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In this paper a ring is always a commutative ring with a unit and a graded
ring is a ring with a grading of Z-type. Let A be a graded domain. Then the set
of non-zero graded fractional ideals of A becomes a monoid naturally. We shall
say that A is a Dedekind domain in the category of graded rings when the monoid
is a group; it is not so difficult to show that 4 is a Dedekind domain in the cate-
gory of graded rings if and only if the global dimension of A4 in the category of
graded A-modules is less than or equal to 1.

The main purpose of this paper is to determine the structure of graded do-
mains of global dimension 1, or equivalently to determine the structure of Dede-
kind domains in the category of graded rings. To do this we shall introduce a
notion of exceptional primes, which plays an important role in this paper. As
a main result we shall show that, in case exceptional primes do not appear, there
is a 1:1 correspondence between the set of isomorphism classes and the class
group of the Dedekind domain consisting of homogeneous elements of degree
Zero.

1. Graded rings

Let A=®A,, ne Z, be a graded ring. We let h(A) denote the set of homos
geneous elements of 4. Given a homogeneous element x, deg(x) stands for the
degree of x. Let Gr(A4) be the category of graded modules over A. ‘A mor-
phism f of M to N is an A-homomorphism of M to N such that f(M,)=N, for
every n, where M=@®M,, neZ, and N=@®N,, neZ. An asterisk (*) means
‘graded’, ‘homogenéous’ or ‘in Gr(A4). For example, a *module is a graded
module, and a *ideal is a homogeneous ideal, and so on. If every *ideal of A4
is finitely generated, then we say A is *noetherian. When 4 is *noetherian, A,
is noetherian and moreover the underlying ring of A is noetherian ([3], p. 306).
For an ideal a of a *ring, we denote by a* the *ideal generated by all the *elements
of a. “If d'is a prime ideal, then a* is-also a prime *ideal.

ProposiTION 1.1. Let A be a *domain. If the Jacobson radical is not
zero, then A= A,.

ProOOF. Suppose that there exists a non-zero *element b with deg(b)#0.
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We take a non-zero element a of the Jacobson radical. Then 1+ b"a is a unit for
every r>0. Since 4 is a *domain, a unit must be homogeneous. Therefore
1+ bra is homogeneous for every r and this leads to a contradiction.

COROLLARY 1.2. Let A be a *ring and let p be a prime *ideal. If p does
not contain A, for some n#0, then p= nm*, where m runs over all maximal
ideals containing p.

REMARK. Any local domain has not a non-trivial grading by Prop. 1.1.
Moreover we can show that any local reduced ring also has not a non-trivial
grading.

Let A be a *ring and let S<h(A) be a *multiplicative set not containing 0.
Then S~!4 is also a *ring in a natural way. If S=h(A)— p, where p is a prime
*ideal, we use the symbol A, instead of S7'A4. If A has only one *maximal
*ideal, then we say A is *local. It is clear that 4, is a *local *ring and the
unique *maximal *ideal is pA,,. We can readily see that A4 is *local if and only
if Agis local. In particular we say A is a *field when the *maximal *ideal is trivial.
If A is a *field, then A is a field or A~ A4,[T, T~!], where A, is a field ([2], p. 291).
This implies that a *maximal *ideal is a prime *ideal. Similarly to the ungraded
case any *module over a *field is *free. If 4 is a *domain and S=h(4)— {0},
then S™!4 is a *field, which we denote by *Q(4). Let a be an A-*submodule of
*Q(A). ais said to be a *fractional *ideal of A if there is a *element d (#0)
of A such that dacA. Let *G(A) be the set of non-zero *fractional *ideal of 4.
Given a, be*G(4), a+b,anb, ab and a: b belong to *G(4). *G(A) becomes
a monoid by the operation: (a, b)—ab. We say that a is *invertible if a is an
invertible element in the monoid *G(A4). If a is *invertible, then a is finitely
generated.

ProrosiTiON 1.3. Let a be an element of *G(A). Then, a is *invertible
if and only if it is *projective.

PrRoOOF. Since a has a *element of *Q(A), {xe *Q(A4); aacA}={Be Q(A);
PacA}. Hence, a is a *invertible *ideal of A4 if and only if a is an invertible
ideal of A. It is well known that a is invertible if and only if a is projective over
A, and for a *module it is *projective if and only if it is projective. Thus the
proof is obtained.

LeEMMA 1.4. Let A be a *local domain. - If a *ideal a is *invertible, then
a is generated by one *element.

Proor. The proof is the same as in the ungraded case.
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2. *Dedekind domains

In this section A is a *domain. We say that A is *normal if any *element of
*Q(A), which is integral over A4, belongs to A. Since *Q(A) is normal, the derived
normal ring of A4 is contained in *Q(4). By [1] (§ 1 Prop. 20), the derived normal
ring is a *subring of *Q(A4). Hence, A4 is normal if and only if A4 is *normal.
It is reasonable to say that A is a *Dedekind domain if *G(A4) is a group. If
A is a ¥*Dedekind domain and S is a *multiplicative set, then S~1 4 is also a *Dede-
kind domain, because of the surjectivity of the canonical monoid-homomorphism
of *G(A) to *G(S~1A). Similarly to the ungraded case, we have:

ProposITION 2.1. Let A be a *domain. Then, A is a *Dedekind domain
if and only if A satisfies the following conditions: (1) A is *noetherian; (2)
*dim(A)<1; (3) A is *normal, where *dim (A) means the maximal length of
chains of prime *ideals.

ProoOF. Suppose that 4 is a *Dedekind domain. Then any *ideal is *in-
vertible, and hence finitely generated. Thus A is *noetherian. Let p be any
non-zero prime *ideal. Then A4, is also a *Dedekind domain. By the *locality
the *maximal *ideal of A¢p) is principal. It implies that *dim (4)<1. Let x
€ h(*Q(A)) be integral over A. Then, there is a *fractional *ideal a (5£0) such that
xaca. a:a, which we denote by b, is contained in *G(4). Since b2<b and b
contains 1, b2=b. Hence b=A, for *G(A) is a group. Thus x is an element of
A, and A is *normal. Now suppose that A satisfies the conditions (1), (2) and
(3). If A is *local and the *maximal *ideal is p, then p is principal. For, let
a be a non-zero *element of p. Then the radical ideal of a4 is p. Since 4 is
*noetherian, p” is contained in a4 for some integer n. Hence AE(A: ad)<=(4:
p"). It follows that A#(A: p). Suppose that p(A: p)=p; then each element of
(A: p) is integral over A. It contradicts the *normality of A. Thus p(4: p)=A.
Therefore p is principal. Since N\p”=0, any *ideal is principal, and hence *G(A4)
is a group. Thus Aisa *Dedek'i'nd domain. The proof of the general case can
easily be reduced to the *local case.

Let 4 be a *Dedekind domain. A is said to be of the first type if there is a
*ideal which is maximal. A is said to be of the second type if it is not of the first

type.

PROPOSITION 2.2. Let A be a *domain such that the underlying ring of
A is a Dedekind domain. Then, there are only three cases: (1) A=Ay; (2)
A~ A [X], where Ay is a field and X is an indeterminate; (3) A is a *field.
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PrROOF. Suppose that A is of the second type. Then the zero ideal is a
*maximal *ideal of 4, and A4 is a *field. Let A be of the first type and let p be a
maximal *ideal. p contains 4, (= @ A,,) and A_ (= @ A,,) since A/p is a field.

If S=A4—p, then S~'4 is a *local *Dedekmd domam Hence pS~1A=xS"14
for some *element x of p. If deg(x)=0, then S"14, xS !4, and S™!4_
xS 14_. By Krull’s intersection theorem A=A,. If deg(x)>0, then S~14_
cxS™1A_. Hence A,=0 for every n<0, p=A, and A4, is a field. Thus A
~Ao[x]. If deg(x)<O0, we get a similar result.

COROLLARY 2.3. Let A be a *Dedekind domain of the ﬁ(‘st type. Then
A=Ay or A~ A [X], in which case A, is a field and X is an indeterminate.

PrOPOSITION 2.4. Let A be a *Dedekind domain with non-trfivial grading.
Then, Aq is a field if and only if A is of the first type or a *field.

Proor. The ‘if* part is trivial. Suppose that A, is a field. If 4, or 4_
is zero, then A is of the first type. Assume that 4, and 4A_ are not zero. Given
a *element a (#0) with deg (a)>0, we see that g=4¢9(b) pdes(a) is a non-zero
element of A4, for any *element b (#0) with deg(b)<0. This implies that 4 is a
*field.

Let A be a *ring and m be an integer. If m=0, then we set AM=4,. If
m#0, then we set A™ =@ A,,. Itisclear that A™ is a *subring of A.
neZ
PRrRoOPOSITION 2.5. - Let A be a *Dedekind _domain. Then, A" is also a
*Dedekind domain for every m. Especially A, is a Dedekind domain.

ProOOF. Let a be an *ideal of 4. There are *elements w,,..., w, of a
such that a4A=w;A+---+w,A. For a *element x € a, there are *elements s,...,
s, in A such that x=s,w;+---+sw, Thus the s; are contained in 4™, and a
is a finitely generated *ideal of A, This shows that A(™ is *noetherian. Let
po be a prime ideal of 4,. By a *localization we see that there exists a prime
*ideal B of A4 such that P n Ao=po. If m#0, A is integral over A™. Hence
there exists a prime *ideal P of A such that P n A™ =p, for any prime *ideal p
of A, Let p (#0) be a prime *ideal of 4™ and let P be a prime *ideal of 4
such that PnA™=p. Then [4/P]™=AM[p. Since A/P is a *field, 4™/
p is also a *feld. It follows that *dim (4)<1. The *normality of A™ is
trivial. The proof is completed by Prop. 2.1.

REMARK 1. Let 4 be a *Dedekind domain. Then, A is of the second type
if and only if A, #0 and A_#0. When 4 is of the second type, {n; 4,#0} is a
subgroup of the group of integers Z.

2. Let S=A4,~{0} and let 4 be of the second type.  Then S™!4=*Q(A).
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3. *Local *Dedekind domains of the second type

In Section 2 we determined the form of *Dedekind domains of the first type.
From now on we consider *Dedekind domains of the second type. In this section
A is always a *Dedekind domain of the second type. We may suppose, without
loss of generality, that A, #0 from Remark 1 in §2. Let p be a prime *ideal of
A. p is said to be exceptional if p is not generated by all the elements of p,
(=pNndo)ie, p2pod.

ProrosiTiON 3.1. The following statements concerning a non-zero prime
*ideal p of A are equivalent:

(1) » is exceptional.

(2) - p contains A;.

(3) v contains A_,.

Proor. Since A/p is a *field, which is of the form k[ X, X~!], the assertions
of (2) and (3) are equivalent to each other. Suppose that p does not contain
both 4, and A_,. Let S be Ay—p; then S™1A4 is *local. There is a *element
y€p such that pS~14=yS~14. Localizing A by *maximal *ideals, we can see
that, if y is contained in p,, then we obtain p=pyA. Set deg(y)=s. We take
out a *element x from A,—p, where t=—s/[s|. Set y’=yx!sl. Then y’ is con-
tained in py, and y'S~'A=pS~!A4. Hence p=py4, which shows that the asser-
tion (1) implies (2) and (3). Now we suppose that p is not exceptional, i.e.,
p=poAd. If p contains A4,, then A, =py4,. Since A, is finitely generated over
Ay, there is an element a of p, such that (1+a)4,=0. This is a contradiction to
the fact A;#0. Hence p does not contain A4,.

COROLLARY 3.2. There are only a finite number of exceptional prime
*ideals. ‘

REMARK. Let p be exceptional. Any *localization of p is also exceptional.

PROPOSITION 3.3. Let A be *local with the *maximal *ideal p. If p
is not exceptional, then A is of the form Ay[U, U~'], where U is a unit con-
tained in A,.

‘ ProoF. We take a unit UeA - p For every n, U‘"A,,=A§. Hence
A=A [U, U1].

ProPosITION 3.4. Let A and p be as above. If p is exceptional, then A
is of the form A,[U, U~1][x], where U is a unit and x is a *element.

Proor. We put e=Min {n; (4/p),#0 and n>0}. By Prop.2.5 A isa
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*local *Dedekind domain with the *maximal *ideal p® (=@ p,,). Since p(®

is not exceptional, A(®)=A,[U, U~!], where U is a unit contained in 4,. Clearly
any unit of A is contained in A, Let x be a generator of p. Then A is of the
form A,[U, U~1][x].

REMARK 1. deg(x) and deg(U) are prime to each other because 4, #0.

2. We call deg(U) the index of ramification of 4 to 4,. We denote it by
e and let p be the prime element of the discrete valuation ring 4,. Then p=x°v,
where v is a unit.

3. By Prop. 3.4 any *local *Dedekind domain is obtained as follows: Let
A, be a discrete valuation ring and let U, X be indeterminates. We take two
integers e, f in such a way that ex1, f =0, (e, f)=1 and if f=0 (resp. e=1),
then e=1 (resp. f20). We set A=A4,[U, U™, X]/(U/X¢—p), where p is
the prime element of A4,, deg(U)=e and deg(X)=f. This is the required *ring.

4. *Dedekind domains of the second type

PrOPOSITION 4.1. Let A, be a Dedekind domain and let a be a non-zero
fractional ideal of A,. Then A=,®a"X" is a *Dedekind domain of the second
type, where X is an indeterminate.

Proor. Let {a,..., a,} (resp. {b,,..., b;}) be a generators of a (resp. a™!).
Then A=A,[a,X,...,a,X, b;X"1,...,b,X"1]. Hence A is *noetherian. Let
S be the complement of a prime ideal in 4,. Since aS~!A4, is principal, S™14 is
of the form S~1A4y[Y, Y~!], where Y is an indeterminate. Hence *dim(4)=<1.
Moreover A is *normal because A= n S~ 1A, where S runs over all the comple-
ments of maximal ideals of A,, and S~1A4 is *normal for each S. By Prop. 2.1
A is a *Dedekind domain.

REMARK. In (4.1) A has no exceptional prime *ideals because A;A4_;
=A0.

PrROPOSITION 4.2. Let A be a *Dedekind domain of the second type. If
A has no exceptional prime *ideals, then A is of the form (4.1).

Proor. By Prop. 3.1 A;A_;=A, We can see immediately that A4,4_,
=A, for every n. Then given any integers m, n, A,A,=A+,- Let x be a non-
zero element of A;. Then the ideal a=x"14, is a fractional ideal of 4,. Since
A;=ax and A_;=a"'x"!, A=@a"x".

n

Let A be a *ring. We denote the A,-*isomorphism class of 4 by [4].
THEOREM 4.3. Let Ay be a Dedekind domain, and let D={[R]; R is a



On *Dedekind Domains 581

*Dedekind domain with no exceptional prime *ideals and Ry=A,}. Then,
there is a bijection of D onto cl(A,), where cl(Ay) is the class group of A,.

ProoF. The proof follows by Prop. 4.1 and Prop. 4.2.

Let p be a non-zero prime *ideal of A, and let e, be the index of ramification
of A,y to [A,y]o- We say the index of p to po is e,, where po=pnA4,. Then

Pod=pe>.

ProOPOSITION 4.4. Let A be a *Dedekind domain of the second type.
Then there is a *Dedekind *subdomain of A such that it has no exceptional
prime *ideals and A is finite over it.

Proor. If A has no exceptional prime *ideals, then we have nothing to do.
Suppose that p,,..., p, are all the exceptional prime *ideals. Let e,, be the index
of p; to [p;], for every i. Then A is a *Dedekind *subdomain of A with no
exceptional prime *ideals, where m is the least common multiple of e, ,..., e,,.
On the other hand A is integral over A™. A,A,=A;., and A A_,=A4,_,,
for every integer k. Since A=A™[A, ..., A—ys A1sees Am—1]s A is finite over
A,

5. *Class groups of *Dedekind domains

In this section we shall define ‘class group’ in the same way as the ungraded
case. In the ungraded case, the class group of a semi-local Dedekind domain is
trivial, but it is false for the graded case as follows (see Prop. 5.2).

PROPOSITION 5.1. Let A be a *Dedekind domain. Then *G(A) is a free
abelian group generated by all the prime *ideals as a basis.

ProoF. The proof is the same as in the ungraded case.

We define an equivalence relation on *G(A) as follows: Given a, b e *G(A4),
a~Db if and only if ab~! is principal. *G(A4)/~ is said to be the *class group of A4,
and denoted by *cl(A).

PROPOSITION 5.2. Let A be a *semi-local *Dedekind domain, where ‘semi-
local’ means that there are only a finite number of *maximal *ideals. Then
the order of the *class group of A is equal to []e,/L.C. M. (e,), where p runs over
all the *maximal *ideals.

Proor. Let p,,..., p, be all the *maximal *ideals. By Prop. 5.1 there is
the canonical isomorphism f of *G(A) onto Z", where Z is the set of integers. We
identify a *element x with the principal *ideal xA for the convenience. Let H
be the image of the set of non-zero *elements of *Q(A) by the isomorphism f.
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Then *cl(4)~Z"/H. By the hypothesis 4, is semi-local and it is a PID. Hence
the image of [Q(A4,)—{0}] by f, which we denote by I, is e, Z+---+e, Z. H[l is
a cyclic group because the *field *Q(A) is of the form Q(A4,)[X, X~ 1']. Let ¢t
be a non-zero element of A,. f(t)+1 is a generator of H/I. For an integer g,
qf(t) el if and only if there are a € Ao and a unit u such that t?=aqu. This implies
that the order of H/I is Min {deg(v); ve A, and v is a unit}. On the other hand
every e,, divides deg (v) for any unit v. Each p; does not contain A4, for any multi-
ple k of e,,. Since 4 is a cyclic Ap-module for every s, there is a unit with the de-
gree equal to L.C.M. (e,,,..., €,). Thus the order of H/I is L.C.M. (e,,,...,
e,,)- Now the order of Z"/I is e, ---e, . The proof is completed. '

RemARrRk. By Cor. 3.2 and the proof of Prop. 5.2, in Prop. 5.2 we may as-
sume only that A, is a PID. In this case L. C. M. (e,) is well-defined by Cor. 3.2.

ExaMPLE. Let A=Z[/p,---p, T, T, T~'], where the p; are prime numbers
of the ring of integers Z, different to each other, and T'is an indeterminate with the
degree 2. Then A is a *Dedekind domain. There are r exceptional prime *ideals
and the *class group has the order 271,
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