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Introduction

This article deals with Riemann-Liouville operators associated with homo-

geneous convex cones V which have been studied by M. Riesz [5], L. Carding [2]

and S. G. Gindikin [3], and sets up a theory of distributions measured by the oper-

ators 0>p

v± (as for the definition, see (1-5) of § 1).

E. B. Vinberg, S. G. Gindikin, and I. I. Pyateckiϊ-Sapiro [9] have proved

that every complex bounded homogeneous domain is analytically equivalent to

an affine-homogeneous Siegel domain of the first or second kind, and then it is

easy to prove that any aifine homogeneous real domain is affine-equivalent to

a convex linear homogeneous cone or a real Siegel domain (cf. [3], [8]).

We shall define a homogeneous distribution associated with a homogeneous

domain D. Let G be a group to act transitively on D. Then G operates on the

Schwartz space defined on D such that

(0-1) (/,<?)! >/• defined by /•(*) = f(gx),

and by the duality, on the distribution space such that

(0-2) (g,Δ)\—*gA defined by (gA)(f) = A(f ).

Let ω be a one-dimensional representation on G. If the distribution A satisfies

the relation

(0-3) 9A=ω(9r
lA

for any g e G, it is called a homogeneous distribution associated with D (cf. [10]).

Then the homogeneous distribution A is extended to the whole space such that;d+"

is equal to A on £), and to 0 for other else. If a set M of homogeneous distribu-

tions depends on a parameter, and for any AΛ9 Aβ in M the convolution operator

(AΛ)+*(Aβ)+ is well defined and equals (AΛ+β)+ in M, an operator(Jα+/) I >AΛ+

*/ is called the Riemann-Liouville operator associated with the domain D.

Therefore the operator «^+ is one of canonical Riemann-Liouville operators,

and satisfies the Huygens principle (cf. [7]).
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The distribution theory of L. Schwartz is developed for each linear form Γ
on CQ(Ω) such that to every compact set KG £2 there exist constants C and k

satisfying

(0-4) I < Γ, φ> I < C Σ sup \D φ\ φ e C J

On the other hand, we define the distribution measured by the Riemann-Liouville

operator &$+. Namely, we consider the linear form T on C%(Ω) satisfying

(0-5) \<T,φ>\<C Σ supl^KΨI φeC%(K).
{α*}<fc

We shall prove the local representation theorem and the Paley- Wiener theorem
attached to this distribution.

As is well-known, the local representation theorem states that distributions of
finite order with compact support are represented by a sum of partial derivatives
to all directions of some L2-functions. In this paper, we obtain that distributions
of F-order finite with compact support are represented by a sum of partial deriva-
tives by ^£+ of some L2-functions. For this purpose, the "Sobolev inequality"
obtained by the author [12] plays an essential role.

The Paley- Wiener theorem states that the duality of the Fourier-Laplace
transform between the distributions of finite order with support in the sphere

(0-6) S,= {x; |x |<r}

and the entire functions F(ω) estimated by

(0-7) (1 + |ω|)"expr|Imω| n > 0 integer.

The duality of the Fourier-Laplace transform between the distributions of V-
order finite with support in the compact set

(0-8) [α, 6] = { x e R " ; x - α e F , b-xeV}

for Certain vectors α, b e R", and the entire functions F(ω) estimated by

Σ I ( - /ω)ΐα*|exp (ft, Im ω) Im ω e V*,
(0-9)

Σ I ( - ιω)ϊ"*|exp (α, Im ω) Im ω e - V*.
{-**><«•

Here ( ~ίω)ϊβ* is the polynomial associated with the dual cone V* of 7 (see § 1).
Therefore, in our theorem, we characterize the entire functions having the follow-
ing properties :

(a) it is estimated in the subdomain RM ±iV* .
(b) it is estimated by the only polynomial (—ico)+** .

However we note that the Paley- Wiener-Schwartz theorem characterizes the entire
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functions estimated by the polynomial of |ω| in C".
We turn now to a survey of the contents of the present article section by

section.

Section 1 deals with a definition of distributions measured by ^£+. It is

called distributions of F-order finite.
Section 2 deals with the local representation theorem.

Section 3 presents a relation between distributions of F-order finite with

compact support and entire functions. It is called the Paley-Wiener type theorem.

The author is grateful to Professors K. Mochizuki, and H. Morikawa for

their constant encouragement.

§ 1. Definition of a distribution of V-order finite

Let V be a convex linear homogeneous cone in R" not containing straight

lines, and let Ω be an open set in Rn. In this section we shall distinguish among
distributions defined on Ω a class of distributions which can be measured by

means of the Riemann-Liouville operators 0>^+ associated with the cone V.

We shall call elements of this class distributions of K-order finite.

The precise formulation of the Riemann-Liouville operator associated with

V has been given in the work [3] of S. G. Gindikin (cf. also M. Riesz [5] and

L. Carding [2]). We begin with summarizing his formulation of the Riemann-

Liouville operator.

E. B. Vinberg [8] has proved that in the group of linear transformations of

Fit is always possible to select a simply transitive subgroup G(F) whose elements

can be represented by triangular matrices in a suitable basis. Then by fixing a

particular point e e V, it is possible to transfer to V the multiplicative structure of

the group G(F) by setting:

(1-1) Xiλ'2 = g(xl)x29 where g(xl)e = x1 g(xi)eG(V).

We call functions satisfying the condition

(1-2) /(*l*2)

compound power functions. They form a multiplicative group in which we can
choose / generators χf(x), / being the dimension of the diagonal subgroup of

G(F) (i.e. the rank of the cone F). Each compound power function /(x), nor-

malized by the condition /(e) = l, is specified by

(1-3) /(x) = x» = Π feW)"'
i=l

It is essential that &(x)>0 when x e F.

If L(x) is a linear functional on R", the function exp (L(x)) serves as an
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analogue of the exponential function. A particular form L0(x) = (e, x) is fixed
henceforth.

Now the Siegel integral of the second kind (the gamma function for the cone

V) is defined by the formula

(1-4) Γv(p) = exp-(e, x)x»+^x, peC1,

where dx is the Euclidean measure and xddx is the invariant measure on R" with
respect to G(F). The function /Y(p), which is unique to within a factor not de-
pending on p, is a product of one-dimensional gamma functions.

Now we can construct the Riemann-Liouville operator associated with the
cone V:

γP + d

(1-5) (P'v±f) (x) = - - * / /

where the function xp++d equals xp+d for xeF, zero for other else, and x(L+d

equals ( — x)ζ.+d. If the operator (1-5) is a partial differential operator in a usual

sense, that is, its Fourier-Laplace transform is a multiplication by a polynomial,

the vector p is called F-integral.
We shall finish to summarize it after noting an equation universal in applica-

tion.

When we denote by x£ the compound power function associated with the dual
cone F* of F, it can be continued to the Siegel domain of the first kind in virtue
of the equation

(1-6) ( exp ( - (z, x))χp+ddx = Γv(p)z*p* Re z e F*
jv

where m{ is a positive integer associated with V.
Now we shall define a distribution of F-order finite :

DEFINITION 1-1. A distribution Tin &'(Ω) is called to be of F-order m
in @'(Ω) if to every compact set K in Ω there exist a constant C and a positive
integer m such that

(1-7) |<Γ, φ>\<C Σ s u p l ^ K Φ I , φeC$(K).
{-α*}<m

DEFINITION 1-2. A distribution T in #'(Ω) is called to be of F-order m

in &'(Ω) if to some compact set K in Ω there exist a constant C and a positive
integer m such that
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(1-8) I < Γ, φ > I < C Σ sup 10>ϊ+φ I , φ e <ϊ(Ω).
{-α*}<ro K

Here the representation { — α*}<m denotes a set of all K-integral vectors α
i

such that |—α*|= — Σ αi is less than the positive integer m.
i=l

REMARK. If a distribution in &'(Ω) is of K-order m in ίf'(Ω), it is of

7-order m in '̂(Ω).

§ 2. Representation theorem

In this section we shall obtain a representation theorem of distributions of

F-order finite in #'(Ω). For this purpose we introduce some function space:

DEFINITION 2-1. We denote by Hψ(Ω) the closure of C$(Ω) with the norm

(2-1) ||/H£.m = Σ \\W+f\\bw < o o .
{-α*}<m

We easily see that the space Hψ(Ω) is a Hubert space with the inner product

(/,0)κ,*= Σ (^+/,^+^)L2(0)for/and^in^(Q). This space (̂Ω)
{-α*}<m

may be considered as the Sobolev space measured by the Riemann-Liouville

operators, and has some properties similar to Hm(Ω).

REMARK. Any element Tin the dual space (Hγ(Ω))f is represented by

(2-2) T= Σ &Ϋ+f. for some /αeL2(Ω).
{-α*}<m

Conversely the right term of (2-2) is an element in (Hy(Ω))'.

We begin with proving a proposition about a convergent sequence in H*p(Ω).

PROPOSITION 2-2. Suppose a sequence {/,-} in H™(Ω) is weakly con-

vergent to some element f in Hψ(Ω). Then for any φ in L2(Ω)

(2-3) lim (&γ+fj, φ)L2(Ω} = (&}+f, φ)L2(Ω} { - α*} < m .
j-*00

Conversely if for any φ in L2(Ω) and a sequence {/,-} in Hy(Ω), there exist

some elements fΛ in L2(Ω) satisfying

(2-4) lim (&t+fj9 φ)L2(Q) = (/, φ)L2(0) { - α*} < m ,
j-»oo

there exists an element f in H™(Ω) such that

(2-5) /. = &*v+f { - α*} < m
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and the sequence {fj} is weakly convergent to f.

We can prove the proposition by an argument similar to the case of the usual

Sobolev space, so we omit the proof (cf. S. Mizohata [4] p. 78).
In the following we suppose that Ω is a bounded open set. When we shall

study the distribution of F-order finite, the next inequality, which is obtained by

the author (see [12], (1-11)), is essential and performs the role analogous to the

Sobolev inequality.

LEMMA 2-3. Let Ω be a bounded domain in R", and let α0 be a vector
satisfying Ω + aQc.V. Then we have for any f in L2(Ω) and a fixed vector —η
in F*.

(2-6) sup |e?2<*'»>(^+/) (x - a0)\ ^ /T^2α + ̂  f ->.-Λ-2**-<ιΛ 1 / 2

PROPOSITION 2-4. Suppose K0 is a compact subset in Ω. Then we have
the following assertions:

i) Let B be a bounded set of V-order m in (^'(K0). Then there exists a

positive integer m0 such that B is a bounded set in (Hlp+m°(Ω))'. Also the
converse is true.

ii) If a sequence {7}} of distributions and T in £'(Ω) are of V-order m in
&'(KQ) and the sequence {7}} converges to T in a sense of V-order m, there ex-

ists a positive integer m0 such that the subsequence {7}} and T are contained in

(Hγ+"'°(Ω)y and {7"}} is (Hγ+m°(Ω))f-simply convergent to T. Also the converse

is true.

In this proposition the bounded set of F-order m means that there exists a

compact set K in KΌ and a positive number η such that

(2-7) sup |<T,0>|<l

for any φe«f(K0) satisfying Σ suρ|«^+ φ\<η. -If we observe that a set
{-α*}<m K

CQ(Ω) is dense in Hy(Ω), we see the proposition from Lemma 2-3.
Now we obtain the main result in this section which represents the local

property of the distribution of F-order finite.

THEOREM 2-5. Let K0 be a compact subset in Ω. Then we have the follow-
ing assertions:

i) If a set B is bounded in a topology of V-order m in^f(KΌ), there exists a

positive integer m0 such that any element Tin B is represented by Σ ^v+f«
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for some fa in L2(Ω) and also the set of all /α corresponding to B is bounded in
L2(Ω).

ii) Suppose a sequence {TJ is convergent of V-order m to an element T

in *'(K0). If we set 7}= Σ &*y+ f*J} and T= Σ &v+ /«, the
{ — α*}<m+mo {-α*}<w+mo

sequence f(

Λ

jΊ is weakly convergent to fΛ in L2(Ω).

PROOF, i) For any φ in CQ (Ω) we see from Proposition 2-4 and the Riesz

theorem that there exists a unique g in H^+mo(Ω) which satisfies

(2-8) < Γ, φ > = (φ9 g)V)m+nιo = Σ (&t+Φ, &Ϋ+g)L*w
{—«*}<m+mo

Σ < &ϊ+&t-g, Φ >
{—α*}<m+mo

Then setting fΛ = έPy-g, we conclude the proof.
ii) follows from Proposition 2-2 and Proposition 2-4. Q. E. D.

§ 3. Theorem of the Paley-Wiener type

As is well known, the Paley-Wiener theorem expresses the relation between
entire functions behaving like (l + |z|)M xexpv4 |Imz| (n>0 an integer, A>0)
near the infinity and the distribution with compact support by means of the Fourier
= Laplace transform.

In this section using the Fourier-Laplace transform, we shall consider a rela-
tion between entire functions increasing in a particular polynomial near the

infinity and the distributions of K-order finite. We call this result the Paley-Wiener
type theorem associated with the cone V.

First of all we shall introduce some function space:

DEFINITION 3-1. The function space £ψ [0, fo] is the set of all continuous
functions / such that for { —α*}<m, «^+/is continuous in [α, b}.

The expression [#, b] denotes a set of all x e R " satisfying x — aeV and

b-xeV.

REMARK. The space &y [α, b] is a Frechet space with a seminorm Pk(φ)

= Σ sup \'&ϊ+φ\ where Fk = {x; \x\£k}.
{-α*}<m F k n[α,b]

Henceforth we assume that the set [α, b} is compact.

We begin with proving a lemma

LEMMA 3-2. // a distribution T in £' [α, ft] is of V-order m in &'[a, ft],

we have the expression
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(3-1) < T, φ> = Σ { &"v+φ(x)μx(dx) φef[a,bl,
{-«*}<ro J[α,5]

where μΛ(dx) are some complex Baire measure on [#, b],

PROOF. Since the space g {a, b~] is dense in £φ [α, h], we can extend T
as a continuous linear form on #φ [0, ft]. Therefore the distribution Tis a con-

tinuous linear form on the product space Π < °̂ [β» ^]» an(i then from the
{-α*}<m

Riesz theorem we get the lemma (cf. K. Yosida [11] p. 119).
Now we arrive at a main result, that is, the theorem of the Paley- Wiener type

associated with the cone V. We divide it into two parts.

THEOREM 3-3A. Let T be a distribution of V-order m in &'\_a, b~\. Then
the Fourier-Laplace transform &(T)(ω) = &(T)(ξ + iή) is an entire function
which satisfies for some positive constant C

ί C Σ |(-ιω)ϊ«' !*<*•»> η 6 F*,
(3-2) \X(T) (ω)| ^ <-α*><M

(C Σ l(-ιω)ϊβ* I *<*'*> - ί/eF*.
{-α*}<m

PROOF. Since the distribution Tis in '̂[α, fe], the Fourier-Laplace trans-
form ^f(T)(ω) equals <e~ί(JC'tπ), T>, and from (1-5) and Lemma 3-2, we obtain

(3-3) jSf (Γ) (ω) = Σ (
{-α*}<m J[α,Z>]

= Σ ( - /ω);«* β-'̂  w> μΛ(dx) -ηeV*.
{-α*}<m J[α,ft]

Since α is a F-integral vector, the function ( — ίω)ία* is a polynomial of each com-
ponent of ω, and so the Fourier-Laplace transform &(T)(ω) is an entire function
satisfying (3-3) for any η in Rπ. If the vector η is in V*, we have

(3-4) (jc,ιj)£(M) xe[fl,t].

Also if the vector ^ is in — V*9 we have

(3-5) (x, ιj) ^ (α, 17) x€[β,ft] .

Therefore using (3-3), we have the estimate (3-2) from (3-4) and (3-5). We
conclude the proof.

To show the converse of Theorem 3-3A, we prepare a lemma. S. G.
Gindikin [3] noted that every point x in R" can be represented in the form

(3-6) x = δx(eδ) (*x

where eδ is a diagonal form (eδί,...9 eδ) with elements ± 1 or 0, and if eδ is a diagonal
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form with only elements 1 or —1, the representation (3-6) is unique. Then we
define the function xp

δ by (δx)p when each eδi is not zero, and by 0 when some eδ.
is zero.

LEMMA 3-4. For any y in R"\F, where V is the closure of V9 there exists
a vector η in the dual cone K* such that

(3-7) OMf)^0.

PROOF. When the function j^1] ([1] = (1> •••> 1)) is not zero> there exists
a vector ηί in F* such that the vector y is transformed into the diagonal form

η* .y = (yδίeδl,..., yδleδl), where f/f is the dual vector of η1 in V with respect to the
inner product in Rw. From the hypothesis, there exists an ϊ'0 such that eδio = — 1.
Therefore we can choose an element η which satisfies (η*y, e)$0. If the function
)^1] equals zero, there exists some small positive real number ε and <5' such that

(y + εe)^^>rO and eδ> is not e. Then by the above argument we can choose an
element η in K* which satisfies (y, η) = (y + εe, η)-(εe, ί/)^0. We conclude the

proof.
By using the lemma, we have the following theorem.

THEOREM 3-3 B. Suppose an entire function F(ω) on C" satisfies for some

positive number C

C Σ |(-/ω);;β* I *<»•'> ηeV*9
(3-8)

|(-ι'ω);«* I *<••»> ηe - V* .

Then there exist a positive integer m0 and a unique distribution T of V-order

m + m0 in a sense of Definition 1-1, whose support is contained in [0, &], such
that Fourier-Laplace transform J?(T)(ω) equals F(ω).

PROOF. For any function φ in Co(Rw), we write φ(x) = φ(-x), and then

(2π)~M\ F(ξ + iη)(&φ)(ξ + iη)dξ is independent of the choice of the vector
jR"+iη

η. There we define a linear operator Ton Co(Rw) by

(3-9) <T, φ> = (2π)-" F(ω)(<?φ)(ω)dξ.
JRn+iη

From (3-8), we see that for — η e F*

(3-10) \<T,φ>\

^CeV Ή Σ ( \(-iω}***\\(<eφ)(ω)\dω.
{-a*}<mJRn+iη

Since the function φ is in C$ (Rn), for any F-integral vector — β there exists a posi-
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live constant Cφ depending on φ to satisfy

(3-11) \(Sfφ)(ω)\

£C,|(-/ω);' | e x p { - m i n ( j c , i f ) } .
xesupp φ

Then if we substitute (3-11) into (3-10), we obtain from (1-6)

(3-12) I < Γ, φ > I ̂  Cφ exp {(*, η) - min (x, η)}
.xesupp φ

x f l(-ιω);β°*|2 dω
JRn+iη

= Cφ exp {(A, //) - min (x, η)} ( e-
2<x'*W<>+d) dx

xesupp φ JV

= Cφ exp {(b, η) - min (x, η)} /Y(2α0 + d) (2if);(2««+'>*,
xesupp φ

I
where |α0|= Σ αo/ *s large enough. Further, there exists a vector x0 satisfying

(3-13) min(x, η) = (x0, η).
xesupp φ

If the vector b — x0 is not in V, in virtue of Lemma 3-2, there exists a vector η
in F* satisfying (b — x0, ή) ̂  0. Therefore the left term of (3-12) converges to zero,
since the vector η tends to infinity along some direction. Hence supp(T)c:(— oo,
6]. Also we can prove that supp(T)c=[«, oo). These prove that supp(T)
c[fl, 6]. From (1-6) and the Holder inequality, we see that (3-10) becomes

(3-13) \<T9φ>\

^ C <?<*•"> Σ (( I &(&ΐ+-a°Φ) (ω) I 2dω\'2
ί-«*}<m \)ttn+iη /

\( -/ω)J°*|2 d

,c, K _ ^ V ,v y | „„ I 1 / 2

{-α*}<m\

for η e V* and some suitable vector α0, where the constant C(φ, η) depends only
on the support of φ and η. We finish the proof.
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