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Introduction

We shall classify in this paper a set of infinite networks into parabolic net-
works and hyperbolic networks of order p.

More precisely, let N={X, Y, K, r} be an infinite network which is connected
and locally finite and which has no self-loop, let D®)(N) be the set of all real
functions on X with finite Dirichlet integrals D,(u) of order p (1<p=o0) and let
Ly(X) be the set of all real functions on X with finite supports. We say that N
is of parabolic type of order p if there exists a nonempty finite subset 4 of X
such that the value d (A4, o) of the following extremum problem () on N relative
to A and the ideal boundary oo of N vanishes:

(%) Find d, (A4, ©0) = inf{D,(u); ueLy(X) and u = 1 on A4}.

We say that N is of hyperbolic type of order p if it is not of parabolic type of
order p.

We shall prove in § 3 that N is of parabolic type of order p (1 <p<o0) if and
only if any one of the following conditions is fulfilled: (C. 1) 1e DY (N), (C. 2)
D®(N)=D{(N), where D (N) is the closure of Ly(X) in D(N) with
respect to the norm |lu|,=[D,(u)+ |u(x,)[’]*/? (xo € X). Some practical criteria
which assure that the network is of parabolic type of order p will be given in §4
by means of some results in [4] and [6] concerning the extremal length of an
infinite network.

In case p=2, this classification problem, which was partially studied by C.
Blanc [2], is very analogous to the classification problem of Riemann surfaces
(see for instance [1], [3] and [5]).

It will be shown in §5 that if N is of parabolic type of order p, and if 1<
P1<D,, then N is of parabolic type of order p,. By this fact, we define a parabolic
index ind N of N as the infimum of p>1 for which N is of parabolic type of
order p. Some geometric meaning of ind N will be shown by two examples.

§1. Some definitions related to an infinite network

Let X and Y be countable (infinite) sets and K be a function on X x Y satisfy-
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ing the following conditions:

(1.1) The range of K is {—1, 0, 1}.

(1.2) For each yeY, e(y)={xe X; K(x, y)#0} consists of exactly two points
Xy, X, and K(x;, y)K(x,, y)=—1.

(1.3) Foreach xeX, Y(x)={yeY; K(x, y)#0} is a nonempty finite set.

(1.4) For any x, x'€ X, there are x,...,x,€X and y,,..., y,+; € Y such that
e(yp)={xj_y, x;}, j=1,...,n+1 with xo=x and x,,,=x".

Let r be a strictly positive function on Y. Then N={X, Y, K, r} is called
an infinite network.

Let X’ and Y’ be subsets of X and Y respectively and let K’ and r’ be the
restrictions of K and r onto X'x Y’ and Y’ respectively. Then N'={X’, Y’,
K’, '} is called a subnetwork of the network N if conditions (1.2)-(1.4) are
fulfilled replacing X, Y and K by X', Y’ and K’ respectively. Let us put for
simplicity <X’, Y'>=N’. Incase X’ (or Y’) is a finite set, <X’, Y'> is a finite
subnetwork.

A sequence {<X,, Y, >} of finite subnetworks of N is called an exhaustion
of Nif X= U X,, Y= U Y, and Y(x)<Y,,, forall xe X,,.

For a subset A of X denote by &, the characteristic function of A4, i.e., &4(x)
=1if xe A and g,(x)=0 if xe X —A. Throughout this paper, let 1 <p=<o0 and
I/p+1/g=1(1<p<x).

§2. Functional spaces on an infinite network

Denote by L(X) the set of all real functions on X. For u € L(X), its support
Su and its Dirichlet integral D, (u) of order p are defined by

Su={xeX; u(x) # 0},
Dyw) = 3 r()'~"| %, K(x, Yu(lf (1 <p <),
D (u) = sup r)7H 2 KCe yu)l.
Let us put
Ly(X) = {ue L(X); Su is a finite set},
DP(N) = {ue L(X); D,(u) < ©}.
For a nonempty subset 4 of X, we set
D?(N; A) = {ue DP(N); u =0 on A},
LX) ={ueLy(X); u=00n A4}.
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Note that DP(N; A) (1<p<o0) is a reflexive Banach space with respect to the
norm [D,(u)]!/? (cf. [4]) and that D()(N; A) is a Banach space with respect
to the norm D, (u). Denote by DYP(N; A) the closure of L&(X) in DP(N;
A) with respect to the above norm.

Let xo € X be fixed. We define |lul|, by

2.1 lull, = [Dp(w) + u(x)IP1? (1 < p < ),
(2.2) lull o = Do)+ u(xo)l .
By the same reasoning as in the proof of Lemma 1 in [6], we can prove

LEMMA 2.1. For every finite subset F of X, there exists a constant M(F)
such that

XZE:FIM(X)I < M(F)|ull,
for all ue DP(N).

CoROLLARY. If u,, ueD(N) and |u—u,|,»0 as n—ooo, then {u,}
converges pointwise to u, i.e., u,(x)—u(x) as n—>oo for each xe X.
We can prove by a standard argument

ProposITION 2.1. DP(N) is a Banach space with respect to the norm
lull,. Moreover D'P(N) (1<p<c0) is reflexive.

Denote by DJ’(N) the closure of Ly(X) in D®(N) with respect to the
norm ||ul|,, i.e., u e DP'(N) if and only if there is a sequence {f,} in Lo(X) such
that ||u—f,||,—0 as n—oo.

LEMMA 2.2. For a nonempty finite subset A of X, DY (N; A)=DP(N;
A) 1 DP(N).

ProoF. Clearly D{P)(N; A)cD®P(N; A)nDYP(N). Let ueDP(N; A)n
DY (N). We can find a sequence {f,} in Lo(X) such that |u—f,[,~0 as
n—-oo. Then f,(x)-»0 as n—oo for each xed by Lemma 2.1. Define g,
e L(X) by g,=0 on 4 and g,=f, on X—A. Then g,e L§(X) and ||g,—f,ll,—0
as n—oo, since A is a finite set. Therefore |u—g,l|,—0 as n—oo, and hence
ueDP(N; A). Thus DP(N; A) nDP(N)=DP(N; A).

REMARK 2.1. Let ae X and denote by D{(N, a) the closure of Ly(X)
with respect to the norm which is defined by (2.1) and (2.2) replacing x, by a.
Then DP(N, a)=DF(N).

We shall call a function T on the real line R into itself a normal contraction
of R if TO=0 and |Tx, — Tx,|=<|x;—x,| for any x;, x, € R. Define Tu € L(X)
for u € L(X) by (Tu) (x) = Tu(x).
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We can easily prove

LemMa 2.3. Let T be a normal contraction of R and ue DP(N). Then
Tu e DP(N), D(Tu)<D,(u) and | Tu||,<|ul,.
We shall use the following normal contractions:

T®x = max(x,0) and T )x = max(—x, 0).

§3. Classification of infinite networks

For a nonempty finite subset 4 of X, let us consider the following extremum
problem relative to the ideal boundary co of N:

Find d,(A4, o) = inf{D,(u); ue Ly(X) and u = 1 on A}.
First we shall prove

THEOREM 3.1. Let A be a nonempty finite subset of X. Then d (A, 00)=0
if and only if 1 e DYX(N).

PROOF. Assume that d (A4, ©)=0. Then there exists a sequence {u,}
in Lo(X) such that u,=1 on A and D,(u,)—0 as n—oo. Since |lu,—u,(xo)[,—0
as n—o0, we see by Proposition 2.1 and the corollary of Lemma 2.1 that {u,}
converges pointwise to 1. Therefore |u,—1],-0 as n—oo, ie., 1eD{(N).
Next we assume that 1 e DP)(N). There is a sequence {f,} in Ly(X) such that
I1—f,1,—0 as n—»>oo. Notice that {f,} converges pointwise to 1 and D,(f,)—0
as n—oo. Define g,e L(X) by g,=10n Aand g,=f, on X—A. Then g,€ Ly(X)
and ||g,—f,ll,~0 as n—oo, since 4 is a finite set. Therefore D,(g,—f,)—0 as
n—o0, and hence D,(g,)—0 as n—co. Since d,(4, ) <D, (g,), we conclude that
d (A, 0)=0.

CoROLLARY. Let A and A’ be nonempty finite subsets of X. Then d, (A,
00)=0 if and only if d (A’, ©)=0.

On account of this result, we can classify the set of all infinite networks as
follows:

DErFINITION 3.1. We say that an infinite network N={X, Y, K, r} is of
parabolic type of order p if there exists a nonempty finite subset A of X such
that d (A4, ©0)=0. We say that N is of hyperbolic type of order p if it is not of
parabolic type of order p, i.e., d, (A4, ©0)>0 for any nonempty finite subset 4 of
X.

We prepare

LeEMMA 3.1. Let 1<p<oco and let ueD”(N) be non-negative. If
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{v,} is a sequence in DP(N) such that v,=0 on X, {v,} converges pointwise to
o and D,(v,)—0 as n— oo, then [u—min(u, v,)|,-0 as n—oo.

Proor. Let us put u,=min(u, v,), B,={xeX; u(x)>v,(x)} and V,=
U{Y(x); xe B,}. Notice that for every finite subset F of Y, there exists n,
such that F< Y-V, for all n=n,, since v,(x)—> 00 as n—»oo for every xe X. If
ye Y-V, then

T KGx, D0 =1,()] = 0.
If ye V, and e(y)={a, b}, then
|2 K(x, p)[ux)—u,(x)]| = [{u(a)—uy(a)} — {u(b) —u,(b)}]

=< Ju(a) —u(b)l + |v,(a) —v,(b)] .

Thus we have

Dyu—u,) =3 r(»)'~F X K(x, y)lux)—u,(x)]I°

yeVy,

S 277 1Dy(v)+2771 3 r(y)! 7P X K(x, y)u(x)]? >0
yeV, xeX
as n—oo. Since {u,} converges pointwise to u, we conclude that |u—u,|,— o0
as n—oco.
Now we shall prove

THEOREM 3.2. Let l<p<oo. An infinite network N is of parabolic type
of order p if and only if any one of the following conditions is fulfilled:

(C. 1) 1eDYP(N).
(C.2) DP(N) = DP(N).

Proor. On account of Theorem 3.1, we have only to prove that (C.1)
implies (C.2). Assume that 1eD{’(N). Then we can find a sequence {f,}
in Lo(X) such that |1 —f,||,<1/n? for all n. By Lemma 2.3, we may assume that
f:=z0on X. Putv,=nf,. Then v,20 on X, v,(x)>00 as n—>oo for every xe X
and D,(v,)=n?D,(f,)<1/n?—0 as n—co. For any ueDP(N) which is non-
negative, ||u —min (u, v,)||,—0 as n— oo by Lemma 3.1. Since min (u, v,) € Lo(X),
ueDP(N). By Lemma 2.3, every ueDP(N) belongs to DY’ (N). There-
fore DP(N)=DP(N).

COROLLARY. Let 1<p<oo and let A be a nonempty finite subset of X.
An infinite network N is of parabolic type of order p if and only if any one of the
following conditions is fulfilled:
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(C.3) ex-4€DPN; A).
(C.4) DY(N; 4) = DP(N; 4).

Proor. (C.2) implies (C. 4) by Lemma 2.2. Clearly (C. 4) implies (C. 3).
Assume that (C.3) holds. Since ¢, e DP’(N), we have 1=¢y_,+¢&, € DY(N).
Namely (C. 1) holds. Our corollary is thus proved.

REMARK 3.1. In case p=oo, (C. 1) does not imply (C. 2) in general. This
will be shown by Example 4.1 in the next section.

§4. Practical criteria

In order to obtain some practical criteria which assure that N is of parabolic
type of order p, we recall the extremal distance and the extremal width of an infinite
network studied in [4] and [6].

Denote by L(Y) the set of all real functions on Y. For we L(Y), its energy
H ,(w) of order p is defined by

H,(w) = ygyr(y)IW(y)I” (I <p<w),

H (w) = sup{|w(y)l; ye Y}.

Denote by L,(Y; r) the set of all we L(Y) such that H (w)<co and by Lj(Y; r)
the subset of L,(Y; r) which consists of non-negative functions.

For a nonempty finite subset 4 of X, denote by P, ., the set of all paths from
A to the ideal boundary oo of N and by Q, ,, the set of all cuts between 4 and o
(cf. [4] for definitions).

The extremal distance EL,(A, o) of order p of N relative to 4 and oo is
defined by

EL,(A, 00)™! = inf {H,(W); We E,(P, )},

where E, (P, ,)={WeL;(Y;r); Zr(y)W(y)=1 for all PeP, ,}. The extremal
P
width EW,(A4, o) of order p (1<p< ) of N relative to A and oo is defined by

EWp(A, Oo)_l = lnf{Hp(W), We E:(QA,CD)} H
where E¥(Q 4. )={WeLiY; r); % W(y)y-tz1forall QeQ, ,}.

We proved in [4] the following three lemmas:
LeEmMA 4.1. EL, (A, 0)=[EW,(A, c0)]' 7 (1<p<0).

LEMMA 4.2. Let1<p<oo and let {<X,, Y,>} be an exhaustion of N such
that Ac X, and put
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ﬂf'l’) =>rW'? with Z,=Y,-Y,_, (Yo=4¢).

yeZn
Then EL,(A4, )"~ 3 [u{P]'-".
n=1

LEMMA 43. Let 1<p<oo. For any path PeP, ., EL,(A, ©) <[
P
r(»1- 1.
We shall prove

Lemma 4.4, EL (A, oo)=inf{PZr(y); PeP, .}

Proor. Let us put f=inf{3 r(y); PeP, ,}. Then f>0. For any We
P
E, P, ,) and PeP, .,

LS SrOWO) S Ha(WTH0),

so that EL (A4, ©)=<3>r(y). Thus EL_ (A, 0)<p. On the other hand, for
P

any t with 0<t<p, define We L(Y) by W(y)=1/t on Y. Then WeE (P, )
and EL (A, o0)"'<H  (W)=1/t. By the arbitrariness of ¢, we have S EL (A,
0).

LEMMA 4.5. d,(A, 00)=EL,(A, c©)~! for all p, 1<p< 0.

Proor. Let {<X,, Y,>} be an exhaustion of N such that A= X,. The
extremal distance EL,(A, X — X,) of order p of N relative to 4 and X — X, is de-
fined by

EL(A, X=X, ' = inf{H,(W); WeE, (P, x_x)}>

where E, (P, x_x,) is defined as above replacing P, ,, by the set P, y_y of all
paths from A4 to X —X,. First we consider the case where 1<p<oo. We have
EL, (A, X—X,)—»EL,A, ) as n—oo by Theorem 2.2 in [4] and

EL (A, X—X,)"! =inf{D,(u); ueD”(N; A)and u =1 on X —X,}
= inf{D,(u); ue DP(N; X—X,) and u = 1 on A4}

by Theorem 2.1 in [4]. It follows that d,(4, ©0)=EL,(A4, ©)~! if 1<p<oco.
Since the proofs of Theorems 2.1 and 2.2 in [4] are still effective in the case where
p= oo, we can similarly prove d (A4, o0o)=EL (A4, o) !.

On account of Lemmas 4.1 and 4.5, we obtain

THEOREM 4.1. Let 1<p<oo and let A be a nonempty finite subset of X.
An infinite network N is of parabolic type of order p if and only if any one of the
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following conditions is fulfilled:

(C.5) EL,(A, ) =

(C. 6) EW,(A, ©) =0, i.e., E}Q,, ) = ¢.
By this theorem and Lemma 4.2, we have

COROLLARY 1. Let 1<p<oo. If there exists an exhaustion {<X,, Y,>}
of N such that i [P -9=c0 (¢f. Lemma 4.2), then N is of parabolic type
n=1

of order p.
By this theorem and the definition of E}(Q, ), we have

COROLLARY 2. If N is of parabolic type of order p (1<p<), then
inf {3 W(y)*"1; Q€Q, .} =0 for every We L}(Y; r) and every nonempty finite

[’}
subset A of X.
On account of Lemmas 4.4 and 4.5, we obtain

THEOREM 4.2. An infinite network N is of parabolic type of order oo if and
only if there exists a nonempty finite subset A of X such that Y r(y)=oo for all
P

PeP,, ..
By this theorem and Lemma 4.3, we have

COROLLARY. If N is of hyperbolic type of order oo, then N is of hyperbo-
lic type of order p for all p>1.

We say that N is totally hyperbolic if it is of hyperbolic type of order co.

In order to obtain another practical criterion, we consider the set F(A, o)
of flows from a nonempty finite subset A of X to the ideal boundary oo of N:
we F(A, o) if and only if we L(Y) and ZK(x, y»w(y)=0 for all xe X—A.

For we F(A, o), we define the strength I A(w) of w by
Lw)=-% % K(x, y)w(y).
xeA yeY
We shall prove

THEOREM 4.3. Let 1<p<oo. If there exists we F(A, o) such that I ,(w)
=1 and H,(w)< oo, then N is of hyperbolic type of order p.

PrOOF. Put W(y)=|w(y)|!/»~D. For any Q€Q, , such that Q=0(4)©
Q(o0) (see [4]), define uy e L(X) by ug=1 on Q(4) and uy=0 on Q(c0). Since
ug € Lo(X), we have

~1= 3 3K )w0) = 5 ug(x) 3, KCx, y)wy)

xed yeY
= 2 W(y) Z K(x’ y)uQ(x)’
yeY xeX
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so that
1= 3 w2 K(x, nug(x)l =2 W(p)P-'.
yeY xeX Q

Since H(W)=H,(w)<oo, we conclude that WeE}(Q, ). Therefore N is
of hyperbolic type of order p.
Finally we shall prove Remark 3.1 by

ExaMPLE 4.1. Denote by J the set of all positive integers. Let us take
X ={x,;nel}, Y={y,;nel},
K(x,, yo) = =1, K(x,41, ) =1 forall neJ,
K(x, ) =0 for any other pair (x, y).

Let r=1o0n Y. Then N={X, Y, K, r} is an infinite network. It follows from
Corollary 1 of Theorem 4.1 and Theorem 4.2 that N is of parabolic type of
order p, 1<p<oo. By Theorem 3.1, 1eDJ)(N). We show that D{(N)
#D@X(N). In fact, let xo=x, and consider u € L(X) defined by u(x,)=n for
all neJ. Then |ul,=2 and ueD™(N). For any feLyX), |u—f|lo=
D (u—f)=1, so that u¢ D{(N).

§5. A parabolic index of an infinite network

THEOREM 5.1. Let 1<p,<p,. If N is of hyperbolic type of order p,, then
N is of hyperbolic type of order p,.

PrOOF. Assume that N is of hyperbolic type of order p,. In case p,=o0,
our theorem follows from the corollary of Theorem 4.2. Let p,<oo and let 4
be a nonempty finite subset of X. Then there exists We E},(Q,, ) by Theorem
4.1. Since min(W, 1) belongs to E},(Q, ), we may suppose that W(y)=<1
on Y. Let W'=WP2?r, Then W'eL}(Y;r) and (W')P1~1=WP2-P2/P1>
WP2~1 on Y, and hence W' e E} (Q, ). Therefore N is of hyperbolic type of
order p;,.

On account of Theorem 5.1, we can define a parabolic index ind N of an
infinite network N which is not totally hyperbolic by

ind N = inf{p > 1; N is of parabolic type of order p}.

A geometric meaning of ind N may be seen by the following examples:

ExampLE 5.1. Let {t,} be a sequence of positive integers and denote by
J the set of all positive integers. Let us take
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X ={x,;nel}, Y={ym y», ., y"; nel},
K(x,, y{") == K(x,, y") = =1  for nelJ,
K(Xps1, Y) = o= K(X,1, i) =1 for nel,
K(x, y)=0 for any other pair (x, y).

Let r=1o0on Y. Then N={X, Y, K, r} is an infinite network. Let a be a non-
negative number and let ¢, be the greatest integer less than or equal to n*. If
a=0, then t,=1 for all n and N is the network given in Example 4.1. In this case
ind N=1. Nextlet x>0. Consider an exhaustion {<X,, Y,>} of N defined by

X,={x;;j=12,.,n+1},
Y, =, vy, ¥y =1,2,...,n}.

Then u{P =t, (cf. Lemma 4.2) and
f [ﬂgp)]l—q > f ne(1-9 —
n=1 n=1

if 1<g=<1+1/a. Therefore N is of parabolic type of order p=a+1. We con-
sider the case where 1<p<a+1. Define We L(Y) by W(y{!’)=1 and

W) == W) =m*—=1)'"*  for nz2.
Since ¢>1+1/a, we have

H (W) =1+ 3 t,(n*— 1?19 < 14+ ¥ ne(n*—1)7 < o.
n=2 n=2

Let A={x,} and QeQ, . There exists an n such that Z,=Y,—Y,_,<Q, so
that

Wtz Z W)yt =m =17, 2 1

Q Z'l
for n=2. Therefore We E¥(Q,,.,)- Thus N is of hyperbolic type of order p,

I<p<a+1. Namely ind N=a+1.
Next we consider the case where t,=2". Define We L(Y) by

W(ym) =.= W(ym) = 2n(1-9 for nel.

Then we can prove in the same way as above that We E¥(Q,,,) with A={x,},
so that N is of hyperbolic type of order p for all p, 1<p<oo. Clearly N is of
parabolic type of order co. Thus ind N=o0.

Exampre 52. Let X= U C, and Y= U Z, where C,={x{";i=1,
n=0 n=1
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2" and Z,={y{"; i=1, 2,...,2"}. For each neJ, we define
K(x{m, y(m) =1 for i=1,2,.,2"
Km0, yim) = K(x{=, yoiy) = =1 for i=1,2,.,2m1.

For any other pair (x, y), we set K(x, y)=0. Let {r,; neJ} be a set of positive
numbers and define re L(Y) by r(y)=r, on Z, for each neJ. Then N={X,
Y, K, r} is an infinite network which may be called a binary tree stemmed from

x(®. Let 1< p<oo We shall prove that N is of parabolic type of order p

if and only if 22"(1 Dy, =c0. Define we L(Y) by w(y)=2"" on Z, (nel).

Then w is a flow from A={x{9} to the ideal boundary oo of N such that I ,(w)
=1 and

Hw =3 r, T wi)li= 3 271-0r,
n=1 Z, n=1

Therefore the ‘‘only if” part follows from Theorem 4.3. On the other hand,
consider an exhaustion {<X,, Y,>} of N defined by

X,= U0 C; and Y,= U Z,.
Then we have u'P =2"(r,)1? and
3 [P = 3 2nC-a)y
n=1 n=1

so that the ““if” part follows from Corollary 1 of Theorem 4.1.

Now we can calculate ind N for several choices of {r,; neJ}. In case
r,=1 for all neJ, ind N=co. Let a be a positive number. In case r,=2"
for neJ, ind N=a+1 and N is of parabolic type of order ind N. In case r,
=n~22"/* for neJ, ind N=a+1 and N is of hyperbolic type of order ind N.
In case r,=2"* for neJ, ind N=1.
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