Module Spectra over the Moore Spectrum

Shichirô OKA

(Received August 24, 1976)

Introduction

Let q be an odd integer and $M_q(=M)$ be the Moore spectrum of type Z_q . It is a ring spectrum with multiplication $m_M: M_q \wedge M_q \rightarrow M_q$ and unit $i: S \rightarrow M_q$ [1], where S is the sphere spectrum. A finite CW-spectrum X is called an M_q module spectrum if X is equipped with a left inverse $m_X: M_q \wedge X \rightarrow X$, which we call an M_q -action on X, of $i \wedge 1_X$. It is clear that X is an M_q -module spectrum if and only if $q1_X=0$ in [X, X]. When q is a prime, our M_q -module spectrum is just the Z_q -spectrum introduced by H. Toda [10].

The main purpose of this note is to investigate conditions under which an M_q -module spectrum is (non-)associative. Here an M_q -module spectrum (X, m_X) is called *associative* if $m_X(1_M \wedge m_X) = m_X(m_M \wedge 1_X)$. For an M_q -module spectrum X, the order r of 1_X is a divisor of q and the homology group $H_i(X)$ is a finite Z_r -module, and we shall obtain in §6 the following theorems on the associativity and on the non-associativity according as the case $q \neq \pm 3 \mod 9$ or (r, 3) = 1 and the case $q \equiv \pm 3 \mod 9$ and 3|r.

THEOREM 6.6. Let X be an M_q -module spectrum and in the case of $q \equiv \pm 3 \mod 9$ assume that the order of 1_X is relatively prime to 3. If X satisfies the following two conditions, then X admits an associative M_q -action.

(i) $#H_i(X)$ is relatively prime to $#H_{i-1}(X)$ and to $#H_{i-2}(X)$.

(ii) For any prime p, the p-component of $H_i(X)$ is free over the p-component of Z_q .

Here #G denotes the order of a finite group G. Furthermore we shall see that in the dual Postnikov system $\{X_i\}$ of $X(X_i$ is a subspectrum of X realizing $\sum_{j \le i} H_j(X)$ as its homology group) each X_i is also an associative M_q -module spectrum, (cf. Remark 6.7). We shall also construct, for every prime q > 3, an example which does not satisfy the condition (i) and has a unique M_q -action, which is not associative (Example 6.8).

THEOREM 6.3. Assume that $q \equiv \pm 3 \mod 9$. Let X be an M_q -module spectrum such that the order of 1_X is a multiple of 3. Then every M_q -action on X is not associative.

In §1, we shall study elementary properties of M_a -module spectra. In §2,

we shall define a derivation θ on $[X, Y]_*$ for M_q -module spectra X and Y (Definition 2.1), which is due to H. Toda [10], and consider M_q -maps. An M_q map is a map between M_q -module spectra which is compatible with M_q -actions (Definition 2.4). In § 3, we shall quote known results on the Moore spectrum. In particular, Toda's result [9] (Theorem 3.3) on the associativity of the ring spectrum M_q plays an important role in the later sections.

In §4, we shall explicitly construct an M_q -action on the mapping cone of an M_q -map (Theorem 4.3). Furthermore this M_q -action is admissible (Definition 4.1), i.e., compatible with the structure of the cofibering. We shall also obtain exact sequences of M_q -module spectra and M_q -maps derived as usual from a co-fibering (Theorem 4.5). In §5, we shall introduce an associator $a(m_X) \in [\Sigma^2 X, X]$, whose vanishing is equivalent to m_X being associative, and study several properties of the element $a(m_X)$. In §6, we shall prove the above theorems using the results of §5.

In §7, we shall be concerned with associative M_q -module spectra X and Y such that $[X, Y]_* \xrightarrow{\theta} [X, Y]_* \xrightarrow{\theta} [X, Y]_*$ is exact. In this case, the subgroup of $[X, Y]_*$ consisting of all M_q -maps is a direct summand (Theorem 7.5). We shall also consider a modification $\overline{\theta}$ of θ (Definition 7.6) so that the discussions hold for non-associative case (Theorem 7.7). In the final section, §8, we shall notice that the known results ([2], [4]) on the structure of the stable homotopy ring of the mod p^r Moore spectrum (p an odd prime, $p^r \neq 3$) also hold for the case $p^r = 3$ by making use of $\overline{\theta}$ instead of θ .

In this note, except for §4, we shall work in the stable homotopy category of finite CW-spectra. In §4 only, we shall distinguish between a map and its homotopy class.

§1. *M*-module spectra

We shall denote by S and $M = M_q$ the sphere spectrum $\{S^n, \varepsilon_n = 1\}$ and the Moore spectrum $\{S^n \cup_q e^{n+1}, \varepsilon_n = 1\}$ of type Z_q , respectively. Here q denotes always an odd integer >0 and the spectra handled in this note are suspension spectra $\{X_n, \varepsilon_n\}$ consisting of finite CW-complexes X_n and imbeddings $\varepsilon_n : \Sigma X_n \subset X_{n+1}$ such that $\Sigma X_n = X_{n+1}$ and $\varepsilon_n = 1$ for sufficiently large n; Σ being the suspension functor and $1 = 1_X$ being the identity map of X or its homotopy class. There is a cofiber sequence

(1.1)
$$S \xrightarrow{q} S \xrightarrow{i} M_{q} \xrightarrow{\pi} \Sigma S.$$

For any spectra X and Y, denote by [X, Y] the set of homotopy classes of maps $X \to Y$, and put $[X, Y]_k = [\Sigma^k X, Y]$ for $k \in Z([X, Y]_0 = [X, Y])$. Then the direct sum $[X, X]_* = \sum_k [X, X]_k$ forms a graded ring by the composition of maps.

PROPOSITION 1.1 ([10; Lemma 1.2]). The following four conditions are equivalent to each other.

- (i) $i \wedge 1_X \in [X, M \wedge X]_0$ has a left inverse $m_X \in [M \wedge X, X]_0$.
- (ii) $\pi \wedge 1_X \in [M \wedge X, X]_{-1}$ has a right inverse $n_X \in [X, M \wedge X]_1$.
- (iii) $q1_{X}=0$ in [X, X].
- (iv) $[X, X]_*$ is an algebra over the ring Z_q .

PROOF. From (1.1), we have the exact sequence

$$[M \land X, X] \xrightarrow{(i \land 1_X)^*} [X, X] \xrightarrow{\times q} [X, X],$$

and we see immediately that (i) is equivalent to (iii). Similarly, (ii) \Leftrightarrow (iii) is proved. Since 1_X is the unit of the ring $[X, X]_*$, (iv) is equivalent to (iii).

DEFINITION 1.2. A spectrum X which satisfies one of the above conditions is called an M_q - (or M-)module spectrum, and a left inverse m_X of $i \wedge 1_X$ is called an M_q - (or M-)action on X.

If X satisfies the condition (i) of above, then $M \wedge X$ is homotopy equivalent to a wedge $X \vee \Sigma X$, and hence there is a right inverse n_X of $\pi \wedge 1_X$ such that

$$(1.2) m_X n_X = 0$$

and

(1.3)
$$(i \wedge 1_X)m_X + n_X(\pi \wedge 1_X) = 1_{M \wedge X}.$$

Since $n'_X = ((i \wedge 1_X)m_X + n_X(\pi \wedge 1_X))n'_X = n_X(\pi \wedge 1_X)n'_X = n_X$ for another n'_X satisfying (1.2) and (1.3), such n_X is unique for m_X , (cf. [10; Remark 1.4]). Thus we have

(1.4) For any M-action m_X on X, there exists uniquely the right inverse n_X of $\pi \wedge 1_X$ satisfying (1.2) and (1.3).

We shall write (X, m_X, n_X) (or simply (X, m_X)), when X is an M-module spectrum with the M-action m_X and the right inverse n_X of $\pi \wedge 1_X$ corresponding to m_X in the sense of (1.4).

For the wedge sum and the smash product of M-module spectra, the following are easily verified.

(1.5) Let (X, m_X, n_X) and (Y, m_Y, n_Y) be M-module spectra. Then $X \lor Y$ is an M-module spectra equipped with $m_{X \lor Y} = m_X \lor m_Y$ and $n_{X \lor Y} = n_X \lor n_Y$ via the

identification $M \land (X \lor Y) = (M \land X) \lor (M \land Y)$. (1.6) ([10; (2.2)]) Let (X, m_X, n_X) be any M-module spectrum and Y be arbitrary finite CW-spectrum. Then

$$(X \land Y, m_X \land 1_Y, n_X \land 1_Y),$$

$$(Y \land X, (1_Y \land m_X)(T \land 1_X), (T^{-1} \land 1_X)(1_Y \land n_X))$$

are M-module spectra, where $T: M \wedge Y \rightarrow Y \wedge M$ is the switching map. In particular, via the identification $M \wedge \Sigma^t X = \Sigma^t (M \wedge X)$, $(\Sigma^t X, \Sigma^t m_X, \Sigma^t n_X)$ is an M-module spectrum for $t \in \mathbb{Z}$.

When both X and Y are M-module spectra, we can consider the two Mactions $m_X \wedge 1_Y$ and $(1_X \wedge m_Y)(T \wedge 1_Y)$ on $X \wedge Y$.

THEOREM 1.3. Let X be an M-module spectrum. Then, for any M-actions m_X and m'_X , there is uniquely an element $d(m_X, m'_X) \in [X, X]_1$ such that

(1.7)
$$m_{\chi} = m'_{\chi} + d(m_{\chi}, m'_{\chi})(\pi \wedge 1_{\chi}).$$

The correspondence $m'_X \mapsto d(m_X, m'_X)$ gives a bijection between the set of all Mactions on X and $[X, X]_1$. If n_X and n'_X are the right inverse of $\pi \wedge 1_X$ corresponding to m_X and m'_X in the sense of (1.4), then

$$(1.7)' n_X = n'_X - (i \wedge 1_X) d(m_X, m'_X).$$

PROOF. For any finite *CW*-spectrum *Y*, we have the following (split) exact sequences:

$$0 \longrightarrow [Y, X]_{k} \xrightarrow{(i \wedge 1_{X})^{*}} [Y, M \wedge X]_{k} \xrightarrow{(\pi \wedge 1_{X})^{*}} [Y, X]_{k-1} \longrightarrow 0,$$

$$0 \longrightarrow [X, Y]_{k+1} \xrightarrow{(\pi \wedge 1_{X})^{*}} [M \wedge X, Y]_{k} \xrightarrow{(i \wedge 1_{X})^{*}} [X, Y]_{k} \longrightarrow 0.$$

Then $m_X = m'_X + d(\pi \wedge 1_X)$ and $n_X = n'_X + (i \wedge 1_X)d'$ for unique d and d'. By (1.2) and easy calculations, we have d + d' = 0 and so (1.7) and (1.7)'. For any m_X and any $d \in [X, X]_1$, $m_X + d(\pi \wedge 1_X)$ is also an M-action, and hence the correspondence $m'_X \mapsto d(m_X, m'_X)$ is bijective.

REMARK. If Y is an M-module spectrum, then the exact sequences in the above proof are also split for arbitrary X. In fact, the correspondences

$$[Y, X]_{k-1} \ni f \mapsto (-1)^{k-1} (1_M \wedge f) n_Y \in [Y, M \wedge X]_k,$$

$$[X, Y]_k \ni f \mapsto m_Y (1_M \wedge f) \in [M \wedge X, Y]_k$$

give the desired splittings.

LEMMA 1.4. Let X be an M-module spectrum such that 1_X is of order q. Then $\tilde{H}_*(X; Z_p) \neq 0$ for any prime p|q, and $\tilde{H}_*(X; Z_p) = 0$ for any prime $p \nmid q$.

PROOF. The assumption asserts that the stable order of X in the sense of [8] is q. Then q divides the square of the order of $\tilde{H}_*(X; Z)$ by [8; Th. 1.5]. Hence, for p|q, $\tilde{H}_*(X; Z)$ has p-torsion and $\tilde{H}_*(X; Z_p) \neq 0$. If $p \not\mid q$, p_{1_X} is a homotopy equivalence and induces an automorphism of $\tilde{H}_*(X; Z)$. So $\tilde{H}_*(X; Z_p) = 0$.

§ 2. Derivation θ and *M*-maps

We shall define a derivation on $[X, Y]_*$. This is due essentially to H. Toda [10], though its root goes back to P. Hoffman's D [2].

DEFINITION 2.1. Let (X, m_X) and (Y, m_Y) be *M*-module spectra. Then we define

$$\theta = \theta_{m_X, m_Y} \colon [X, Y]_k \longrightarrow [X, Y]_{k+1}$$

by the formula

$$\theta(f) = m_{\mathbf{X}}(1_{\mathbf{M}} \wedge f)n_{\mathbf{X}},$$

where n_X is the right inverse of $\pi \wedge 1_X$ corresponding to m_X .

For the *M*-actions on the wedge sum and the smash product defined in (1.5-1.6), the following hold easily.

(2.1) $\theta_{m_X \vee m_V, m_Y \vee m_W}(f \vee g) = \theta_{m_X, m_Y}(f) \vee \theta_{m_V, m_W}(g)$

for $f \in [X, Y]_*$, $g \in [V, W]_*$.

(2.2)
$$\theta_{m_Y \wedge 1_V, m_Y \wedge 1_W}(f \wedge g) = \theta_{m_X, m_Y}(f) \wedge g$$

for $f \in [X, Y]_*$, $g \in [V, W]_*$,

and a similar formula holds for the M-action defined from the second coordinate of the smash product.

THEOREM 2.2. Let m_X and m'_X be M-actions on X, and m_Y and m'_Y be M-actions on Y. Then

$$\theta_{m_X,m_Y}(f) = \theta_{m_X,m_Y}(f) - fd(m_X,m_X') + (-1)^k d(m_Y,m_Y')f$$

for any $f \in [X, Y]_k$.

PROOF. This follows immediately from (1.7) and (1.7)'.

THEOREM 2.3 ([10; Th. 2.2]). Let X, Y, Z be M-module spectra. Then, for any $f \in [X, Y]_k$ and $g \in [Y, Z]_l$, the following formula holds:

$$\theta(gf) = (-1)^k \theta(g) f + g\theta(f),$$

that is, the operation θ is derivative.

PROOF. This follows from (1.3) and easy calculations.

DEFINITION 2.4. Let (X, m_X) , (Y, m_Y) be *M*-module spectra. Then an element $f \in [X, Y]_k$ is called an *M*-map (with respect to m_X and m_Y) if it satisfies the equality $fm_X = m_Y(1_M \wedge f)$. Denote by

$[X, Y]_k^M$

the subgroup of $[X, Y]_k$ consisting of all *M*-maps.

If q is a prime, this definition agrees with H. Toda's Z_q -map [10; p. 207]. We see immediately that the composition of two M-maps is an M-map, so

(2.3) $[X, X]^M_*$ is a subring of $[X, X]_*$, and $[X, Y]^M_*$ is a right $[X, X]^M_*$ -, left $[Y, Y]^M_*$ -module.

PROPOSITION 2.5. Let X and Y be M-module spectra, and $f \in [X, Y]_k$. Then the following three statements are equivalent to each other.

- (i) f is an M-map.
- (ii) $(-1)^k n_Y f = (1_M \wedge f) n_X.$
- (iii) $\theta(f) = 0$.

PROOF. By (1.3), we have

$$m_{\mathbf{X}}(\mathbf{1}_{M} \wedge f) = fm_{\mathbf{X}} + \theta(f)(\pi \wedge \mathbf{1}_{X}),$$

$$(1_M \wedge f)n_X = (i \wedge 1_Y)\theta(f) + (-1)^k n_Y f.$$

Since $(\pi \wedge 1_X)^*$ and $(i \wedge 1_Y)_*$ are monomorphic, we obtain the proposition.

COROLLARY 2.6. Let X and Y be M-module spectra, and $f \in [X, Y]_k$. Denote simply by θ the derivation θ_{m_X,m_Y} for fixed M-actions m_X and m_Y . Then there exist M-actions m'_X on X and m'_Y on Y such that f is an M-map with respect to m'_X and m'_Y if and only if $\theta(f)$ lies in the image of $f_* + f^*: [X, X]_1 \oplus [Y, Y]_1$ $\rightarrow [X, Y]_{k+1}$.

PROOF. This is clear by Proposition 2.5 and Theorems 1.3 and 2.2.

§3. Moore spectrum

We denote the stable homotopy ring of sphere by

$$G_* = [S, S]_*.$$

From the known results on G_* , $* \leq k$, the group $[M, M]_*$, * < k, is easily computed by using exact sequences derived from (1.1) (cf. [4; Th. 3.5] and [11]), and we obtain the following

LEMMA 3.1. Let $M = M_q$ and p be the minimal prime dividing q. Then $[M, M]_k = 0$ for k < -1 and for 0 < k < 2p - 4, $[M, M]_{-1} = Z_q$ with the generator $\delta = i\pi$, $[M, M]_0 = Z_q$ with the generator 1_M , and $[M, M]_{2p-4} = Z_p$ with the generator $i\alpha_1(p)\pi$. Here $\alpha_1(p)$ is the generator of the p-component of G_{2p-3} .

From this lemma we can easily verify the following result, which is essentially due to S. Araki and H. Toda [1].

THEOREM 3.2. *M* is a ring spectrum with the unique multiplication m_M , i.e., there is uniquely the map $m_M: M \wedge M \to M$ such that $m_M(i \wedge 1_M) = 1_M = m_M(1_M \wedge i)$.

Also, *M* is an *M*-module spectrum with the unique *M*-action m_M of above. It is equipped with a right inverse n_M of $\pi \wedge 1_M$, which is unique and satisfies $(1_M \wedge \pi)n_M = -1_M$, (cf. [10; Lemma 1.3]).

Consider the element $\delta = i\pi \in [M, M]_{-1}$. Then we have

(3.1)
$$\delta^2 = 0, \quad \theta(\delta) = -1_M,$$

because $\delta^2 = i\pi i\pi = 0$ and $\theta(\delta) = m_M(1 \wedge i)(1 \wedge \pi)n_M = -1_M$.

The following (non-)associativity of m_M (and n_M) is proved by H. Toda ([9; p. 202], [10; § 6]).

THEOREM 3.3. In the case of $q \neq \pm 3 \mod 9$, m_M and n_M are associative, i.e.,

$$m_M(m_M \wedge 1_M) = m_M(1_M \wedge m_M),$$

$$(n_M \wedge 1_M)n_M = -(1_M \wedge n_M)n_M.$$

In the case of $q \equiv \pm 3 \mod 9$, these are not associative. More precisely, the following equalities hold:

$$m_{\mathcal{M}}(1_{\mathcal{M}} \wedge m_{\mathcal{M}}) = m_{\mathcal{M}}(m_{\mathcal{M}} \wedge 1_{\mathcal{M}}) + \varepsilon_{q}i\alpha_{1}(3)(\pi \wedge \pi \wedge \pi),$$

$$(1_{\mathcal{M}} \wedge n_{\mathcal{M}})n_{\mathcal{M}} = -(n_{\mathcal{M}} \wedge 1_{\mathcal{M}})n_{\mathcal{M}} + \varepsilon_{q}(i \wedge i \wedge i)\alpha_{1}(3)\pi,$$

where $\varepsilon_q = \pm 1$ and $\varepsilon_q \equiv q/3 \mod 3$, and we take the sign of the element $\alpha_1(3)$ so that $\varepsilon_3 \equiv 1 \mod 3^{(*)}$.

Now let r be a divisor of q, and denote by

$$(3.2) \qquad \lambda: M_r \longrightarrow M_q \quad \text{and} \quad \rho: M_q \longrightarrow M_r$$

the maps which induce the canonical monomorphism $Z_r \rightarrow Z_q$ and epimorphism $Z_q \rightarrow Z_r$ of homology groups, respectively. Then these maps satisfy (cf. [4; § 2])

(3.3)
$$\lambda i = (q/r)i, \quad \pi \lambda = \pi; \quad \rho i = i, \quad \pi \rho = (q/r)\pi.$$

(3.4)
$$\rho \lambda = (q/r) \mathbf{1}_{M_r}, \quad \lambda \rho = (q/r) \mathbf{1}_{M_q}.$$

PROPOSITION 3.4. Let r be a divisor of q, and (X, m_x, n_x) be an M_r -module spectrum. Put

$$(3.5) m_X(q) = m_X(\rho \wedge 1_X), \quad n_X(q) = (\lambda \wedge 1_X)n_X$$

Then X is the M_q -module spectrum having the M_q -action $m_x(q)$ and the right inverse $n_x(q)$ of $\pi \wedge 1_x$ corresponding to $m_x(q)$.

PROOF. By virtue of (3.3), $m_X(q)$ is a left inverse of $i \wedge 1_X$ and $n_X(q)$ is a right inverse of $\pi \wedge 1_X$. By (3.4), $m_X(q)n_X(q)=(q/r)m_Xn_X=0$. The equality (1.3) for $m_X(q)$ and $n_X(q)$ is obtained from the fact:

(3.6) Let m_x and n_x be arbitrary left inverse of $i \wedge 1_x$ and right inverse of $\pi \wedge 1_x$, respectively. Then (1.2) and (1.3) are equivalent.

PROPOSITION 3.5. Let r be a divisor of q. Let (X, m_x) and (Y, m_y) be M_r -module spectra. Then

$$\theta_{m_X(q),m_Y(q)}(f) = (q/r)\theta_{m_X,m_Y}(f)$$

for any $f \in [X, Y]_*$.

PROOF. This is immediate from (3.4) and (3.5).

COROLLARY 3.6. Let r be an integer such that $r^2|q$. Let (X, m_X) and (Y, m_Y) be M_r -module spectra. Then any map $f \in [X, Y]_*$ is an M_q -map with respect to the M_q -action (3.5).

PROOF. Since $r[X, Y]_* = 0$, this follows from Propositions 2.5 and 3.5.

^(*) Toda's result [9; §4] does not make mention of the sign ε_q depending on q. By [4; Lemma 2.1 (iv)], the map ρ in (3.2) is a morphism of ring spectra, and hence ε_q ≡ (q/3)³ε_s ≡ q/3 mod 3 for q ≡ 0 mod 3.

REMARK. More precise discussions show the following result: Let r and s be integers such that rs|q. Let X and Y be M_r - and M_s -module spectra. Then any map $f \in [X, Y]_*$ is an M_a -map with respect to the M_a -action (3.5).

Let G be a finite Z_q -module, i.e., a finite abelian group such that qx = 0 for any $x \in G$. Let M(G) be the Moore spectrum of type G. Then we have a decomposition $G = Z_{r_1} \oplus \cdots \oplus Z_{r_l}$ for some $r_i | q$, and hence $M(G) = M_{r_1} \vee \cdots \vee M_{r_l}$. In the same way as Lemma 3.1, we see $[M_r, M_s]_1 = 0$ for odd r and s, and so $[M(G), M(G)]_1 = 0$. Hence we have obtained the following

PROPOSITION 3.7. Let G be as above. Then M(G) has a unique M_q -action $m_1(q) \lor \cdots \lor m_i(q)$, where m_i is the multiplication $(M_{r_i}$ -action) on M_{r_i} . In particular, for any r|q, M_r has a unique M_q -action $m_{M_r}(q) = m_{M_r}(\rho \land 1_{M_r})$.

§4. Mapping cone

In this section only, we shall usually distinguish between a map and its homotopy class.

For any map $f: \Sigma^k X \to Y$, we shall denote by

(4.1)
$$\Sigma^{k} X \xrightarrow{f} Y \xrightarrow{i_{f}} C(f) \xrightarrow{\pi_{f}} \Sigma^{k+1} X$$

the cofiber sequence for the mapping cone C(f) of f.

DEFINITION 4.1. Let (X, m_X) and (Y, m_Y) be *M*-module spectra and $f: \Sigma^k X \to Y$ be any map. Assume that C(f) is also an *M*-module spectrum. Then an *M*-action m_c on C(f) is called *admissible* if i_f and π_f in (4.1) are the *M*-maps with respect to m_c .

We shall construct an admissible M-action on C(f) for any M-map f.

CONSTRUCTION 4.2. Let (X, m_X) and (Y, m_Y) be *M*-module spectra and $f: X \to Y$ be an *M*-map. We shall distinguish a map from its homotopy class. By the homotopy extension property for the pair $(M \land W, W)$, W = X, Y, we can take the map m_W so that $m_W(i \land 1_W)$ is equal to 1_W as a map. Let $F_t: M \land X \to Y$ be a homotopy from $F_0 = m_Y(1_M \land f)$ to $F_1 = fm_X$. Define a map

$$\tilde{m}_{\mathcal{C}} = \tilde{m}_{\mathcal{C}}(F_t) \colon M \land C(f) \longrightarrow C(f)$$

by $\tilde{m}_{C}(m \wedge y) = m_{Y}(m \wedge y)$ for $m \wedge y \in M \wedge Y \subset M \wedge C(f)$ and

$$\tilde{m}_{c}(m \wedge s \wedge x) = \begin{cases} F_{2s}(m \wedge x) & \text{if } 0 \leq s \leq 1/2, \\ (2s-1) \wedge m_{x}(m \wedge x) & \text{if } 1/2 \leq s \leq 1, \end{cases}$$

for $m \wedge s \wedge x \in M \wedge I \wedge X \subset M \wedge C(f)$, where I = [0, 1] with the base point 1 (so $I \wedge X$ is the cone CX over X). In the notation of [5; Lemma 2.5], $\tilde{m}_C = e(F_t)$ via the identification $C(1_M \wedge f) = M \wedge C(f)$. This map \tilde{m}_C satisfies $\tilde{m}_C(1_M \wedge i_f) = i_f m_Y$ and $\pi_f \tilde{m}_C \sim \Sigma m_X(1_M \wedge \pi_f)$, where \sim means "is homotopic to". Put $f_t = F_t(i \wedge 1_X): X \to X$. This is a homotopy from $f_0 = f$ to $f_1 = f$, and the map $e(f_t): C(f) \to C(f)$ constructed in the same way as above is a homotopy equivalence such that $\tilde{m}_C(i \wedge 1_{C(f)}) = e(f_t), e(f_t)i_f = i_f$ and $\pi_f e(f_t) \sim \pi_f$. Thus we obtain a map

$$m_{C} = m_{C}(F_{t}) \colon M \land C(f) \longrightarrow C(f)$$

by the formula $m_C = e(f_{1-t})\tilde{m}_C$.

THEOREM 4.3. The map m_c constructed above is an admissible M-action on C(f), namely, the mapping cone of any M-map has always an admissible M-action.

PROOF. Since $e(f_{1-t})$ is a homotopy inverse of $e(f_t)$ such that $e(f_{1-t})i_f = i_f$ and $\pi_f e(f_{1-t}) \sim \pi_f$, we have $m_C(i \wedge 1_{C(f)}) \sim 1_{C(f)}$, $m_C(1_M \wedge i_f) = i_f m_Y$ and $\pi_f m_C \sim \Sigma m_X(1_M \wedge \pi_f)$ as desired.

For any maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, we denote by

(4.2)
$$(1_Z, f) \colon C(gf) \longrightarrow C(g),$$
$$(g, 1_X) \colon C(f) \longrightarrow C(gf)$$

the maps defined by $(1_Z, f)|Z=1_Z$, $(1_Z, f)|CX=Cf$ and by $(g, 1_X)|Y=g$, $(g, 1_X)|CX=1_{CX}$. It is easy to see that $(1_Z, ff')=(1_Z, f)(1_Z, f')$ and $(g'g, 1_X)=(g', 1_X)(g, 1_X)$ for $f': W \to X$ and $g': Z \to U$.

THEOREM 4.4. Let X, Y and Z be M-module spectra, and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be M-maps. Then there exist admissible M-actions on C(f), C(g) and C(gf) such that the maps $(1_z, f)$ and $(g, 1_x)$ of (4.2) are M-maps.

PROOF. Let $F_t: M \wedge X \to Y$ and $G_t: M \wedge Y \to Z$ be homotopies with $F_0 = m_Y(1_M \wedge f)$, $F_1 = fm_X$ and $G_0 = m_Z(1_M \wedge g)$, $G_1 = gm_Y$. Define the homotopy $H_t: M \wedge X \to Z$ from $H_0 = m_Z(1_M \wedge gf)$ to $H_1 = gfm_X$ by

$$H_t = \begin{cases} G_{2t}(1_M \wedge f) & \text{for } 0 \leq t \leq 1/2, \\ gF_{2t-1} & \text{for } 1/2 \leq t \leq 1. \end{cases}$$

Then we shall prove that $m_c(F_t)$, $m_c(G_t)$ and $m_c(H_t)$ are the desired *M*-actions on C(f), C(g) and C(gf).

Define a homotopy $K_{\theta}: M \wedge C(gf) \rightarrow C(g)$ from $K_0 = (1, f)\tilde{m}_C(H_t)$ to K_1

$$= \tilde{m}_{\mathcal{C}}(G_t)(1_M \wedge (1, f))$$
 by

$$K_{\theta}(m \wedge z) = m_{Z}(m \wedge z),$$

$$K_{\theta}(m \wedge s \wedge x) = \begin{cases} G_{4s/(1+\theta)}(m \wedge f(x)) & \text{for } 0 \leq s \leq (1+\theta)/4, \\ gF_{4s-\theta-1}(m \wedge x) & \text{for } (1+\theta)/4 \leq s \leq 1/2, \\ (2s-1) \wedge F_{1-\theta}(m \wedge x) & \text{for } 1/2 \leq s \leq 1, \end{cases}$$

where $m \in M$, $z \in Z$, $s \in I$, $x \in X$. Then $k_{\theta} = K_{\theta}(i \wedge 1_{C(gf)})$ is a homotopy from $k_0 = (1, f)e(h_t)$ to $k_1 = e(g_t)(1, f)$, where $h_t = H_t(i \wedge 1_X)$ and $g_t = G_t(i \wedge 1_Y)$. Therefore $(1, f)m_c(H_t) \sim m_c(G_t)(1 \wedge (1, f))$, and (1, f) is an *M*-map.

Next define a homotopy $L_{\theta}: M \wedge C(f) \rightarrow C(gf)$ by

 $L_{\theta}(m \wedge y) = G_{\theta}(m \wedge y),$

$$L_{\theta}(m \wedge s \wedge x) = \begin{cases} G_{4s+\theta}(m \wedge f(x)) & \text{for } 0 \leq s \leq (1-\theta)/4, \\ gF_{(4s+\theta-1)/(1+\theta)}(m \wedge x) & \text{for } (1-\theta)/4 \leq s \leq 1/2, \\ (2s-1) \wedge m_X(m \wedge x) & \text{for } 1/2 \leq s \leq 1. \end{cases}$$

Then $L_0 = \tilde{m}_C(H_t)(1 \land (g, 1)), \quad L_1 = (g, 1)\tilde{m}_C(F_t), \quad L_0(i \land 1_{C(f)}) = e(h_t)(g, 1)$ and $L_1(i \land 1_{C(f)}) = (g, 1)e(f_t).$ Hence (g, 1) is also an M-map.

THEOREM 4.5. Let (X, m_X) and (Y, m_Y) be M-module spectra and $f: \Sigma^k X \to Y$ be an M-map. Then, with respect to any admissible M-action on C(f) in Construction 4.2, the following sequences are exact for any M-module spectrum (Z, m_Z) :

$$\cdots \longrightarrow [Z, X]_{j-k}^{M} \xrightarrow{f_{*}} [Z, Y]_{j}^{M} \xrightarrow{i_{f^{*}}} [Z, C(f)]_{j}^{M} \xrightarrow{\pi_{f^{*}}} [Z, X]_{j-k-1}^{M} \longrightarrow \cdots,$$
$$\cdots \longrightarrow [X, Z]_{j+k+1}^{M} \xrightarrow{\pi_{f}^{*}} [C(f), Z]_{j}^{M} \xrightarrow{i_{f}^{*}} [Y, Z]_{j}^{M} \xrightarrow{f_{*}} [X, Z]_{j+k}^{M} \longrightarrow \cdots.$$

To prove the theorem, we prepare the following

LEMMA 4.6. Let X and Y be M-module spectra and $f: X \to Y$ be an M-map with a homotopy $F_t: M \land X \to Y$ from $F_0 = m_Y(1_M \land f)$ to $F_1 = fm_X$. Assume that f is homotopic to the constant map. Then there are a retraction $r: C(f) \to Y$ and an inclusion $l: \Sigma X \to C(f)$ which are M-maps with respect to the M-action $m_C(F_t)$ on C(f).

PROOF. Let $f_t: X \to Y$ be a homotopy from $f_0 = f$ to $f_1 = *$. Then r is defined by r(y) = y for $y \in Y$, $r(t \land x) = f_t(x)$ for $t \land x \in I \land X = CX$. Since $I \times 0 \cup I \times 1$ $\cup 0 \times I$ is a retract of $I \times I$, we can construct a double homotopy $H_{s,t}: M \land X \to Y$, $(s, t) \in I \times I$, such that $H_{s,0} = m_Y(1_M \wedge f_s)$, $H_{s,1} = f_s m_X$ and $H_{0,t} = F_t$. Define a homotopy $K_{\theta}: M \wedge C(f) \to Y$ by

$$\begin{split} K_{\theta}(m \wedge y) &= m_{Y}(m \wedge y), \\ K_{\theta}(m \wedge t \wedge x) &= \begin{cases} F_{2\theta t}(m \wedge x) & \text{for } 0 \leq t \leq 1/2, \\ H_{2t-1,\theta}(m \wedge x) & \text{for } 1/2 \leq t \leq 1. \end{cases} \end{split}$$

Then K_0 is homotopic to $m_Y(1_M \wedge r)$ and $K_1 = r\tilde{m}_C(F_l)$. Therefore r is an M-map. The proof of l being an M-map is similar.

PROOF OF THEOREM 4.5. It suffices to show the theorem for the case j=k=0. We take an m_c on C(f) in Construction 4.2. Let g be any element in $[Z, X]_{-1}^M = [Z, \Sigma X]^M$ such that $f_*(g) = 0$. Then the composition

$$\bar{g} = (1, g)l: Z \longrightarrow C(fg) \longrightarrow C(f)$$

satisfies $\pi_{f*}(\bar{g}) = g$ and is an *M*-map by Theorem 3.4 and Lemma 3.6. This shows the exactness at $[Z, X]_{-1}^{M}$ in the first sequence. From the definition of $m_C = m_C(F_t)$, we can easily construct a homotopy P_t from $P_0 = m_X(1 \wedge \Sigma^{-1}\pi_f)$ to $P_1 = (\Sigma^{-1}\pi_f)m_C$ such that the *M*-action $m_C(P_t)$ on $Y = C(\Sigma^{-1}\pi_f)$ coincides with the original one m_Y . So we can replace (Y, m_Y) by $(C(\Sigma^{-1}\pi_f), m_C(P_t))$, and hence the exactness at $[Z, C(f)]_0^M$ follows from the same discussion as above. The exactness at $[Z, Y]_0^M$ is also the same. The proof for the second sequence is similar.

The following result is an improvement of the second half of [10; Lemma 2.3].

LEMMA 4.7. Let X be an M-module spectrum, and Y be a finite CWspectrum. Let $f: \Sigma^k X \to Y$ be a map such that C(f) is an M-module spectrum. If $[Y, X]_{-k} = 0$, then Y is also an M-module spectrum and there are M-actions m_X on X and m_Y on Y such that f is an M-map with respect to m_X and m_Y . Furthermore there is a homotopy from $m_Y(1_M \wedge f)$ to fm_X such that the M-action on C(f) given by Construction 4.2 using this homotopy coincides with the original one on C(f).

PROOF. From the assumption, $\pi_f^*: [X, X]_1 \to [C(f), X]_{-k}$ is an epimorphism. Hence $\theta(\pi_f)=0$ for suitable m_X by Corollary 2.6. (Here we notice that the *M*-action on C(f) is fixed). Since $Y = C(\Sigma^{-1}\pi_f)$, there is an m_Y on Y such that f and i_f are *M*-maps. The last statement on the *M*-action on C(f) is proved by a similar discussion to the proof of Theorem 4.5.

§5. Associator

In this section, we always consider the smash product $M \wedge X$ to be the *M*-module spectrum with the *M*-action $m_M \wedge 1_X$ even if X is also an *M*-module spectrum.

LEMMA 5.1. For any M-module spectrum (X, m_X, n_X) , there hold $\theta(i \wedge 1_X) = n_X$ and $\theta(\pi \wedge 1_X) = -m_X$.

PROOF. This is immediately obtained from $m_M(1_M \wedge i) = 1_M$ and $(1_M \wedge \pi)n_M = -1_M$.

The following result is originally proved by H. Toda [10; Prop. 2.1] under the assumption $[X, X]_1 = 0$.

THEOREM 5.2. For each M-action m_X on X, there exists uniquely an element $a(m_X) \in [X, X]_2$ such that

(5.1)
$$m_{X}(1_{M} \wedge m_{X}) = m_{X}(m_{M} \wedge 1_{X}) + a(m_{X})(\pi \wedge \pi \wedge 1_{X}),$$
$$(1_{M} \wedge n_{X})n_{X} = -(n_{M} \wedge 1_{X})n_{X} + (i \wedge i \wedge 1_{X})a(m_{X}).$$

PROOF. Operating θ to (1.2) and using Theorem 2.3, we have $\theta(m_X)n_X = m_X \theta(n_X)$. So we put

(5.2)
$$a(m_{\chi}) = \theta(m_{\chi})n_{\chi} = m_{\chi}\theta(n_{\chi}).$$

Since 1_x is clearly the M-map, $\theta(m_x(i \wedge 1_x)) = 0$ and $\theta((\pi \wedge 1_x)n_x) = 0$. So we have

(5.3)
$$\theta(m_{\chi}) = a(m_{\chi})(\pi \wedge 1_{\chi}), \quad \theta(n_{\chi}) = (i \wedge 1_{\chi})a(m_{\chi}),$$

by the above lemma and (1.3). By the definition of $\theta(m_x)$ and (1.3) for X = M, we have

$$a(m_X)(\pi \wedge \pi \wedge 1_X) = \theta(m_X)(\pi \wedge 1_M \wedge 1_X)$$

= $m_X(1_M \wedge m_X)(n_M \wedge 1_X)(\pi \wedge 1_M \wedge 1_X)$
= $m_X(1_M \wedge m_X) - m_X(1_M \wedge m_X)(i \wedge 1_M \wedge 1_X)(m_M \wedge 1_X)$
= $m_X(1_M \wedge m_X) - m_X(i \wedge 1_X)m_X(m_M \wedge 1_X)$
= $m_X(1_M \wedge m_X) - m_X(m_M \wedge 1_X)$.

Hence the first equality of (5.1) is obtained, and the second one is similarly obtained. Since $\pi \wedge \pi \wedge 1_X$ has a right inverse $(n_M \wedge 1_X)n_X$, $a(m_X)$ is unique.

DEFINITION 5.3. An *M*-module spectrum (X, m_X) (or an *M*-action m_X on *X*) is called *associative* if the equality $m_X(m_M \wedge 1_X) = m_X(1_M \wedge m_X)$ holds. The element $a(m_X)$ in the above theorem is called an *associator* of m_X .

Then (5.1) and (5.3) imply the following

PROPOSITION 5.4. The following five statements are equivalent to each other.

- (i) m_X is associative.
- (ii) m_X is an M-map.
- (iii) n_X is associative, i.e., $(n_M \wedge 1_X)n_X = -(1_M \wedge n_X)n_X$.
- (iv) n_X is an M-map.
- $(\mathbf{v}) \quad a(m_X) = 0.$

For the wedge sum and the smash product of (1.5-1.6), the following are easily verified.

(5.4)
$$a(m_{X\vee Y}) = a(m_X) \vee a(m_Y).$$

$$(5.5) a(m_X \wedge 1_Y) = a(m_X) \wedge 1_Y,$$

and a similar formula holds for $(1_x \wedge m_x)(T \wedge 1_x)$.

The following is a restatement of Theorem 3.3.

(5.6) $a(m_M)=0$ if $q \neq \pm 3 \mod 9$, and $a(m_M)=\pm i\alpha_1(3)\pi \neq 0$ if $q \equiv \pm 3 \mod 9$.

For the M_q -action $m_X(q)$ of (3.5) defined from an M_r -action m_X , r|q, we have

(5.7)
$$a(m_{\chi}(q)) = (q/r)^2 a(m_{\chi}),$$

by (5.2), Proposition 3.5 and (3.4). As a corollary we see that any $m_X(q)$ is associative if $r^3|q^2$.

By Proposition 3.7 and (5.6–5.7), we have immediately

PROPOSITION 5.5. Let G be a finite Z_q -module. Then, in the case of $q \neq \pm 3 \mod 9$, M(G) is always an associative M_q -module spectrum, but in the case of $q \equiv \pm 3 \mod 9$, M(G) is associative if and only if G does not contain Z_3 as a direct summand.

THEOREM 5.6. Let m_X and m'_X be M-actions on X, and write simply $\theta = \theta_{m_X,m_X}$ and $\theta' = \theta_{m'_X,m'_X}$. Then

$$a(m_X) = a(m'_X) - \theta'(d(m_X, m'_X)) + d(m_X, m'_X)^2$$

= $a(m'_X) - \theta(d(m_X, m'_X)) - d(m_X, m'_X)^2.$

PROOF. Put $d = d(m_X, m'_X)$. Then $m_X = m'_X + d(\pi \wedge 1_X)$ and $n_X = n'_X - (i \wedge 1_X)d$ by (1.7) and (1.7)', and $\theta(m_X) = \theta'(m_X) + dm_X$ by Theorem 2.2. So $\theta(m_X)n_X = \theta'(m_X)n_X$ by (1.2). Hence $a(m_X) = \theta(m_X)n_X = \theta'(m'_X + d(\pi \wedge 1_X))(n'_X - (i \wedge 1_X)d) = \theta'(m'_X)n'_X - \theta'(d)(\pi \wedge 1_X)n'_X - dm'_Xn'_X - \theta'(m'_X)(i \wedge 1_X)d + \theta'(d)(\pi \wedge 1_X)(i \wedge 1_X)d + dm'_X(i \wedge 1_X)d = a(m'_X) - \theta'(d) + d^2$ as desired. Since $d(m'_X, m_X) = -d$, the second formula is obtained by interchanging m_X with m'_X .

COROLLARY 5.7. Let (X, m_X) be an associative M-module spectrum, and write simply $\theta = \theta_{m_X,m_X}$. Then the set of associative M-actions on X corresponds in a one-to-one onto fashion to the subset $\{f | \theta(f) + f^2 = 0\}$ of $[X, X]_1$.

The following theorem is just the result of H. Toda [10; Th. 6.1, (i)].

THEOREM 5.8. Let X and Y be M-module spectra. Then, for any $f \in [X, Y]_k$,

$$\theta(\theta(f)) = fa(m_x) - a(m_y)f.$$

In particular, θ is a differential on $[X, Y]_*$: $\theta \theta = 0$, if X and Y are associative.

PROOF. Together with (5.1), easy calculations lead to the theorem. The details are the same as H. Toda's [10; p. 238].

COROLLARY 5.9. M-maps commute with associators, i.e., for any $f \in [X, Y]_*^M$, $fa(m_X) = a(m_Y)f$.

THEOREM 5.10. Let (X, m_X) be any M_q -module spectrum, and denote simply θ_{m_X,m_X} by θ . Then, in the case of $q \neq \pm 3 \mod 9$, $\theta(a(m_X)) = 0$, but in the case of $q \equiv \pm 3 \mod 9$, $\theta(a(m_X)) = \mp \alpha_1(3) \land 1_X$.

PROOF. By (5.3), $\theta(m_x)\theta(n_x) = 0$, so we have

$$\begin{aligned} \theta(a(m_X)) &= \theta(\theta(m_X)n_X) & \text{(by (5.2))} \\ &= -\theta^2(m_X)n_X & \text{(by Theorem 2.3)} \\ &= -m_X a(m_{M \wedge X})n_X + a(m_X)m_Xn_X & \text{(by Theorem 5.8)} \\ &= -m_X a(m_{M \wedge X})n_X & \text{(by (1.2))}. \end{aligned}$$

Since $a(m_{M\wedge X}) = a(m_M \wedge 1_X) = a(m_M) \wedge 1_X$ by (5.5), it follows from (5.6) that $m_X a(m_{M\wedge X})n_X = 0$ for $q \neq \pm 3 \mod 9$ and $m_X a(m_{M\wedge X})n_X = \pm \alpha_1(3) \wedge 1_X$ for $q \equiv \pm 3 \mod 9$.

§6. (Non-)associativity

LEMMA 6.1. Let p be an odd prime and $\alpha_1(p)$ be a generator of the p-

component of G_{2p-3} . Then, for any finite CW-spectrum X, $\alpha_1(p) \wedge 1_X \neq 0$ if and only if $\tilde{H}_*(X; Z_p) \neq 0$.

PROOF. Denote simply $\alpha_1(p)$ by α . If $\tilde{H}_*(X; Z_p) = 0$, the order of 1_X is finite and relatively prime to p by [8; Th. 1.5]. Since α is of order $p, \alpha \wedge 1_X$ is trivial.

Next assume that $\alpha \wedge 1_X = 0$. Then there is a left inverse $m: C(\alpha) \wedge X \to X$ of $i_{\alpha} \wedge 1_X$, where $i_{\alpha}: S \to C(\alpha)$ is the inclusion. Let $u \in H^0(C(\alpha); Z_p)$ be the class of the bottom sphere. It is well known that $P^1 u \neq 0$ and this generates $H^{2p-2}(C(\alpha);$ $Z_p)$, where P^n denotes the reduced power operation for the prime p. Take lsuch that $H^{l-2p+2}(X; Z_p) = 0$. Then $m^*: H^l(X; Z_p) \to H^l(C(\alpha) \wedge X; Z_p)$ is isomorphic and $(i_{\alpha} \wedge 1_X)^*$ is its inverse. So $m^*(x) = u \otimes x$ for $x \in H^l(X; Z_p)$. Then $m^*(P^n x) = u \otimes P^n x + P^1 u \otimes P^{n-1} x$, while there is an n such that $P^n x = 0$. Hence x = 0 and $H^l(X; Z_p) = 0$. Thus $\tilde{H}^*(X; Z_p) = 0$ and $\tilde{H}_*(X; Z_p) = 0$ as desired.

REMARK 6.2. By using the squaring operation Sq^n , Sq^{2n} , Sq^{4n} or Sq^{8n} instead of P^n , we also obtain the following mod 2 version of the above lemma.

Let X be a non-trivial finite CW-spectrum, and denote the generators of the 2-components of G_1 , G_3 and G_7 by η , ν and σ , respectively (these are odd multiples of the Hopf classes). Then

- (1) $2 \cdot 1_X \neq 0$, i.e., there is no non-trivial finite M_2 -module spectrum;
- (2) $\tilde{H}_*(X; \mathbb{Z}_2) \neq 0 \iff \eta \land 1_X \neq 0 \iff v \land 1_X \neq 0 \iff \sigma \land 1_X \neq 0.$

REMARK. In the above lemma and remark, the finiteness of X is essential. In fact, the Brown-Peterson spectrum BP at p gives a counterexample for Lemma 6.1 and Remark 6.2 (2), and the spectrum $M_2 \wedge BP$ gives a counterexample for Remark 6.2 (1).

THEOREM 6.3. Assume that $q \equiv \pm 3 \mod 9$. Let X be an M_q -module spectrum such that the order of 1_X is a multiple of 3. Then every M_q -action on X is not associative.

PROOF. From Lemma 1.4 together with the assumption on 1_X , $\tilde{H}_*(X; Z_3) \neq 0$. Hence $\alpha_1(3) \wedge 1_X \neq 0$ by Lemma 6.1. So $\theta(a(m_X)) \neq 0$ by Theorem 5.10 and $a(m_X) \neq 0$. Thus m_X is not associative by Proposition 5.4.

LEMMA 6.4. Assume that a finite Z_q -module G satisfies the following condition.

(6.1) For any prime p, the p-component of G is free over the p-component of Z_q .

Then, for any M-module spectrum X,

$$[M(G), X]_k^M \subset \theta[M(G), X]_{k-1},$$

$$[X, M(G)]_k^M \subset \theta[X, M(G)]_{k-1}.$$

PROOF. By Proposition 3.7, it suffices to show the lemma for the case $G=Z_r$ for r such that q=rs and (r, s)=1.

Consider the element $\delta \in [M_r, M_r]_{-1}$ and put $\delta' = x\delta$ for an integer x with $xs \equiv -1 \mod r$. Then $\theta(\delta) = -s1_{M_r}$ by (3.1) and Proposition 3.5, so $\theta(\delta') = 1_{M_r}$. For any $f \in [M_r, X]_k^M$ and $g \in [X, M_r]_k^M$, $\theta(f\delta') = f$ and $\theta(\delta'g) = (-1)^k g$ by Theorem 2.3, and hence the lemma for $G = Z_r$ is proved.

In the next section, we shall generalize the above result (Proposition 7.2, Theorems 7.5 and 7.7).

LEMMA 6.5. Let G be a finite Z_q -module satisfying the condition (6.1), and G' be any finite Z_q -module. Let (X, m_X) be associative and $f: \Sigma^k M(G) \to X$ be an M_q -map. In the case of $q \equiv \pm 3 \mod 9$, assume further that $H_*(C(f))$ has no 3-torsion and G' does not contain Z_3 as a direct summand. Then, for any M_q -map $g: \Sigma^1 M(G') \to C(f)$ with respect to some admissible M_q -action on C(f) of Construction 4.2, there exists an admissible and associative M_q -action on C(f) such that g is also an M_q -map.

PROOF. Let m_c be an admissible *M*-action on C(f) of Construction 4.2. By Theorem 5.10, Lemma 6.1 and Proposition 2.5, the associator $a(m_c)$ is an *M*-map. By Corollary 5.9, $i_f^*a(m_c) = i_f a(m_x) = 0$, so $a(m_c) = \pi_f^*h_0$ for some $h_0 \in [M(G), C(f)]_{k+3}^M$ by Theorem 4.5. Since $[M(G), M(G)]_1 = 0$, we have $[M(G), M(G)]_2^M = 0$ by Lemma 6.4, and hence $h_0 = i_{f*}h$ for some $h \in [M(G), X]_{k+3}^M$ by Theorem 4.5. Again by Lemma 6.4, $h = \theta(h')$ for some $h' \in [M(G), X]_{k+2}^M$, and so $\pm \theta(i_f h' \pi_f g) = i_f h \pi_f g = a(m_c)g = ga(m_{MG'}) = 0$ by Theorem 2.3, Corollary 5.9 and Proposition 5.5. Hence $i_f h' \pi_f g$ is an *M*-map. Then Theorem 4.5 implies that $i_f h' \pi_f g = i_f h'' \pi_f g$ for some $h' \in [M(G), X]_{k+2}^M$. Put $d = (-1)^{k+1} i_f (h' - h'') \pi_f \in [C(f), C(f)]_1$. Then $\theta(d) = i_f \theta(h') \pi_f = a(m_c)$ and $d^2 = 0$. Define another *M*-action m'_c on C(f) by $m'_c = m_c + d(\pi \wedge 1_{C(f)})$. Then $a(m'_c) = a(m_c) - \theta(d) + d^2 = 0$ by Theorem 5.6 and m'_c is associative. By the relations $di_f = 0, \pi_f d = 0$ and dg = 0 together with Theorem 2.2, i_f, π_f and g are again *M*-maps with respect to m'_c . Thus m'_c is the desired *M*-action on C(f).

Now we are ready to prove the following

THEOREM 6.6. Let X be an M_q -module spectrum and in the case of $q \equiv \pm 3 \mod 9$ assume that the order of 1_X is relatively prime to 3, or equivalently $H_*(X)$ has no 3-torsion. If X satisfies the following two conditions, then X admits an associative M_q -action.

(i) $\#H_i(X)$ is relatively prime to $\#H_{i-1}(X)$ and to $\#H_{i-2}(X)$, where #G denotes the order of a finite group G.

(ii) The group $H_i(X)$ satisfies the condition (6.1).

PROOF. Denote simply $H_i(X)$ by H_i and take integers r and s > 0 such that $\tilde{H}_i = 0$ for i < r and for i > r + s. By a dual consideration of the Postnikov system, there is a filtration $\{X_k\}_{r \le k \le r+s}$ of subspectra of X together with maps f_k : $\Sigma^{k-1}M(H_k) \to X_{k-1}$ $(r+1 \le k \le r+s)$ such that $X_r = \Sigma^r M(H_r)$, $X_{r+s} = X$, $X_k = C(f_k)$ and the inclusion $X_k \subset X$ induces isomorphisms $H_i(X_k) \approx H_i(X)$ for $i \le k$. Since dim $X_k = k+1$, $[X_{k-3}, M(H_k)]_{-k+1} = 0$. By the condition (i), $[\Sigma^{-1}M(H_{k-2}) \lor M(H_{k-1}), M(H_k)] = 0$. So we have

(*)
$$[X_{k-1}, M(H_k)]_{-k+1} = 0$$
 for $r+1 \le k \le r+s$.

Let m_x be an *M*-action on *X*. By applying Lemma 4.7 to (*), we can inductively construct *M*-actions m_k on $X_k(m_{r+s}=m_x)$ such that f_k is an *M*-map and m_k is the *M*-action on $C(f_k)$ given by Construction 4.2. We shall prove the following statements by the induction on k.

 $(**)_k$ There is an associative and admissible M-action m'_k on $X_k = C(f_k)$ such that f_{k+1} is also an M-map with respect to m'_k .

Obviously, $(**)_r$ is valid by Propositions 3.7 and 5.5. Assume that $(**)_{k-1}$ is valid. Then, by the condition (ii), all the assumptions of Lemma 6.5 are satisfied for the case $G = H_k$, $(X, m_X) = (X_{k-1}, m'_{k-1})$, $f = f_k$, $G' = H_{k+1}$ and $g = f_{k+1}$. So we obtain $(**)_k$. The theorem is a restatement of $(**)_{r+s}$.

REMARK 6.7. In the above dual Postnikov system $\{X_k\}$ of X, each X_k also admits an associative M-action by $(**)_k$. But it may have no M-action if the condition (i) does not satisfied. Let p be an odd prime and consider the case q = p, $M = M_p$. The group $[M, M]_{2p-2}^M$ is Z_p and its generator α satisfies $\pi \alpha i$ $= \alpha_1(p)$ ([11], [10; §§ 5-6] and [4; Th. 5.1]). Let $f: N = \Sigma^{2p-3} M \vee \Sigma^{2p-2} M \to M$ be the map such that $fi_1 = \delta \alpha$ and $fi_2 = \alpha$, i.e., $f = \delta \alpha p_1 + \alpha p_2$, where *i*'s are the inclusions and p's are the projections. Put X = C(f). For this X, the condition (i) does not hold and X is the (4p-5)-skeleton of the Eilenberg-MacLane spectrum $K(Z_p)$. So X is an M-module spectrum, but $X_{2p-2} = M \cup C\Sigma^{2p-3} M = C(\delta \alpha)$ is not by Lemma 4.7. In this case, f is not an M-map with respect to the canonical M-action $m_N = m_M \vee m_M$ on N, while it is an M-map by a twisted one $m_N + i_2p_1(\pi \wedge 1_N)$.

In a similar manner to the above, we can construct an *M*-module spectrum having no associative *M*-action.

EXAMPLE 6.8. Let p be a prime ≥ 5 , $M = M_p$ and put $N = M \vee \Sigma^2 M$. Denote by $i_1 \in [M, N]_0$, $i_2 \in [M, N]_2$ the inclusions and by $p_1 \in [N, M]_0$, $p_2 \in [N, M]_{-2}$ the projections. Define $f \in [N, N]_{2p-2}$ by

$$f = i_1 \alpha p_1 - i_2 \delta \alpha \delta p_1 + i_2 \alpha p_2 \colon \Sigma^{2p-2} N \longrightarrow N,$$

where $\alpha \in [M, M]_{2p-2}^{M}$ is the same as in the above remark. Denote by $m_N(0)$ the canonical *M*-action $m_M \vee \Sigma^2 m_M$ on *N*. Since $[N, N]_1 = Z_p$, generated by $i_2 \delta p_1$, by Lemma 3.1, we have

(1) there are just p distinct M-actions on N, which are written as $m_N(x) = m_N(0) + xi_2\delta p_1(\pi \wedge 1_N), x \in \mathbb{Z}_p$.

Since i_1 , i_2 , p_1 and p_2 are the *M*-maps with respect to $m_N(0)$, we see from Theorem 2.2 that

(2) $f: (\Sigma^{2p-2}N, m_N(x)) \rightarrow (N, m_N(y))$ is an M-map if and only if x = y = -1.

Since $m_N(0)$ is associative by (5.4) and (5.6), and since $[N, N]_2 = Z_p$, generated by i_2p_1 , it follows from Theorem 5.6 that

(3) $a(m_N(x)) = xi_2p_1$, and hence only $m_N(0)$ is associative.

Let X be the mapping cone of f. Then easy calculations show that $[X, X]_1 = 0$ and $[X, X]_2 = Z_p$ with the generator h satisfying $i_f^*(h) = i_{f*}(i_2p_1)$. So

(4) X has a unique M-action m_X .

By Corollary 5.9 and (3), $a(m_x)i_f = i_f a(m_N(-1)) = -i_f i_2 p_1$. Hence

(5) $a(m_x) = -h \neq 0$, i.e., X has no associative M-action.

It is clear that $H_i(X) = Z_p$ for i = 0, 2, 2p-1, 2p+1, so

(6) X does not satisfy the condition (i) in Theorem 6.6.

Let V be the mapping cone of α . This is just the spectrum V(1) [10] and has a unique associative M-action. It is easy to see that X is the mapping cone of some map $g: \Sigma^{-1}V \rightarrow \Sigma^2 V$. By H. Toda's result [10; Th. 3.6] on $[V, V]_*$, g is an M-map (in fact, $g = \pm \alpha' \delta_0$). Thus

(7) there is an M-map $X \rightarrow Y$ such that all the M-actions on X and on Y are associative but its mapping cone has no associative one.

§7. Hoffman's decomposition

P. Hoffman [2; Th. A] obtained the direct sum decompositions

$$[M, M]_k = [M, M]_k^M \oplus \delta_*[M, M]_{k+1}^M$$
$$= [M, M]_k^M \oplus \delta^*[M, M]_{k+1}^M$$

and the split exact sequence

$$[M, M]_{k-1} \xrightarrow{\theta} [M, M]_k \xrightarrow{\theta} [M, M]_{k+1}$$

for $M = M_q$, $q \neq \pm 3 \mod 9$. We shall generalize these results.

We first consider the following condition for an *M*-module spectrum (X, m_x) .

CONDITION 7.1. There exists an element $\delta(m_x) \in [X, X]_{-1}$ such that

- (i) $\delta(m_x)\delta(m_x)=0$,
- (ii) $\theta(\delta(m_{\chi})) = -1_{\chi}$

and

(iii) $\delta(m_{\chi})a(m_{\chi})=0.$

By Theorems 5.8 and 5.10, we see easily that the condition (iii) can be replaced by one of the following.

(iii)' $a(m_X)\delta(m_X)=0.$

(iii)" $a(m_X)=0$ if $q \neq \pm 3 \mod 9$, and $a(m_X)=\pm(\alpha_1(3) \wedge 1_X)\delta(m_X)=\mp \delta(m_X)$ $(\alpha_1(3) \wedge 1_X)$ if $q \equiv \pm 3 \mod 9$.

We shall give several examples of (X, m_X) satisfying Condition 7.1. First, it is clear by (3.1) and (5.6) that

(7.1) M satisfies Condition 7.1 by putting $\delta(m_M) = \delta$.

PROPOSITION 7.2. Let G be a finite Z_q -module. Then the Moore spectrum M(G) satisfies Condition 7.1 if and only if G satisfies (6.1).

PROPOSITION 7.3. Let $f: \Sigma^k M \to M$ be an M-map such that

(7.2)
$$f\delta = (-1)^k \delta f.$$

Put X = C(f). Then there exists uniquely an element $D \in [X, X]_{-1}$ such that $Di_f = i_f, \pi_f D = (-1)^k \delta \pi_f, D^2 = 0$ and $\theta(D) = -1_X$ for any admissible M-action on X. Furthermore there exists an admissible M-action m_X on X such that $Da(m_X) = 0$. Hence (X, m_X) satisfies Condition 7.1 for $\delta(m_X) = D$.

REMARK. According to the discussion in [4; § 3] and a similar one for the case $q \equiv \pm 3 \mod 9$ in the next section, we see that $f \in [M, M]_k^M$ satisfies (7.2) if and only if $f=h \wedge 1_M + g$ for $h \in G_k$ and $g \in [M, M]_k^M$ such that $\pi gi \in G_{k-1}$ is divisible by q. By [2; Th. A], for any $g' \in [M, M]_*^M$ of even degree, the element $g = (g')^q$ satisfies such a condition.

LEMMA 7.4. Let r and s be divisors of q, and denote by d=(r, s) and $l=\{r, s\}$ the greatest common divisor and the least common multiple of r and s, respectively. Then

$$[M_r, M_s]_{-1} = Z_d$$
, generated by $\delta_{r,s} = i\pi \colon M_r \longrightarrow \Sigma S \longrightarrow \Sigma M_{ss}$

$$[M_r, M_s]_0 = Z_d$$
, generated by $\varepsilon_{r,s} = \lambda \rho \colon M_r \longrightarrow M_d \longrightarrow M_s$,

and the relation $\theta(\delta_{r,s}) = (q/l)\varepsilon_{r,s}$ holds as M_q -module spectra.

PROOF. Except for the statement on θ , everything is clear, (cf. Lemma 3.1). We see easily that $\theta(\delta_{r,s}) = \rho' \lambda' : M_r \to M_q \to M_s$, and so $\theta(\delta_{r,s}) = (q/r)/(s/d)\varepsilon_{r,s} = (q/l)\varepsilon_{r,s}$.

PROOF OF PROPOSITION 7.2. We have proved $(6.1) \Rightarrow 7.1$ in the proof of Lemma 6.4. Assume that M(G) satisfies Condition 7.1, and put $G = Z_{r_1} \oplus \cdots \oplus Z_{r_l}$, so $M(G) = M_{r_1} \lor \cdots \lor M_{r_l}$ for $r_j | q$. Let $i_j \colon M_{r_j} \to M(G)$ be the inclusion and $p_j \colon M(G) \to M_{r_j}$ be the projection. By the above lemma, $[MG, MG]_{-1} = \sum_{j,k} A_{j,k}$ and $[MG, MG]_0 = \sum_{j,k} B_{j,k}$, where $A_{j,k}$ and $B_{j,k}$ are the cyclic groups generated by $i_k \delta_{r_j, r_k} p_j$ and $i_k \varepsilon_{r_j, r_k} p_j$ of order (r_j, r_k) . Then, again by Lemma 7.4, $1_{MG} =$ $\sum_k i_k \varepsilon_{r_k, r_k} p_k \in \sum_{j,k} \theta(A_{j,k})$ implies the congruences $qx_k/r_k \equiv 1 \mod r_k$ for some x_k . So r_k and q/r_k are relatively prime. This means that G satisfies (6.1).

PROOF OF PROPOSITION 7.3. By (7.2), there is an element $D_0 \in [X, X]_{-1}$ such that $D_0 i_f = i_f \delta$ and $\pi_f D_0 = (-1)^k \delta \pi_f$. From the exact sequences derived from the cofibering for X = C(f) together with Lemma 3.1, we see the following results on $[X, X]_*$:

 $[X, X]_{l} = i_{f*}\pi_{f}^{*}[M, M]_{k+l+1} \quad \text{for} \quad l = -3, -2, 1,$ $[X, X]_{-1} = \{D_{0}\} \oplus i_{f*}\pi_{f}^{*}[M, M]_{k},$ $[X, X]_{0} = \{1_{X}\} \oplus i_{f*}\pi_{f}^{*}[M, M]_{k+1},$

and the kernel of $i_{f*}\pi_f^*$: $[M, M]_{k+l+1} \rightarrow [X, X]_l$ is 0, $\{f\delta\}$, $\{f\}$ and 0 for l = -3, -2, -1 and 0, respectively, where $\{g\}$ means the subgroup generated by g.

Put $D_0^2 = i_f g \pi_f$, $g \in [M, M]_{k-1}$. Then $i_f \delta g \pi_f = D_0 D_0^2 = D_0^2 D_0 = (-1)^k i_f g \delta \pi_f$, and hence $\delta g = (-1)^k g \delta$. Applying θ to this, we have $\theta(g) \delta + (-1)^k \delta \theta(g) = -2g$. So we define

$$D = D_0 + ((-1)^k/2)i_f \theta(g)\pi_f.$$

Then $Di_f = D_0 i_f = i_f \delta$, $\pi_f D = \pi_f D_0 = (-1)^k \delta \pi_f$ and $D^2 = D_0^2 + ((-1)^k/2) i_f ((-1)^k \theta(g) \delta + \delta \theta(g)) \pi_f = D_0^2 - i_f g \pi_f = 0$. We can put $\theta(D) = x \mathbf{1}_X + i_f g' \pi_f$, $x \in \mathbb{Z}_q$, $g' \in [M, M]_{k+1}$. Then $xi_f = \theta(D)i_f = \theta(Di_f) = -i_f$, and x = -1. Since $i_f (\delta g' - i_f g \pi_f) = 0$.

 $(-1)^k g' \delta \pi_f = -\theta(D)D + D\theta(D) = \theta(D^2) = 0$, we have $\delta g' \equiv (-1)^k g' \delta \mod \{f\}$. Applying θ to this, we have $-2g' = \theta(g')\delta + (-1)^k \delta \theta(g')$, so $\theta(D) + 1_x = -((-1)^k/2)(i_f \theta(g')\pi_f D + Di_f \theta(g')\pi_f) = -(1/2)(\theta^2(D)D + D\theta^2(D)) = 0$, because $(-1)^{k+1}i_f \theta(g')\pi_f = \theta^2(D) = Da(m_x) - a(m_x)D$. Thus D satisfies the desired relations.

Let D' also satisfy the above relations. Then $D' = D + i_f h \pi_f$ for some $h \in [M, M]_k$. Applying θ to this, $i_f \theta(h) \pi_f = 0$, so $\theta(h) = 0$. From the relation $(D + i_f h \pi_f)^2 = 0$, we have $(-1)^k h \delta + \delta h \equiv 0 \mod \{f\delta\}$ and so $2h \equiv 0 \mod \{f\}$. Hence $i_f h \pi_f = 0$ and D' = D. Thus D is unique.

Take an admissible *M*-action m'_X and put $Da(m'_X) = i_f h' \pi_f$ for some $h' \in [M, M]_{k+2}$. Then $0 = D^2 a(m'_X) = i_f \delta h' \pi_f$ and $\delta h' = 0$, so $h' = (-1)^k \delta \theta(h')$. Hence $Da(m'_X) = (-1)^k Di_f \theta(h') \pi_f = -D\theta(i_f h' \pi_f)$. Put $d = -i_f h' \pi_f$ and $m_X = m'_X + d(\pi \wedge 1_X)$. Then m_X is also admissible and satisfies $Da(m_X) = 0$.

We now generalize P. Hoffman's results at the beginning of this section.

THEOREM 7.5. Let (X, m_X) be an M-module spectrum satisfying Condition 7.1. Then, for any associative M-module spectrum (Y, m_Y) , the sequences

 $[X, Y]_{k-1} \xrightarrow{\theta} [X, Y]_k \xrightarrow{\theta} [X, Y]_{k+1},$ $[Y, X]_{k-1} \xrightarrow{\theta} [Y, X]_k \xrightarrow{\theta} [Y, X]_{k+1}$

are split exact and there are the direct sum decompositions:

$$[X, Y]_{k} = [X, Y]_{k}^{M} \oplus \delta(m_{X})^{*}[X, Y]_{k+1}^{M},$$

$$[Y, X]_{k} = [Y, X]_{k}^{M} \oplus \delta(m_{X})^{*}[Y, X]_{k+1}^{M}.$$

PROOF. Since Y is associative, we see by Theorem 6.3 that $q \neq \pm 3 \mod 9$ or that the order of 1_Y is relatively prime to 3. In the latter case, $\alpha_1(3) \wedge 1_Y = 0$ by Lemma 6.1. Hence $\operatorname{Im} \theta \subset \operatorname{Ker} \theta$ by Theorem 5.8 and the condition (iii)". In the same way as Lemma 6.4, $\operatorname{Ker} \theta \subset \operatorname{Im} \theta$ and the above sequences are exact. The desired splittings are given by $\delta(m_X)^*$ and $\delta(m_X)_*$, and we have the direct sum decompositions.

We next consider a non-associative version of the above theorem.

DEFINITION 7.6. Let (X, m_X) satisfy Condition 7.1, and (Y, m_Y) be arbitrary M-module spectrum. Define

$$\overline{\theta} \colon [X, Y]_k \longrightarrow [X, Y]_{k+1},$$
$$\overline{\theta} \colon [Y, X]_k \longrightarrow [Y, X]_{k+1}$$

by the formulas

Module Spectra over the Moore Spectrum

$$\bar{\theta}(f) = \theta(f) - a(m_Y) f \delta(m_X),$$

$$\bar{\theta}(f) = \theta(f) + (-1)^k \delta(m_X) f a(m_Y)$$

respectively.

Clearly $\bar{\theta} = \theta$ if Y is associative. If Y satisfies Condition 7.1, both $\bar{\theta}$ are coincident. For, $a(m_Y)f\delta(m_X) = \pm (\alpha_1(3) \wedge 1_Y)\delta(m_Y)f\delta(m_X) = \pm (-1)^k \delta(m_Y)$ $f\delta(m_X)(\alpha_1(3) \wedge 1_X) = -(-1)^k \delta(m_Y)fa(m_X)$ if $q \equiv \pm 3 \mod 9$.

THEOREM 7.7. Let (X, m_X) satisfy Condition 7.1. Then, for any M-module spectrum (Y, m_X) ,

$$\operatorname{Ker} \theta \subset \operatorname{Ker} \overline{\theta} = \operatorname{Im} \overline{\theta} \subset \operatorname{Im} \theta \quad in \quad [X, Y]_* \quad and \quad in \quad [Y, X]_*.$$

Hence Theorem 7.5 with θ replaced by $\overline{\theta}$ holds even if (Y, m_Y) is not associative.

PROOF. Since $\bar{\theta}(f) = -\theta(\theta(f)\delta(m_X))$ for $f \in [X, Y]_k$ and $\bar{\theta}(f) = (-1)^k \theta(\delta(m_X)\theta(f))$ for $f \in [Y, X]_k$, the theorem is easily derived from the following algebraic lemma with $\psi = \delta(m_X)_*$ or $\delta(m_X)^*$ up to sign.

LEMMA. Let θ and ψ be endomorphisms (of degree +1 and -1) of a (graded) abelian group A such that $\theta\psi+\psi\theta=1_A$ and $\psi^2=0$. Put $\bar{\theta}=\theta\psi\theta$. Then $\bar{\theta}\psi+\psi\bar{\theta}=1_A$, $\bar{\theta}^2=0$ and Ker $\theta\subset$ Ker $\bar{\theta}=$ Im $\bar{\theta}\subset$ Im θ .

Concerning (2.3), we see that Ker θ acts on Ker $\overline{\theta}$ from the both sides:

(7.3) If $\theta(f)=0$ and $\overline{\theta}(g)=0$, then $\overline{\theta}(fg)=0$. If $\overline{\theta}(f)=0$ and $\theta(g)=0$, then $\overline{\theta}(fg)=0$.

EXAMPLE. Let $\beta = \beta_{(1)} \in [M_3, M_3]_{11}$ be the element defined by N. Yamamoto [11] and H. Toda [10; §6]. Then $\theta(\beta) = \delta \alpha \delta \beta \delta = a(m_M)\beta \delta(m_M) \neq 0$ by [10; Th. 6.4], and so $\overline{\theta}(\beta) = 0$. $[M_3, M_3]_{11}$ is generated by the elements β , $\alpha^2 \delta \alpha$ and $\alpha^3 \delta$, and $\overline{\theta}[M_3, M_3]_{11} = 0$. So $\delta \alpha \delta \beta \delta$ lies in Im θ but not in Im $\overline{\theta}$. Thus we can not, in general, replace the mark \subset in Theorem 7.7 by the equal mark =.

By [10; Th. 6.8], $\beta\beta = \delta\alpha\delta\beta\delta\beta\delta$ and its $\bar{\theta}$ -image is $\alpha\delta\beta\delta\beta\delta - \delta\alpha\delta\beta\delta\beta\neq 0$. Thus Ker $\bar{\theta}$ can not, in general, form a ring by the composition product.

§8. Remark on $[M_3, M_3]_*$

In [4] and [6; §8], we studied the ring structure of $[M_q, M_q]_*$ for q a power of an odd prime p, in connection with the p-component of the stable homotopy ring G_* of spheres. But only the case q=3 is exceptional, since M_3 is not associative and θ on $[M_3, M_3]_*$ is not a differential. For this case, similar discussions can be done by considering $\bar{\theta}$ instead of θ .

For any $\alpha \in G_k$ and $\beta \in G_{k-1} * Z_3 \subset G_{k-1}$, define $\langle \alpha \rangle \in [M_3, M_3]_k$ and $[\beta] \in [M_3, M_3]_k$ by

$$\langle \alpha \rangle = \alpha \wedge 1_M$$
 and $[\beta] = (-1)^{k-1} \theta(i\overline{\beta}),$

where $\bar{\beta} \in [M_3, S]_{k-1}$ is an extension of β , i.e., $\bar{\beta}i = \beta$. Then we have

$$\langle \alpha \rangle i = i\alpha, \quad \pi \langle \alpha \rangle = (-1)^k \alpha \pi, \quad \theta(\langle \alpha \rangle) = 0;$$

 $\pi[\beta]i = \beta, \quad \overline{\theta}([\beta]) = 0,$

since $\theta([\beta]) = (-1)^{k-1} i\overline{\beta}i\alpha_1(3)\pi = i\alpha_1(3)\beta\pi = a(m_M)[\beta]\delta$, (cf. [4; Lemmas 3.1–3.2]). Denote by $[G_{k-1}*Z_3]$ and $\langle G_k \rangle$ the subgroups generated by those elements $[\beta]$ and $\langle \alpha \rangle$, and also by \overline{K}_k and K_k the subgroups $[M_3, M_3]_k \cap \text{Ker }\overline{\theta}$ and $[M_3, M_3]_k^M = [M_3, M_3]_k \cap \text{Ker }\theta$. Then the following direct sum decompositions are obtained:

$$[M_3, M_3]_k = \overline{K}_k \oplus \delta_* \overline{K}_{k+1} = \overline{K}_k \oplus \delta^* \overline{K}_{k+1},$$

(8.2)
$$\overline{K}_k = \langle G_k \rangle \oplus [G_{k-1} * Z_3] \approx G_k \otimes Z_3 \oplus G_{k-1} * Z_3,$$

(8.3)
$$K_k = \langle G_k \rangle \oplus [H_{k-1}] \approx G_k \otimes Z_3 \oplus H_{k-1},$$

where $H_{k-1} = \{\beta \in G_{k-1} * Z_3 | \alpha_1(3)\beta \text{ is divisible by } 3\}$ and $[H_{k-1}]$ is the subgroup generated by $[\beta]$ for $\beta \in H_{k-1}$. The decomposition of [4; Th. 3.5] is also obtained.

For the composition, the formulas (3.7-3.8) and Proposition 3.8 of [4] also hold in $[M_3, M_3]_*$, but we must correct Proposition 3.9 of [4] as follows:

Let $\xi \in G_{k-1}$ and $\eta \in G_{l-1}$ be elements of order 3 such that $\zeta = \langle \xi, 3, \eta \rangle$ has trivial indeterminacy. Then $[\xi][\eta] = [\zeta] - (-1)^l i\alpha_1(3)\pi[\xi]\delta[\eta]\delta$.

Concerning the formula (1.11) of [4], we obtain the following result: $\eta\xi - (-1)^{kl}\xi\eta = (-1)^{kl+l+1}i\alpha_1(3)\pi\xi\delta\eta\delta = (-1)^ki\alpha_1(3)\pi\eta\delta\xi\delta$ for $\xi \in \overline{K}_k$ and $\eta \in \overline{K}_l$, and in particular $\eta\xi = (-1)^{kl}\xi\eta$ further if one of ξ and η lies in K_* .

The ring structure of $[M_3, M_3]_*$ has been determined up to degree 31 by N. Yamamoto [11] and H. Toda [10; §6]. Applying the results on G_* [3; Th. B] to the decompositions (8.1–8.3), we can continue to compute $[M_3, M_3]_*$. The following result is proved similarly to the case $p \ge 5$ [4; Th. 0.1], and we omit the proof.

THEOREM 8.1. The ring $[M_3, M_3]_*$ is multiplicatively generated up to degree 66 by the following six elements

$$\delta = i\pi \in [M_3, M_3]_{-1}, \quad \alpha = [\alpha_1(3)] \in K_4,$$

Module Spectra over the Moore Spectrum

$$\begin{split} \beta_{(1)} &= [\beta_1] \in \overline{K}_{11}, \qquad \beta_{(2)} = [\beta_2] \in \overline{K}_{27}, \\ \varepsilon &= [\varepsilon_1] \in K_{39}, \qquad \overline{\varphi} = \langle \varphi \rangle \in K_{45}, \end{split}$$

and a Z_3 -basis for $[M_3, M_3]_*$ is given in the cited range by the following elements (a, b=0 or 1 unless otherwise stated):

$$\begin{split} \delta, \quad & 1_{M}; \quad \alpha^{r}\delta^{a}, \quad \alpha^{r-1}\delta\alpha\delta^{a} \quad for \quad 1 \leq r \leq 16, \quad \alpha^{16}\delta\alpha\delta; \\ \delta^{a}(\beta_{(1)}\delta)^{r}\beta_{(1)}\delta^{b} \quad for \quad 0 \leq r \leq 4, \qquad \delta^{a}\alpha\delta(\beta_{(1)}\delta)^{r}\beta_{(1)}\delta^{b} \quad for \quad r = 0, 1; \\ \delta^{a}(\beta_{(1)}\delta)^{r}\beta_{(2)}\delta^{b} \quad for \quad 0 \leq r \leq 2, \qquad \delta^{a}\alpha\delta(\beta_{(1)}\delta)^{r}\beta_{(2)}\delta^{b} \quad for \quad 0 \leq r \leq 2; \\ \delta^{a}(\beta_{(1)}\delta)^{r}\beta_{(1)}\beta_{(2)}\delta^{b} \quad for \quad r = 0, 1; \\ \delta^{a}(\beta_{(1)}\delta)^{r}\beta_{(2)}\delta\beta_{(2)}\delta^{b} \quad for \quad r = 0, 1, \qquad \delta^{a}\alpha(\delta\beta_{(1)})^{r}(\delta\beta_{(2)})^{2}\delta^{b} \quad for \quad r = 0, 1; \\ \delta^{a}\epsilon\delta^{b}, \quad \delta^{a}\epsilon\alpha\delta^{b}, \quad \bar{\varphi}\delta^{a}. \end{split}$$

The element $\bar{\epsilon} = [\epsilon'] \in \overline{K}_{38}$ is decomposable while it is not for the case $p \ge 5$, and the element corresponding to $\beta_{(p+1)}$ for $p \ge 5$ does not exist. We can also determine the multiplicative structure in the cited range, but the result is more complicated than the case $p \ge 5$ and we omit the detail. For example, we obtain the following relations which are different from the case $p \ge 5$.

$$\begin{split} & \varepsilon \alpha^2 = \pm (\beta_{(1)} \delta \beta_{(1)} \beta_{(2)} \delta - (\delta \beta_{(1)})^2 \beta_{(2)}), \\ & \bar{\varphi} \alpha = \pm (\alpha (\delta \beta_{(1)})^2 \delta \beta_{(2)} \delta - \delta \alpha (\delta \beta_{(1)})^2 \delta \beta_{(2)} - (\delta \beta_{(1)})^5 \delta), \\ & \bar{\varphi} \beta_{(2)} = \pm ((\beta_{(1)} \delta)^2 (\beta_{(2)} \delta)^2 + (\delta \beta_{(1)})^2 (\delta \beta_{(2)})^2). \end{split}$$

The first relation is a restatement of [7; (5.1)], and the last two are induced by $\alpha\beta_{(2)}\overline{\varphi} = (\beta_{(1)}\delta)^2\beta_{(1)}\overline{\varphi} = \pm \alpha(\delta\beta_{(1)})^2(\delta\beta_{(2)})^2$. In $[M_3, M_3]_{69}$, there appears new indecomposable element $\lambda_{(1)}$ with $\theta(\lambda_{(1)})=0$. This is introduced in the proof of [3; Prop. 17.5], and for the case $p \ge 5$ there is no element corresponding to $\lambda_{(1)}$.

References

- S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71-115.
- P. Hoffman, Relations in the stable homotopy rings of Moore spaces, Proc. London Math. Soc. (3) 18 (1968), 621–634.
- [3] S. Oka, The stable homotopy groups of spheres II, Hiroshima Math. J. 2 (1972), 99-161.
- [4] —, On the stable homotopy ring of Moore spaces, Hiroshima Math. J. 4 (1974), 629–678.

- [5] —, A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975), 87–114.
- [6] ____, ____II, Hiroshima Math. J. 6 (1976), 331–342.
- [7] and H. Toda, 3-Primary β -family in stable homotopy, Hiroshima Math. J. 5 (1975), 447–460.
- [8] H. Toda, Order of the identity class of a suspension space, Ann. of Math. 78 (1963), 300-325.
- [9] —, Extended p-th powers of complexes and applications to homotopy theory, Proc. Japan Acad. 44 (1968), 198–203.
- [10] —, Algebra of stable homotopy of Z_p-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197–251.
- [11] N. Yamamoto, Algebra of stable homotopy of Moore space, J. Math. Osaka City Univ. 14 (1963), 45-67.

Department of Mathematics, Faculty of Science, Hiroshima University