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Introduction

Persson and Pietsch [5] introduced the concepts of p-nuclear and p-quasi-
nuclear mappings in Banach spaces. These concepts were recently extended in
Miyazaki [4] to (p, q)-nuclear and (p, g)-quasi-nuclear mappings by usih'g the
sequence spaces [, ,. On the other hand, these were extended in Ceitlin [1]
to (Z, p)-nuclear and (Z, p)-quasi-nuclear mappings. The object of this paper
is to extend these two kinds of concepts to (Z, A)-nuclear and (Z, /I)-quasi}nu(:lehi'
mappings in Banach spaces by making use of abstract sequence spaces A In
case 1<p<oo, 1<g<w, if A=1,, and Z is one-dimensional, a (Z, A)-nuclear
mapping coincides with a (p, g)-nuclear mapping, and if A=1, a (Z, 2)-nuclear
mapping coincides with a (Z, p)-nuclear mapping. We shall also extend the
notion of nuclear spaces to Z-nuclear spaces by using (Z, l,)-nuclear mappings
introduced by Ceitlin [1]. We see that the tensor product of a nuclear spacé and
a Banach space Z is Z-nuclear, and thus the space S(R", Z) of rapidly decreasing
functions defined in R* and valued in Z is a Z-nuclear space.

In Section 1, we define the sequence space 4 of type A and of type 4, in such
a way that [, , is a space of type A, for 1 <p< o0, 1<g< 0o and is a space of type
A for g% 00. In Section 2, we introduce the space A(Z) and consider the: dual
space of A(Z). Section 3 is devoted to studying (Z, A)-nuclear mappings and
Section 4 to studying (Z, 1)-quasi-nuclear mappings. We investigate Z-nuclear
spaces in Section 5.

§1. Notations and Definitions
‘Let E and F be Banach spaces. We shall denote by L(E, F) the space of
continuous linear mappings T from E to F with the usual mapping norm

[Tl = sup |Tul.
llull<1

We denote by K(E, F) the space of compact mappings and by L%(E, F) the space
of mappings of Z-finite rank. Here Te L3(E, F) means that it can-be written
in the form
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Tu =37 BAu foreach ueE

with {4;} = L(E, Z) and {B;} =L(Z, F), where Z is a Banach space.

Now we start with the sequence space C, of all scalar sequences converging
to zero in which an extended quasi-norm p is given. We shall then define the
sequence space Ac=C, to be the space consisting of all x € C,, such that p(x) < co.
We shall denote the extended quasi-norm p by |- ||,. We assume that A is a non-
zero space satisfying the following conditions:

(@) If for any u=(uy,..., u,,...) €L we set u'=(uy,..., u;, 0,...) fori=1, 2,...,
then |ju—u'||,—0 as i—co.

(b) |-, is absolutely monotone, i.e., |u;|<|v;| for all i imply |u|,<|v];.

(c) 4 is a K-symmetric space. That is, if u, is the sequence which is
obtained as a rearrangement of the sequence u corresponding to a permutation
7 of the positive integers, then ||u||,=|u,|, for each u e A and each .

(d) For any u=(uy,..., u,,...)€A, let v be its subsequence (u;,,..., u;,...)
such that u;=0 for any j=xi, (n=1, 2,...). Then |v|;=]ul;.

We say the above A to be a space of type A, and if A satisfies only the
conditions (b), (c), (d), then we say A to be a space of type A,. We remark that
l,,1s a space of type A, for 1<p<o0,1<q< o0 and is a space of type A for
q > oo (Proposition 3 in [3]).

We denote by A’ the topological dual of 4. A’ is a Banach space. If 1 is
of type 4, then A’ is realized as a sequence space.

§2. The dual space of 2(Z)
We begin with the following

DEerFINITION 1. Let A be of type Ay and let Z be a Banach space. Then
A(Z) is the space of zero sequences (u;) with values in the Banach space Z such
that

[@)llazy = IClusdDIl
is finite. Then ||(u)|l 1z is a quasi-norm in A(Z).

DEFINITION 2. Let A be of type A and let Z be a Banach space. Then
A(Z') is the space of sequences (u}) with values in the Banach space Z' such that

@ azy = NCuilDN
is finite. Then (Ul 1z is a norm in A'(Z’).

THEOREM 1. Let A be of type A, and complete and let Z be a Banach space.
Then A(Z) is complete.
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Proor. Let (u{")e A(Z) and

lim “(“g")—ug"))”A(Z) = 0.
My V0
Then for each iu{" is a Cauchy sequence in Z. Hence there exist u;e Z (ie N)
such that

u; = limu{”  for each i.

v =00

Since {(||u¢{"])} is a Cauchy sequence in A and since A is complete, {(Ju{*|)}
converges to (a;) € 4, and (a;)=(||u;]). Hence (u;) € A(Z). If we put

o) = Juf?—ul

{(¥{")} is a Cauchy sequence in A. Since A is complete, {(v{"))} converges to
0, 0,...). Therefore {(u!")} converges to (u;) in A(Z). The proof is complete.

DEFINITION 3. Let A be of type A, and complete and let Z be a Banach
space. Then Ao(Z') is the space of sequences (u;) with values in the Banach space
Z' such that for every (u;)€ A(Z) the series > 2 ,ui(u;) converges. The norm
|- 1% in 25(2") is given by

I@Dl = sup |ZiZ, uiu)l.
[(u)llacz)<1

We show that [[(u})|| <oco for all (u})eAy(Z') and ||. ]9 is a norm. In
fact, if (u}) e Ao(Z’), then (u;) can be considered as the linear form f on A(Z)
defined by f((u,))=> %, uj(u;). Define a sequence {f,} of linear forms on A(Z)
by f,(u))=X 1, uj(u;). It is easy to see that each f, is continuous. Further-
more {f,} converges to f at each point of A(Z). Since A(Z) is a complete quasi-
normed space by Theorem 1, from the Banach-Steinhaus Theorem it follows that
fis continuous and ||(u})||2-=|lf]. Hence ||.|¢. is a norm.

PrOPOSITION 1. Let A be of type A and complete and let Z be a Banach
space. Then the dual space of M(Z) is norm isomorphic with Ay(Z’), where a
sequence (u}) in Ao(Z') is identified with the linear form f defined by

(1) f(@)) = iz ui(w)  for each (u)eA(Z).

Proor. Let (u})€Ay(Z’). Then the linear form f defined by (1) is con-
tinuous and | f]=|(u})|$-, which we have already shown in the paragraph after
Definition 3. Conversely, let fe A(Z)'. If for each ie N we define u; by

wiw) = £(Q....,0, 4,0,..)) foreach ueZ,

then u}e Z’. If for any (u;) € M(Z), we put u"=(uq,..., u,, 0,...), then
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u" — (u;) (n— ) in A(Z)
by the condition (a). Hence we have
S (@) = f(lim ur)
= lim f(u")

= lim 37 wiuy)
n—o

= 2 uiu).
Consequently we have
(u7) € 4o(Z")
and
1A= @)L

The proof is complete.

THEOREM 2. Let A be of type A and complete and let Z be a Banach space.
Then the dual space of MZ) is norm isomorphic with A'(Z'), where a sequence
(u}) in A'(Z") is identified with the linear form f defined by

S(u)) = X5z, ui(uy) Jor each (u;) e A(Z).

Proor. Since A(Z)' is norm isomorphic with A5(Z’) by Proposition 1,
we have only to prove that 1'(Z") and 1y,(Z’') are norm isomorphic. Let (u})e
A(Z"). Then, for any (u;) € A(Z)

2 lui@)l < 1l szl @l vz < 0,
from which it follows that (uf) € Ao(Z’) and [[(u)|2 <UDl zz) Thus we have
N(Z) e io(Z) and |2 < |- lw)-
On the other hand, let (u}) e A;(Z'). Put
, uif|uil for u;x0
i=[ 0 for u;=0

and o;=|lujfl. Then, uj=o.e; foreach ie N. For any £¢>0, if ¢;0, there exists
an e¢;€ Z such that ||¢;]|=1 and ej(e;)>1—¢. If e;=0, we put ¢;=0. Then, for
any (&) € A with ||(£)]l;<1 we have
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TR G < 1/(L—e) T2 |oei(Ee)l

<1/(1—-e)  sup 21 luiuy)
I(u)llaz)s1

= 1/(1—e&) [|(u)Il?-.
Thus we have
oZ)<cXN(Z) and ||y <13

This completes the proof.

§3. (Z, 2)-nuclear mappings

We shall define (Z, A)-nuclear mappings as follows.

DEFINITION 4. Let A be of type A and let E, F and Z be Banach spaces.
Te L(E, F) is said to be a left (Z, A)-nuclear or simply (Z, A)-nuclear (resp.
right (Z, 2)-nuclear) mapping, if T can be written in the form

2) Tu=Y%2,BAu  foreach ueE

with {A;} < L(E, Z) and {B;} < L(Z, F) such that

I AiIDI: < oo
and sup (1 Biv' DIl <
(PR3
(resp. sup (| AuiDll; < o0
llull<1t
and Il BiD1; < o0,

where Bj is the adjoint mapping of B;. We denote by N, ,(E, F) (resp. N%:4E, F))
the collection of (Z, A)-nuclear (resp. right (Z, A)-nuclear) mappings. The
quasi-norm (as proved later) is defined by

vz, (T) = inf (| (I 4:IDI] 1 Sup 1Kl Bz DN 2)
(resp. v&4(T) = inf( Sup, ICHAz D 1B L) 5

where infimum is taken over all representations (2) of T.

REMARK. In case I<p< o, I<q<oo, if A=1,, and Z is one-dimension-
al, a (Z, X)-nuclear (resp. right (Z, X)-nuclear) mapping coincides with a (p, q)-
nuclear (resp. right (p, q)-nuclear) mapping introduced in Miyazaki [4], and
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if A=1, a (Z, A)-nuclear mapping coincides with a (Z, p)-nuclear mapping
introduced in Ceitlin [1].

For Te N ,(E, F) and for each u € E, the series (2) is convergent. In fact,
for any finite set J of positive integers and for each u € E we have

| X BiAull < sup 3 [[Aul - ||Bi’||
ieJ o' l|I<1 ied
< llull - IC)llz- sup NCIB DG,
florli<1

where
4, for ielJ
o =
0 for i&J.

Let ¢ be any positive number. Since [(||4;[)]|;<o0, by the condition (a) of 4
there exists an integer p>0 such that

”(O;'-': 09 “Ap”:' ||Ap+1“’--~)“/l <e.
For J={p, p+1,..., q}, by the condition (b) of 4 we have
[0,..., 0, ap,..., 24, 0,...)[1; < .
It follows that

| ¥ BAu|| < C.¢ with a constant C.
iel

Hence the series (2) is convergent. A similar fact is valid for Te N2:*(E, F).

PROPOSITION 2. Let A be of type A, let E, F and Z be Banach spaces and
let Te Ny (E, F) (resp. Te N4:%(E, F)). Then

ITI <vzAT)  (resp. [T| <v*XT)).
Proor. If Te Ny ,(E, F), we have
I Tull < flull - ICHADN - ,Sup, B DN -
Therefore we have

ITH < inf (ICHA:ID - ,Sup, ICIB" D1 2) 5

where infimum is taken over all representations (2) of T. The proof is com-
plete.

PROPOSITION 3. Let A be of type A and let E, F and Z be Banach spaces.
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Then if Te N, (E, F), its adjoint T' belongs to N2:(F’, E') and it satisfies
VESAT) < vz (T).

Furthermore, assume E, F and Z are reflexive. Then if T' e N2"*(F', E'),
we have

Te Ny 4(E, F)

and
VESHT') = vz (T).
Proor. If Te Ny ,(E, F), then for any £>0 it can be written as
Tu =32 B;Au foreach ueE
with

AN sup (1B DIz < vz,A(T)+e.
llo'li<t

Hence we have
TV = Y2, A,Bv' foreach v eF’
and we have

vERHT) < NI AiDN - ,Sup, ICIB3 DN 2 < vz,(T) +e.

Therefore we have
VELNT) < vy T).
When E, F and Z are reflexive, in the same way T’ e NZ-4F’, E') implies
Te Ny ,(E, F)
and
vz,l(T) < V2" XT").
Thus
vz, (T) = v2XT").
This completes the proof.

THEOREM 3. Let A be of type A, let E, F and Z be Banach spaces and let
T,€ Nz E, F) for k=1,2,..., M, M being a positive integer. Then >} T,
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€N, (E, F) and
V(XK T) < CM L M. (ZM vz (T,

where. C is a constant.
A similar statement holds for elements of N2'*(E, F).

ProoF. For any e>0 T, can be written in the form

T;‘u = Z?;lBk,iAk’iu, k = 1, 2,..., M

with
{4;,} €« L(E, Z) and {B,;} < L(Z, F)
such that
I AxlDill 2 < 1
and

Sup B Dl < vz i(T)+ef2h, k=120, M.

Hence we have
I ArilDigeln < CH=1 R I ArilDill 2
L CM-1. M,
where C is a constant. On the other hand, we have

sup (|(IB, 0" il < XXy sup (1B, 0" Dill -
llerlist flerli<1

< T vz (To+e.
Thus we have
vz (R T) S CM L M (e vz, (To) +e).
Since ¢ is arbitrary, this completes the proof.

PrOPOSITION 4. Let A be of type A and let E, F, G and Z be Banach spaces.
If Te N, ,(E, F) and S € L(F, G), then STe N, ,(E, G) and

VZ,}.(ST) < S| 'Vz,z(T) .
If Te L(E, F) and Se N ,(F, G), then STe NZJ(E, G)

and
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vz, (ST) < vz,u(8)-ITI.
The analogues for the mappings of N%:* are valid.

Proor. First let Te N, ,(E, F) and Se L(F, G). If S=0, the assertion is
trivial. So we assume Sx0. Then we have

STu = Y& ,SB;Au foreach ue€kE,

with
{A} < (E,Z) and {B} < L(Z, F)
such that
ICIA:DI . < o0
and

sup _ [I(ICSB)' W'D »
lg/<1

1wl

< |ISI- sup NCUBSI=ESWIDIL
lIwllg <1
< ISl- sup (1Bl < oo.
llullF <1
This implies STe N ,(E, G) and
vz (ST) < |IS]l - vz, (T).

Secondly, let Te L(E, F) and S e N ,(F, G). Then‘we have
STu = Y2 ,B;A;Tu  foreach ucE,

with
AT < NT0- 14D < o
and
sup [I(IIB;w' DIl < 0.
Iwller<1
Hence
STe N4 ,(E, G)
and

Vz,(ST) < vz ,(S) | T .
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This completes the proof.

PROPOSITION 5. Let A be of type A and let E, F and Z be Banach spaces.
Then L4(E, F) is dense in N ,(E, F) and N?-XE, F).

ProoF. Let Te N, ,(E, F). Then Tu=3Y 2, B;Au for each ueE, with

(4Dl < oo

and
Higllll;lll(llﬂév'll)lly < .
If we set
T = Y% BAu,

we obtain

T,e L§(E, F)
and

(T— 7-;c)u = Z?c’:IBk.,.;Ak.,,iu fOI‘ eaCh uEE‘
Consequently we have

vz (T—To < ll(llAk+iII)Ilz-||31|l'ls>l IC1Bi+ 0" D12 -

Owing to (a), this converges to 0 as k—»oo0. Hence L(E, F) is dense in N ,(E, F).
In the same way we can show that LZ(E, F) is dense in N%-*E, F).

COROLLARY. Let A be of type A, let E and F be Banach spaces and let Z
be a finite dimensional Banach space; then N ,(E, F)c K(E, F) and N%-XE, F)
<K(E, F).

LeEmMMA 1. Let A be of type A and a Banach space, let Z be a Banach
space, let (6;)€ A and let D, be the mapping from | (Z) into I(Z) defined by

Dy((a) = (;a) for each (a) el (Z).
Then
D; e N, (1,(2), (2))
and

Vz,;.(Dl) = 1G)ll1-
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PrOOF. Let I(2)=(0,..,0, 7, 0,.). Then I(z)eN(Z) for zeZ, since

@©, ..,0,1,0,...)eA. Hence I, is a mapping of Z into A(Z). Define A4;: I (Z)
—Z by Au=2a;a, for each u=(a;) el (Z). Then

I} =« LZ, X(2)), {4} = L((2), 2),
Du=3Y%,L,Au for each uel(Z),
IC1A:IDIL = 16125

and by Theorem 2

sup  [[(I150' DN = sup
<1 o’ llar

o' llacz)y (z)

A0 D = 1.
<1

Hence
Dy €Nz i(l(2), MZ)) and vz (D) < ()4
On the other hand, let I be (z, z,...) with ||z =1. Then we have
10112 = I1D11ll 3z < IDyll < vz,u(Dy),
where the last inequality follows from Proposition 2. Hence
vz,1(Dy) = 1161
The proof is complete.

THEOREM 4. Let ) be of type A and a Banach space and let E, F and Z
be Banach spaces. Then Te L(E, F) is (Z, A)-nuclear if and only if T can be
factorized in the form T=Q,D,P,:

E 21, 1.(2) -2, (2) 245 F,

where P, e L(E, l1,(Z)) with |P,||<1, Q, € L(AZ), F) with |Q,||<1 and D, is a
mapping of the type given in Lemma 1.

Proor. The sufficiency is evident by Proposition 4 and Lemma 1. The
necessity is proved by virtue of the definition of T'e N ,(E, F) and the following
decomposition of T. Since, for any £¢>0,

Tu =32 BAu
with
14Dz < vz,(T) +5,

and
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Sup B DI < 1,
we can get the decomposition of T':
E- 2y 1.(Z) 2 WZ) 25 F,
where for each u € E P,u=(v;) with
Aul| A, for 4;%0
"o for A, =0,
and
Di((a)) = (| 4lla;) e ((Z) for each (a)el (2),
Q.((b)) = X% ,BbeF for each (b)eA(Z).
It is easy to verify that |P,||<1. Furthermore we have ||Q,[|<1. In fact,

1221 Bibillp = sup | X2 ,0'(B;b))l
v’ lI<t

< sup X2, |Biv'(by)l
o li< 1

< (b))l 2z - ”'S)P”I; 1(Biv)l a2

< 1Bl acz) -
Thus the proof is complete.

LEMMA 2. Let A be of type A and a Banach space, let Z be a Banach
space, let (6;)€ A and let D,: A'(Z)—1,(Z) be defined by

D,((b)) = (6;b;))  for each (b)ei'(Z).
Then
D, e NZ:4N(2), 1,(2))
and
vEAD,) = (|8
Proor. If we define A4;: A'(Z)—»Z by Au=4b; for u=(b;) € A'(Z), we have
Dyu=3Y2 L, Au= 3% ,0,l,0;Au

with
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1/5, for & %0

& =
0 for §; =0,
where
I8N = 11(8Dl2 < o
and
o S0P, NG A < 1.
Hence
D, e N42(2), 1,(2))
and

v24(Dy) < 1)z

On the other hand, we have

161l 2 =” sup 1“(51"’.')”11(2)-

bi)llar(z)=

Hence for any £>0, there exists (b;) with |(b))]l;:zy=1 such that
10l —& < 1D((BD)1y2) -
Since
ID2((b)1y(zy < 1Dl
by Proposition 2 we have
Gl —e < vZ#4(D,).
Thus we obtain
1@N2 < v5A(Dy).
Consequently
v&4(Dy) = (B
The proof is complete.

THEOREM 5. Let A be of type A and a Banach space and let E, F and Z
be Banach spaces. Then Te L(E, F) is right (Z, 2)-nuclear if and only if T
can be written in the form T=Q,D,P,:
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E P2, )/(2) 22,1,(2) 2, F,

where P, € L(E, A'(Z)) with ||P,||<1, Q, € L(1,(Z), F) with ||Q,| <1 and D, is a
mapping of the type given in Lemma 2.

Proor. The sufficiency is evident by Proposition 4 and Lemma 2. The
necessity is proved by virtue of the definition of Te NZ-XE, F) and the following
decomposition of T. Since for any ¢>0 we have

Tu =% ,BAu
with
ICAB:DI2 < v&4T)+e
and

sup [|([l4ulDllz < 1,
llull<1

we can get the decomposition of T':
E P2, )/(Z) 22, 1,(Z) 2=, F,
where
Po,u = (Au)e V(Z) foreach u€kE,
D,((a)) = (|Billa)el,(Z)  for each (a;) €A (Z)
and for each (b)) € 1,(Z)
2:((b)) = XiZ.Cib;
with
B,/||B;ll for B;x0

C, =
0 for B;=0.

It is easy to verify that ||P,|| <1 and ||Q,[|<1. The proof is complete.

§4. (Z, 2)-quasi-nuclear mappings

In this section we shall introduce and investigate the (Z, A)-quasi-nuclear
mappings.

DEFINITION 5. Let A be of type A, and let E, F and Z be Banach spaces.
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Te L(E, F) is said to be a (Z, A)-quasi-nuclear mapping if there exists a sequence
{A;} = L(E, Z) such that

(4;N el
and
[Tull < (l4ulD),  foreach wuekE.

The inf ||(]| ;D] which is taken over all {A;} satisfying the above condition is
denoted by v3 ,(T). The collection of all (Z, A)-quasi-nuclear mappings is
denoted by N%, ,(E, F).

PrROPOSITION 6. Let A be of type A, and let E, F and Z be Banach spaces.
Then for any Te N% ,(E, F) we have

ITI < v8,«(T).
Proor. Let Te N2 ,(E, F). Then
I Tull < Nl - 0CHAIDN 2
Thus the proof is complete.

ProrosITION 7. Let A be of type A and let E, F and Z be Banach spaces.
Then we have

Nz (E, F) = N% i(E, F)
and
v3,u(T) < vz, (T)
for each Te N, ,(E, F).

ProoF. Te Ny ,(E, F) can be expressed as follows. For any &>0 there
exist sequences {A4;} = L(E, Z) and {B;} = L(Z, F) such that

Tu= 372 ,BAu for each wu€ekE,
1AL < vz (T)+e
and

sup [|(I1Biv' DIl < 1.
o<1

Therefore we have
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ITu] < sup i, ||Aul- | B
o<1
< I AuiD2- sup (B D 4
llo’lis1

< A4 Dl 4,
which shows Te N ,(E, F) and v% ,(T)<vz,(T). The proof is complete.

ProPoOsITION 8. Let A be of type A, and let E, F, G and Z be Banach
spaces. If Te N% ,(E, F) and Se L(F, G), then STe N%,,(E, G) and

v8,A(ST) < ||S||-v§,(T).
If Te L(E, F) and Se N$% ,(F, G), then STe N¢ ,(E, G) and
v8,2(ST) < v§ 4(S)- I T] .

Proor. If Te N ,(E, F) and SeL(F, G), there exists a sequence {4}
< L(E, Z) such that

(J4;)eA and || Tu|| < ||(|Aul)l, - foreach ueE.
Then
{ISl4} = L(E, Z),  (IS|l-ll4:lDel
and
ISTull < SN - [1Tull < ISI- 14D
= |I(IISII - 14Dl 2 foreach uekE.
Therefore we have
STe N% ,(E, G)
and
v3,:(ST) < |ISI|-v§,«(T).

In the same way, if Te L(E, F) and SeN$% ,(F, G), there exists a sequence {B;}
< L(F, Z) such that

(IB)l)eA and (Sv| < (IBwl)ll,  foreach wveF.
Therefore we have

ISTu) < |I(I|B;Tul)ll foreach uekE
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and
ICBTIDN: < ITH- 1B 2 < oo,
that is,
(IB;Tl) €A
Consequently we have
STe N% ,(E, G)
and
VvA2AST) <v§ (8- IIT] .
The proof is complete.

THEOREM 6. Let A be of type A,, let E, F and Z be Banach spaces and
T,e N ,(E, F), k=1,2,...., M. Then Y} T, € N ,(E, F) and

V8 AT T) < M.CH-1 . (2M V8. A(T)).
Proor. For any >0 there exist sequences
{Aii}1<i<o < L(E, Z), k=1,2,.., M,
such that
(1 Aw,ilill 2 < v8,2(Ti) +&/2%
and
1Tl < (A0l foreach uekE, k=1,2,.,M.
Therefore we have
I(ZEToul < T, 1 Teull
< 2R (A Dill 2
< M| Akt 1Dl 4
Hence we have
VAL T) < M- AiilDell
<M. CME FR U AklDill 2
< M.CM-1 (T ] (T)+e).






