boundary oo of N and by QAtOQ the set of all cuts between A and oo
(cf. [4] for definitions).

The extremal distance ELP(A9 oo) of order p of N relative to A and oo is

defined by

ELp(A, ex))'1 = infί/f/HO; WeEp(PA,J},

where Ep(PAt J = {WeL+(Y; r); Σ*<y)W(y)^l for all PePx>00}. The extremal

width EWP(A9 oo) of order p (1 <p< oo) of N relative to A and oo is defined by

EWp(A9 oo)-1 = mf{Hp(W); WeE*(QAtJ}9

where E*(QAtΛ) = {WeL+

p(Y 9 r); Σ W(yy~^l for all QeQ X f G O } .

We proved in [4] the following three lemmas:

LEMMA 4.1. ELp(A, ao) = lEWp(A, oo)]1^ (l<p<oo).

LEMMA 4.2. Let l<p<oo and let {<Xn, Yn>} bean exhaustion of N such
that A c X 1 and put
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μ(

n

f) = Σ r(yy-> with Zn=Yn-Yn^ (Y0 = φ).

Then EL.(A, oo)"-1 ̂
M = l

LEMMA 4.3. Let \<p<ao. For any path PεPAt009 ELp(A, oo) ^

γ-^
We shall prove

LEMMA 4.4. ELJ^A, oo)=inf{ΣKj;); ^eP^ «,}.
p

PROOF. Let us put 0=inf{ΣK.y); ^ePA>00}. Then jS>0. For any

so that £1^04, oo)^ΣK.y) Thus EL^(A, oo)^β. On the other hand, for

any t with 0<t<β9 define JFeL(T) by fFOO = l/ί on 7. Then WeE00(PAfJ
and EL^ί/l, oo)"1 ̂ HJ^)^ 1/ί. By the arbitrariness of ί, we have β^

oo).

LEMMA 4.5. dp(;4, oo) = £Lp(A, oo)"1 /or α / / p,

PROOF. Let {<Xn, Yn>} be an exhaustion of N such that AcX^ The
extremal distance ELp(A, X-Xn) of order p of N relative to A and X-X W is de-

fined by

where ^(P^.x-^) is defined as above replacing P^,^ by the set PAfX-Xn of all
paths from A to X — Xn. First we consider the case where 1 <p<oo. We have
ELp(A, X-Xn)^ELp(A, oo) as n-»oo by Theorem 2.2 in [4] and

ELP(A9 X-XJ-1 = inf {/>»; 11 eDίp)(N; A) and u = 1 on X-XJ

= inf {D»; u eΌ(p\N; X-Xn) and u = 1 on A}

by Theorem 2.1 in [4]. It follows that dp(A, <x>) = ELp(A, oo)-1 if l<p<oo.
Since the proofs of Theorems 2.1 and 2.2 in [4] are still effective in the case where
p=oo, we can similarly prove dn(A9 oo) = £L00(A, oo)"1.

On account of Lemmas 4.1 and 4.5, we obtain

THEOREM 4.1. Let i<p<co and let A be a nonempty finite subset of X.
An infinite network N is of parabolic type of order p if and only if any one of the
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following conditions is f u l f i l l e d :

(C. 5) ELp(A, oo) = oo.

(C. 6) EWP(A, oo) = 0, i.e., E*P(QA>00) = φ.

By this theorem and Lemma 4.2, we have

COROLLARY 1. Let l<p<oo. If there exists an exhaustion {<Xn, Yn>}
oo

of N such that Σ [βn

p)]1~^ = oo (cf. Lemma 4.2), then N is of parabolic type
n=l

of order p.
By this theorem and the definition of E$(QAj00), we have

COROLLARY 2. // N is of parabolic type of order p (l<p<oo), then

inf {^W(y)p'lm9 Q^QA oo} = 0/or every PfeLJ(Y; r) and every nonempty finite
Q

subset A of X.
On account of Lemmas 4.4 and 4.5, we obtain

THEOREM 4.2. An infinite network N is of parabolic type of order oo if and

only if there exists a nonempty finite subset A of X such that Σ K)0 = °° for a^

By this theorem and Lemma 4.3, we have

COROLLARY. If N is of hyperbolic type of order oo, then N is of hyperbo-
lic type of order p for all p>\.

We say that N is totally hyperbolic if it is of hyperbolic type of order oo.
In order to obtain another practical criterion, we consider the set F(A, oo)

of flows from a nonempty finite subset A of X to the ideal boundary oo of N:
weF(A, oo) if and only if weL(7) and Σ K(x, y)w(y) = Q for all xeX — A.

For w e F(A, oo), we define the strength IA(w) of w by

= -Σ Σ
xeA yeY

We shall prove

THEOREM 4.3. Let l<p<oo. If there exists weF(A, oo) such that
= 1 and //g(w)<oo, then N is of hyperbolic type of order p.

PROOF. Put ^(y)=|w(y)|1/(p~1). For any βeQx>00 such that Q = Q(A)Q
β(oo) (see [4]), define uQeL(X) by uQ=l on Q(A) and wQ=0 on Q(oo). Since
uQ e LQ(X\ we have

-1 = Σ Σ K(x, y)w(y) = Σ uQ(x) Σ K(x9 y)w(y)
xeA yeY xeX yeY

yeY
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so that

1 ^ Σ kOOl I Σ K(x, y)uQ(x)\ = Σ
yeY xeX Q

Since Hp(W) = Hq(w)«x>, we conclude that WeE*(QAt0,). Therefore N is

of hyperbolic type of order p.

Finally we shall prove Remark 3.1 by

EXAMPLE 4.1. Denote by J the set of all positive integers. Let us take

X = {xninεJ}, Y={yn'9neJ}9

n> JV> = - 1 » K(xn+ I9yn)=ί for all n e J,

) = 0 for any other pair (x, y) .

Let r=l on 7. Then N = {X9 7, X, r} is an infinite network. It follows from
Corollary 1 of Theorem 4.1 and Theorem 4.2 that N is of parabolic type of

order p,l<p^<x>. By Theorem 3.1, leD^N). We show that D^N)
^D(oo)(N). In fact, let x0

 = xι and consider ueL(X) defined by u(xn) = n for
all nεJ. Then NL = 2 and weD(oo)(ΊV). For any feL0(X), H w - /IL^

DJw-/)^!, so that ti

§ 5. A parabolic index of an infinite network

THEOREM 5.1. Let l<Pι<p2- If N is of hyperbolic type of order p2, then
N is of hyperbolic type of order pίt

PROOF. Assume that N is of hyperbolic type of order p2. In case p2 — oo,
our theorem follows from the corollary of Theorem 4.2. Let p2 < oo and let A

be a nonempty finite subset of X. Then there exists WeE$2(QAtao) by Theorem

4.1. Since min(fF, 1) belongs to E$2(QAfao), we may suppose that
on 7. Let W'=W'*l**. Then W'eL+^Y r) and (wγ^~l = W

WP2~* on 7, and hence W eE$l(QAtao) Therefore N is of hyperbolic type of
order pt.

On account of Theorem 5.1, we can define a parabolic index indJV of an
infinite network N which is not totally hyperbolic by

ind N = inf {p > 1 N is of parabolic type of order p} .

A geometric meaning of ind N may be seen by the following examples :

EXAMPLE 5.1. Let {tn} be a sequence of positive integers and denote by
J the set of all positive integers. Let us take
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X = {*„; neJ}, 7 = {y{»\ /2»>,..., ytf neJ},

K(xn, /Λ = - = K(xm9 ytf) = - 1 for n e J,

K(x, j;) = 0 for any other pair (x, y) .

Let r=l on 7. Then N = {X9 7, K, r} is an infinite network. Let α be a non-
negative number and let tn be the greatest integer less than or equal to nα. If
α = 0, then tn = 1 for all n and N is the network given in Example 4.1. In this case
ind N = 1 . Next let α > 0. Consider an exhaustion { < Xn, Yn>} of N defined by

Xn = {Xj'J = 1, 2,..., n

y = ίvί 7') vίc/) v^ 7 = 1 2 n)*n — l/l 5 / 2 >•••> stj J 7 — i, z,,..., ft/ .

Then μ<,p) = ίπ (cf. Lemma 4.2) and

Σ [μ ]̂1"̂  Σ nα(1- f l ) = oo
w = l w = l

if 1 < q ̂  1 -f 1/α. Therefore N is of parabolic type of order p ̂  α + 1 . We con-
sider the case where l<p<α + l. Define WeL(Y) by PF(/1

1)) = 1 and

) = (nα - 1) l ~q for n ̂  2.

Since f̂ > 1 + 1/α, we have

H (W) = 1+ Σ ίw(nα-l)p(1"€) ^ 1+ Σ n*(n*-l)~q < oo.
F «=2 /ι=2

Let A = {XJ} and βeQ^^. There exists an n such that Zn—Yn— 7w_1c=β, so
that

ΣJW1 = Σ
Q Zn

for n^2. Therefore PΓeE^Q^^). Thus N is of hyperbolic type of order p,
!</?<α+l. Namely indN = α + l.

Next we consider the case where tn = 2n. Define WeL(Y) by

) = 2M( ! -4) for n e J.

Then we can prove in the same way as above that WeEjf(Q,4>00) with A = {xl},
so that N is of hyperbolic type of order p for all p9 l<p<oo. Clearly N is of
parabolic type of order oo. Thus ind N= oo.

EXAMPLE 5.2. Let X= U Cn and 7= u ZM, where CB={xj" ); i = l,
ιι=0 n=l
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2,..., 2"} and Z l l={^{ li); ί=l, 2,. ..,2"}. For each neJ, we define

K(x(i»\ yP) = 1 for / = 1, 2,..., 2",

= χ(jcj.-ι), /2»?-1+l) = -1 for / = 1, 2, ...,2"-'.

For any other pair (x, j), we set K(x, y) = 0. Let {rπ; M 6 J} be a set of positive
numbers and define reL(7) by r(y) = rn on ZM for each neJ. Then JV = {X,
7, K, r} is an infinite network which may be called a binary tree stemmed from
x(!0). Let l<p<oo. We shall prove that N is of parabolic type of order p

if and only if f) 2w(1-«)r,J=oo. Define weL(Y) by wOO = 2-Λ on Zπ (neJ).
Λ = l

Then w is a flow from A = {x{0)} to the ideal boundary oo of N such that /κ(w)

= 1 and

Hq(w)= Σ r. Σ |H<y)|f = Σ2" ( 1^)rM.
ιι=l Z n n=l

Therefore the "only if" part follows from Theorem 4.3. On the other hand,
consider an exhaustion { < Xn, Yn>} of N defined by

Xn = ΰ Cj and Yn = ΰ Z7 .j=o 7=1

Then we have μ^) = 2M(rπ)
1-p and

Σ lμ(

n

p)Y-q= Σ2"(1-q}rn,n-\ n=l

so that the "if" part follows from Corollary 1 of Theorem 4.1.
Now we can calculate indΛf for several choices of {rπ;neJ}. In case

rπ=l for all neJ, indN=oo. Let α be a positive number. In case rn = 2n/Λ

for neJ, ind J/V = α+l and N is of parabolic type of order indN. In case rn

= n~22"/α for w e J, indN = α+l and N is of hyperbolic type of order ind N.
In case rn = 2"2 for neJ, indN=l .
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