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Introduction

This article deals with Riemann-Liouville opcrators associated with homo-
geneous convex cones V which have been studied by M. Riesz [5], L. Garding [2]
and S. G. Gindikin [3], and sets up a theory of distributions measured by the oper-
ators 2%, (as for the definition, see (1-5) of § 1).

E. B. Vinberg, S. G. Gindikin, and I. I. Pyateckii-Sapiro [9] have proved
that every complex bounded homogeneous domain is analytically equivalent to
an affine-homogeneous Siegel domain of the first or second kind, and then it is
easy to prove that any affine homogeneous real domain is affine-equivalent to
a convex linear homogeneous cone or a real Siegel domain (cf. [3], [8]).

We shall define a homogeneous distribution associated with a homogeneous
domain D. Let G be a group to act transitively on D. - Then G operates on the
Schwartz space defined on D such that

(0-1) (f, 9) —— f? defined by fo(x) = f(gx),
and by the duality, on the distribution space such that
(0-2) (9, 4) ——g4 defined by (g94)(f) = 4(f9).

Let w be a one-dimensional representation on G. If the distribution A4 satisfies
the relation

(0-3) g4 = w(g)"'4

for any g € G, it is called a homogeneous distribution associated with D (cf. [10]).
Then the homogeneous distribution 4 is extended to the whole space such that 4,
is equal to 4 on D, and to O for other else. If a set M of homogeneous distribu-
tions depends on a parameter, and for any 4,, 4, in M the convolution operator
(4,)+%(4p) . is well defined and equals (4,.4). in M, an operator (4, f) I—— 4,
xf is called the Riemann-Liouville operator associated with the domain D.
Therefore the operator 2%, is one of canonical Riemann-Liouville operators,
and satisfies the Huygens principle (cf. [7]).
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The distribution theory of L. Schwartz is developed for each linear form T
on C¥(R) such that to every compact set K<Q there exist constants C and k
satisfying

(0-4) |<T, ¢>] < C'&Ek sup |D¢| ¢ eCHK).

On the other hand, we define the distribution measured by the Riemann-Liouville
operator 2%,. Namely, we consider the linear form T on CF(Q) satisfying

(0-5) I<T,¢>1<C 3 suplPhdl  $eCHK).

We shall prove the local representation theorem and the Paley-Wiener theorem
attached to this distribution.

As is well-known, the local representation theorem states that distributions of
finite order with compact support are represented by a sum of partial derivatives
to all directions of some L2-functions. In this paper, we obtain that distributions
of V-order finite with compact support are represented by a sum of partial deriva-
tives by 2%, of some L2-functions. For this purpose, the ‘‘Sobolev inequality”
obtained by the author [12] plays an essential role.

The Paley-Wiener theorem states that the duality of the Fourier-Laplace
transform between the distributions of finite order with support in the sphere

(0-6) S, = {x; |x| <r}
and the entire functions F(w) estimated by
(0-7) (1 + |w|)"exp r|lIm w| n > 0 integer.

The duality of the Fourier-Laplace transform between the distributions of V-
order finite with support in the compact set

(0-8) [a, b] = {xeR"; x —aeV,b—xeV}

for certain vectors a, b € R”, and the entire functions F(w) estimated by

> (= iw)z*lexp(b, Imw) Imwe V*,
(0-9) {(—a¥}<m :
{ ‘Z) [( — iw)3”*lexp(a, Im w) Imwe —V*.

Here (—iw);*" is the polynomial associated with the dual cone V* of V (see §1).
Therefore, in our theorem, we characterize the entiré functions having the follow-
ing properties:

(a) it is estimated in the subdomain R"+iV*.
(b) it is estimated by the only polynomial (— iw)z**.

However we note that the Paley-Wiener-Schwartz theorem characterizes the entire
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functions estimated by the polynomial of |w] in C".

We turn now to a survey of the contents of the present article section by
section.

Section 1 deals with a definition of distributions measured by £%,. It is
called distributions of V-order finite.

Section 2 deals with the local répresentation theorem.

Section 3 presents a relation between distributions of V-order finite with
compact support and entire functions. It is called the Paley-Wiener type theorem.

The author is grateful to Professors K. Mochizuki, and H. Morikawa for
their constant encouragement.

§1. Definition of a distribution of V-order finite

Let V be a convex linear homogeneous cone in R” not containing straight
lines, and let Q2 be an open set in R”. In this section we shall distinguish among
distributions defined on Q a class of distributions which can be measured by
means of the Riemann-Liouville operators £, associated with the cone V.
We shall call elements of this class distributions of V-order finite.

The precise formulation of the Riemann-Liouville operator associated with
V has been given in the work [3] of S. G. Gindikin (cf. also M. Riesz [5] and
L. G3rding [2]). We begin with summarizing his formulation of the Riemann-
Liouville operator.

E. B. Vinberg [8] has proved that in the group of linear transformations of
Vit is always possible to select a simply transitive subgroup G(V) whose elements
can be represented by triangular matrices in a suitable basis. Then by fixing a
particular point e € V; it is possible to transfer to V' the multiplicative structure of
the group G(V) by setting:

(1-1) x1Xy = g(x)x,, where g(x,)e =x, g(x,)eG(V).
We call functions satisfying the condition
(1-2) Jxyx2) = f(x1)f(x7)

compound power functions. They form a multiplicative group in which we can
choose [ generators yx(x), | being the dimension of the diagonal subgroup of
G(V) (i.e. the rank of the cone V). Each compound power function f(x), nor-
malized by the condition f(e)=1, is specified by

(1-3) 1) = % = T (et

It is essential that y,(x)>0 when xe V.
If L(x) is a linear functional on R, the function exp (L(x)) serves as an
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analogue of the exponential function. A particular form Ly(x)=(e, x) is fixed
henceforth.

Now the Siegel integral of the second kind (the gamma function for the cone
V) is defined by the formula

(1-4) T'y(p) = S exp—(e, x)x?*ddx, peCt,
v

where dx is the Euclidean measure and x4dx is the invariant measure on R* with
respect to G(V). The function I'(p), which is unique to within a factor not de-
pending on p, is a product of one-dimensional gamma functions.

Now we can construct the Riemann-Liouville operator associated with the
cone V:

(1-5) @P5:) () =22 5uf fes R,
v(p)

where the function x%*¢ equals x**¢ for xeV, zero for other else, and x2+¢
equals (—x)5*4. If the operator (1-5) is a partial differential operator in a usual
sense, that is, its Fourier-Laplace transform is a multiplication by a polynomial,
the vector p is called V-integral.

We shall finish to summarize it after noting an equation universal in applica-
tion.

When we denote by x4 the compound power function associated with the dual
cone V* of V, it can be continued to the Siegel domain of the first kind in virtue
of the equation

(1-6) Svexp (= (z, x))x**dx = [',(p)zz” RezeV*

Repi>n—;i" p*=(pl""’ pl),

where m; is a positive integer associated with V.
Now we shall define a distribution of V-order finite:

DEerFINITION 1-1. A distribution T in 2'(Q) is called to be of V-order m
in 2'(Q) if to every compact set K in Q there exist a constant C and a positive
integer m such that

(1-7) I<T,¢>|<C{_ §< sup |2%.+9|, ¢ € CF(K).

DEerFINITION [-2. A distribution T in &'(Q) is called to be of V-order m
in &'(Q) if to some compact set K in Q there exist a constant C and a positive
integer m such that
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(1-8) I<T,¢>|<C ¥ sup|P%.d|, ¢e&(Q).
{—a*}<m K

Here the representation {—a*}<m denotes a set of all V-integral vectors o

]
such that |—a*|=— Y «; is less than the positive integer m.
i=1

RemaArk. If a distribution in &'(Q) is of V-order m in &'(Q), it is of
V-order m in 2'(Q).

§2. Representation theorem

In this section we shall obtain a representation theorem of distiibutions of
V-order finite in £'(Q). For this purpose we introduce some function space:

DerINITION 2-1.  We denote by ii'{,’(Q) the closure of C$(Q) with the norm
2-1) ||f||l2/m = X ||9'f/+f”%.2(m < ®©.
{~a*}<m

We casily see that the space H m(Q) is a Hilbert space with the inner product
hDvm=_ T (PVsf, P4.0) 12y for fand g in HY(@). This space HH(Q)
may be considered as the Sobolev space measured by the Riemann-Liouville

operators, and has some properties similar to H m(Q).
REMARK. Any element T in the dual space (I;m(Q))’ is represented by

(2-2) T= Y 2%.f, for some f,e L3(Q).

{—a¥}<m
Conversely the right term of (2-2) is an element in (ﬁ'ﬂ(Q))'.
We begin with proving a proposition about a convergent sequence in H Q).

PROPOSITION 2-2. Suppose a sequence {f;} in Ioi'ﬁ(Q) is weakly con-

vergent to some element f in I?'#(Q). Then for any ¢ in L2(Q)

(2-3) 51_.11; (2%+fjs P2y = (P%+f s P2 {—a*} <m.

Conversely if for any ¢ in L2(Q) and a sequence {f;} in fol’#(Q), there exist
some elements f, in L?(Q) satisfying

(2-4) 111_233 (2%+f j» P2y = (fs ®) 20 {—a*} <m,
there exists an element f in 1}'{,'(9) such that

(2-5) fo= 20 {-a*<m
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and the sequence {f;} is weakly convergent to f.

We can prove the proposition by an argument similar to the case of the usual
Sobolev space, so we omit the proof (cf. S. Mizohata [4] p. 78).

In the following we suppose that Q is a bounded open set. When we shall
study the distribution of V-order finite, the next inequality, which is obtained by
the author (see [12], (1-11)), is essential and performs the role analogous to the
Sobolev inequality.

LEMMA 2-3. Let Q be a bounded domain in R", and let a, be a vector
satisfying Q+aq<V. Then we have for any f in L*(Q) and a fixed vector —n
in V*,

ProposITION 2-4. Suppose K, is a compact subset in Q. Then we have
the following assertions:
i) Let B be a bounded set of V-order m in &'(K,). Then there exists a

positive integer my such that B is a bounded set in (hof’a’“”'O(Q))’. Also the
converse is true.

ii) If a sequence {T;} of distributions and T in &'(2) are of V-order m in
&'(K,) and the sequence {T;} converges to T in a sense of V-order m, there ex-
ists a positive integer mq such that the subsequence {T;} and T are contained in
(Hy+m(Q)) and {T;} is (Hy+mo(Q))Y-simply convergent to T. Also the converse
is true.

In this proposition the bounded set of V-order m means that there exists a
compact set K in K, and a positive number # such that

2-7 sup|<T, ¢p>| < 1
for any ¢ e £(K,) satisfying Y sup|P%, ¢|<n. If we observe that a set
{—a*}<m K

C%(R) is dense in iI'ﬂ(Q), we see the proposition from Lemma 2-3.
Now we obtain the main result in this section which represents the local
property of the distribution of V-order finite. '

THEOREM 2-5. Let K, be a compact subset in Q. Then we have the follow-
ing assertions:

i) If a set B is bounded in a topology of V-order m in &'(K,), there exists a
positive integer mg such that any.element Tin B is represented by Y. P, f,

{—a*}<m-+tmg
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for some f, in L%(Q) and also the set of all f, corresponding to B is bounded in
L%(Q).

ii) Suppose a sequence {T;} is convergent of V-order m to an element T
in &'(Ko). If weset Tj= ¥ 2%, fP and T= ¥ 2%, f, the

{—a*}<m+mgo {—a*}<m+mo

sequence ) is weakly convergent to f, in L%(Q).

Proor. 1) For any ¢ in CF(Q) we see from Proposition 2-4 and the Riesz
theorem that there exists a unique g in fI?*"‘f’(Q) which satisfies

(2_8) < T9 ¢ > = (¢s g)V,m+mo = Z (gal"-f(p’ 9?’+g)L2(Q)

{—a*}<m+mg

= Z <'?%’+9%’—g9¢>'
{—a*}<m+mo
Then setting f,=2%_g, we conclude the proof.
ii) follows from Proposition 2-2 and Proposition 2—4. Q.E.D.

§3. Theorem of the Paley-Wiener type

As is well known, the Paley-Wiener theorem expresses the relation between
entire functions behaving like (1+|z|)"xexpA|Imz| (n>0 an integer, A>0)
near the infinity and the distribution with compact support by means of the Fourier
= Laplace transform.

In this section using the Fourier-Laplace transform, we shall consider a rela-
tion between entire functions increasing in a particular polynomial near the
infinity and the distributions of V-order finite. We call this result the Paley-Wiener
type theorem associated with the cone V.

First of all we shall introduce some function space:

DEeriNITION 3-1. The function space &% [a, b] is the set of all continuous
functions f such that for {—a*}<m, 2§, f is continuous in [a, b].

The expression [a, b] denotes a set of all xeR" satisfying x—ae V and
b—xeV.

REMARK. The space &% [a, b] is a Fréchet space with a seminorm P,(¢)
= > sup |2%.¢| where Vi={x; |x|<k}.
{—a*}<m Vin[a,b]
Henceforth we assume that the set [a, b] is compact.
We begin with proving a lemma

Lemma 3-2. If a distribution T in &' [a, b] is of V-order m in &'[a, b],
we have the expression
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G-  <T¢>= ¥ |  opéomdn) seélad],

where p,(dx) are some complex Baire measure on [a, b].

ProoF. Since the space & [a, b] is dense in &% [a, b], we can extend T
as a continuous linear form on &% [a, b]. Therefore the distribution T'is a con-
tinuous linear form on the product space I:[ &° [a, b], and then from the
Riesz theorem we get the lemma (cf. K. Yos(ida[a}fi'l 1] p. 119).

Now we arrive at a main result, that is, the theorem of the Paley-Wiener type
associated with the cone V. We divide it into two parts.

THEOREM 3-3A. Let T be a distribution of V-order m in &'[a, b]. Then
the Fourier-Laplace transform 2(T)(w)=%(T)(¢+in) is an entire function
which satisfies for some positive constant C

C T I(—io)= |e®n  nev*,
(32 12T ()| |
S (=i le@n  —pevr,

{—a*}<m
Proor. Since the distribution T'is in &'[a, b], the Fourier-Laplace trans-
form £(T)(w) equals <ei*>®, T>, and from (1-5) and Lemma 3-2, we obtain

(-3 2(T) (o) = pre” i p,(dx)

Fen
{—a*}<m J[a,b]

= 3 (—iw);a‘g ey (dx)  —neV*.
b

{—a*}<m a,

Since o is a V-integral vector, the function (—iw)3** is a polynomial of each com-
ponent of w, and so the Fourier-Laplace transform #(T)(w) is an entire function
satisfying (3-3) for any # in R". If the vector 7 is in V*, we have

(3_4) (x’ '1) g (b’ 7’) X € [a, b] .
Also if the vector 5 is in — V*, we have
(3-5) (x,m) =(a,n  xela,b].

Therefore using (3-3), we have the estimate (3-2) from (3-4) and (3-5). We
conclude the proof.

To show the converse of Theorem 3-3A, we prepare a lemma. S.G.
Gindikin [3] noted that every point x in R” can be represented in the form

(3-6) x=?x(e) (*xeG(V)),

where e, is a diagonal form (e;,,..., e;) with elements +1 or 0, and if e, is a diagonal
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form with only elements 1 or —1, the representation (3-6) is unique. Then we
define the function x4 by (°x)? when each e;, is not zero, and by 0 when some e;,
is zero.

LeEMMA 3-4. For any y in R"\V, where V is the closure of V, there exists
a vector n in the dual cone V* such that

3-7) »nx0.

PrRooF. When the function y§'! ([1]=(1,..., 1)) is not zero, there exists
a vector 5, in V* such that the vector y is transformed into the diagonal form
n%-y=(Vs6s,---» V5,€s)» Where n¥ is the dual vector of #, in V with respect to the
inner product in R”. From the hypothesis, there exists an i, such that e; = —1.
Therefore we can choose an element 1 which satisfies (n*y, €) <0. If the function
y§11 equals zero, there exists some small positive real number ¢ and ¢’ such that
(y+e€e)5!1%0 and e, is not e. Then by the above argument we can choose an
element x in V* which satisfies (y, 1)=(y +¢e, ) —(¢e, 1) <0. We conclude the
proof.

By using the lemma, we have the following theorem.

THEOREM 3-3 B. Suppose an entire function F(w) on C* satisfies for some
positive number C

C T I(—iw)ile®n pev*,

(3-8) |F(@)| < | =<
C ¥ |(—iw)zle@n ne—V*,

{—a*}<m

Then there exist a positive integer my and a unique distribution T of V-order
m+myg in a sense of Definition 1-1, whose support is contained in [a, b], such
that Fourier-Laplace transform %(T)(w) equals F(w).

Proor. For any function ¢ in C$(R"), we write qVS(x)=¢(—x), and then
(Zn)'”g F(¢+in) (.S?dv))(£+it1)d?j is independent of the choice of the vector
R+i
n. There \;e define a linear operator T on CZ(R") by

(3-9) <T¢>=@n|  Fo)(@) @M.

From (3-8), we see that for —ye V*

(3-10) [<T, ¢>|

scetw 3 [ (=0 11(29) @)]do.

{—a*}<m

Since the function ¢ is in C§(R"), for any V-integral vector — f there exists a posi-
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tive constant C, depending on ¢ to satisfy
G-11)  [(£¢) ()
S Gyl ( —iw)sP |exp { — min (x, n)}.
xesupp ¢
Then if we substitute (3-11) into (3-10), we obtain from (1-6)

(3_12) l < T9 ¢ > | é C¢ €xXp {(bs 1”) _xg;ljgp(f’ i”)}
x S (= i)3%0° |2 do>
R"+in

= C¢ exp {(bs ’1) — min (x, I'])} S e~ 2(x,mx2(aotd) gy
xesupp ¢ 14

= C, exp {(b, n) — min (f’ m} T'yQuy + d) (2n)5220*d*,
xesupp

!
where |ag|= 3 ag; is large enough. Further, there exists a vector x, satisfying
i=1
(3-13) min(x, 7) = (xo, #).
xesupp ¢

If the vector b—x, is not in V, in virtue of Lemma 3-2, there exists a vector 7
in V* satisfying (b —xq, 1) 0. Therefore the left term of (3—12) converges to zero,
since the vector # tends to infinity along some direction. Hence supp (T)<=(— oo,
b]. Also we can prove that supp(T)<[a, ©). These prove that supp(T)
c[a, b]. From (1-6) and the Holder inequality, we see that (3-10) becomes

(3-13) |<T, ¢>|

scern 3 ({ 12@19) (@) o)

{—a*}<m

x(( 1= io)e|? do)v
R"+in

sc@n _3_([erenigpog (2dx)

{—a*}<m
SC@4m _3_ sup|25iod]

for ne V* and some suitable vector «,, where the constant C(¢, ) depends only
on the support of ¢ and . We finish the proof.
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