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In this paper a ring is always a commutative ring with a unit and a graded
ring is a ring with a grading of Z-type. Let A be a graded domain. Then the set

of non-zero graded fractional ideals of A becomes a monoid naturally. We shall
say that A is a Dedekind domain in the category of graded rings when the monoid

is a group; it is not so difficult to show that A is a Dedekind domain in the cate-

gory of graded rings if and only if the global dimension of A in the category of
graded A-modules is less than or equal to 1.

The main purpose of this paper is to determine the structure of graded do-

mains of global dimension 1, or equivalently to determine the structure of Dede-

kind domains in the category of graded rings. To do this we shall introduce a
notion of exceptional primes, which plays an important role in this paper. As
a main result we shall show that, in case exceptional primes do not appear, there

is a 1: 1 correspondence between the set of isomorphism classes and the class

group of the Dedekind domain consisting of homogeneous elements of degree

zero.

1. Graded rings

Let A = @An, n e Z, be a graded ring. We let h(A) denote the set of homo?
geneous elements of A. Given a homogeneous element x, deg(x) stands for the

degree of x. Let Gr(A) be the category of graded modules over A. A mor-
phism / of M to N is an ,4-homomorphism of M to N such that f(Mn)cNn for

every n, where M=φMrt, neZ, and JV = 0JVΠ, neZ. An asterisk (*) means

'graded', 'homogeneous' or 'in Gτ(A)\ For example, a "module is a graded

module, and a *ideal is a homogeneous ideal, and so on. If every *ideal of A

is finitely generated, then we say A is *noetherian. When A is *noetherian, A0

is noetherian and moreover the underlying ring of A is noetherian..([3], p. 306).

For an ideal α of a *ring, we denote by α* the *ideal generated by all the "elements

of ά. If ά is a prime ideal, then α* is also a prime *ideal.

PROPOSITION 1.1. Let A be a *domain. If the Jacobson radical is not

zero, then A = A0.

PROOF. Suppose that there exists a non-zero *element b with
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We take a non-zero element a of the Jacobson radical. Then 1 + bra is a unit for

every r>0. Since A is a *domain, a unit must be homogeneous. Therefore

1 + bra is homogeneous for every r and this leads to a contradiction.

COROLLARY 1.2. Let A be a *ring and let p be a prime *ideal. If p does
not contain An for some n^O, then p = fl m*, where m runs over all maximal

ideals containing p.

REMARK. Any local domain has not a non-trivial grading by Prop. 1.1.
Moreover we can show that any local reduced ring also has not a non-trivial
grading.

Let A be a *ring and let Sch(A) be a *multiplicative set not containing 0.

Then S~1A is also a *ring in a natural way. If S = h(A) — p9 where p is a prime
*ideal, we use the symbol A(p) instead of S~1A. If A has only one *maximal
*ideal, then we say A is *local. It is clear that A(p) is a *local *ring and the
unique *maximal *ideal is pA(p). We can readily see that A is *local if and only
if AQ is local. In particular we say A is a *field when the *maximal *ideal is trivial.

If A is a *field, then A is a field or A~A0[T, Γ"1], where A0 is a field ([2], p. 291).

This implies that a *maximal *ideal is a prime *ideal. Similarly to the ungraded
case any *module over a *field is *free. If A is a *domain and S=*h(A) — {Q}9

then S~*A is a *field, which we denote by *Q(A). Let α be an v4-*submodule of

*Q(A). α is said to be a *fractional *ideal of A if there is a *element d (^0)

of A such that da^A. Let *G(A) be the set of non-zero *fractional *ideal of A.
Given α, be*G(,4), α-hb, α n b, αb and α: b belong to *G(A). *G(A) becomes
a monoid by the operation: (α, b)-»αb. We say that α is *invertible if α is an
invertible element in the monoid *G(A). If α is *invertible, then α is finitely
generated.

PROPOSITION 1.3. Let α be an element of *G(A). Then, α is ^invertible
if and only if it is ^projective.

PROOF. Since α has a *element of *Q(A), {αe *Q(A);
βa. cA}. Hence, α is a *invertible *ideal of A if and only if α is an invertible

ideal of A. It is well known that α is invertible if and only if α is projective over

A, and for a *module it is *projective if and only if it is projective. Thus the
proof is obtained.

LEMMA 1.4. Let A be a *local domain. If a *ideal α is ^invertible, then
α is generated by one ^element.

PROOF. The proof is the same as in the ungraded case.
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2. *Dedekind domains

In this section A is a *domain. We say that A is *normal if any *element of
*6G4), which is integral over A, belongs to A. Since *Q(A) is normal, the derived
normal ring of A is contained in *Q(A). By [1] (§ 1 Prop. 20), the derived normal

ring is a *subring of *Q(A). Hence, A is normal if and only if A is *normal.
It is reasonable to say that A is a *Dedekind domain if *G(A) is a group. If
A is a *Dedekind domain and S is a *multiplicative set, then S~1A is also a *Dede-
kind domain, because of the surjectivity of the canonical monoid-homomorphism
of *G(A) to *G(S~*M). Similarly to the ungraded case, we have:

PROPOSITION 2.1. Let A be a *domain. Then, A is a *Dedekίnd domain
if and only if A satisfies the following conditions: (1) A is *noetherian\ (2)
*dim(/4)^l; (3) A is *normal, where *dim(/4) means the maximal length of
chains of prime *ideals.

PROOF. Suppose that A is a *Dedekind domain. Then any *ideal is *in-
vertible, and hence finitely generated. Thus A is *noetherian. Let p be any

non-zero prime *ideal. Then A(p) is also a *Dedekind domain. By the "locality
the *maximal *ideal of A(p) is principal. It implies that *dim(/4)^l. Let x

e h(*Q(A)) be integral over A. Then, there is a *fractional *ideal α (^0) such that
xαciα. α: α, which we denote by b, is contained in *G(v4). Since b 2 c=b and b
contains 1, b 2=b. Hence b = A, for *G(A) is a group. Thus x is an element of
A, and A is *normal. Now suppose that A satisfies the conditions (1), (2) and
(3). If A is *local and the *maximal *ideal is p, then p is principal. For, let
a be a non-zero *element of p. Then the radical ideal of a A is p. Since A is
*noetherian, p" is contained in a A for some integer n. Hence A£(A: aA)c(A:

pw). It follows that A^(A: p). Suppose that p(A: p) = p; then each element of
(A: p) is integral over A. It contradicts the *normality of A. Thus p(A: p) = A.
Therefore p is principal. Since Λρw = 0, any *ideal is principal, and hence *G(A)

n

is a group. Thus A is a *Dedekind domain. The proof of the general case can

easily be reduced to the *local case.

Let A be a *Dedekind domain. A is said to be of the first type if there is a

*ideal which is maximal. A is said to be of the second type if it is not of the first

type.

PROPOSITION 2.2. Let A be a ^domain such that the underlying ring of

A is a Dedekind domain. Then, there are only three cases: (1) A = A0; (2)
'], where AQ is a field and X is an indeterminate', (3) A is a *field.
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PROOF. Suppose that A is of the second type. Then the zero ideal is a

"maximal *ideal of A, and A is a *field. Let A be of the first type and let p be a

maximal *ideal. p contains A+ (= © An) and A, (= ® An) since Afp is a field.
M > 0 Λ < 0

If S=40-p, then S~M is a *local *Dedekind domain. Hence pS~M = ̂ S"M

for some "element x of p. If degO)=0, then S~M+c=xS"M+ and S-Mj

ΛL. By KrulΓs intersection theorem A=*AΌ. If deg(x)>0, then S~M_

.; Hence Aπ = 0 for every rc<0, p = A+ and 40

 is a fie]ld τhus /I
~^oW If deg(x)<0, we get a similar result.

COROLLARY 2.3. Lei A fee a *Dedekind domain of the first type. Then

A = A0 or A~AQ\_X~\, in which case A0 is afield and X is an indeterminate.

PROPOSITION 2.4. Let A be a *Dedekind domain with non-trivial grading.

Then, A0 is afield if and only if A is of the first type or a * field.

PROOF. The 'if part is trivial. Suppose that A0 is a field. If A+ or A_

is zero, then A is of the first type. Assume that A+ and A_ are not zero. Given

a "element a (τ^0) with deg (α)>0, we see that a~
deg(b) bdeg(a) is a non-zero

element of A0 for any "element b (^0) with deg(fc)<0. This implies that A is a

"field.

Let A be a "ring and m be an integer. If m = 0, then we set A(m)=y40. If

WT^O, then we set A(m} = © Amn. It is clear that A(m) is a "subring of A.
neZ

PROPOSITION 2.5. Let A be a *Dedekind domain. Then, A(m) is also a

*Dedekind domain for every m. Especially A0 is a Dedekind domain.

PROOF. Let α be an "ideal of A(m\ There are "elements w l v.., vvr of α

such that αA = w λ y4H \-wrA. For a "element xeα, there are "elements Sj,...,

sr in A such that x = s 1 w 1 H hs rw r. Thus the sf are contained in A(m\ and α

is a finitely generated "ideal of y4(m). This shows that 4(m) is "noetherian. Let

Po be a prime ideal of A0. By a "localization we see that there exists a prime

"ideal φ of 4 such that φ n ̂ 0 = Po If m^O, A is integral over 4<m>. Htence

there exists a prime "ideal 3̂ of A such that β̂ n^4 ( m ) = p, for any prime "ideal p

of A^. Let p (τ*0) be a prime "ideal of 4<m> and let $ be a prime "ideal of A

such that φn,4 ( m ) = p. Then [Λ/φ]<m> = ,4<mVP Since A/φ is a "field, A™/
p is also a "field. It follows that "dim (^)ί'l. The "normality of A^ is

trivial. The proof is completed by Prop. 2.1.

REMARK 1. Let A be a "Dedekind domain. Then, A is of the second type

if and only if A+^.Q and A_ ^0. When ,4 is of the second type, {n\ An^0} is a
subgroup of the group of integers Z.

2. Let 5=^0-{0} and let A be of the second type. Then S"M =
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3. * Local *Dedekind domains of the second type

In Section 2 we determined the form of *Dedekind domains of the first type.

From now on we consider *Dedekind domains of the second type. In this section

A is always a *Dedekind domain of the second type. We may suppose, without

loss of generality, that Aί ^0 from Remark 1 in §2. Let p be a prime *ideal of

A. p is said to be exceptional if p is not generated by all the elements of p0

( = p Π Λ 0 ) > i.e., p

PROPOSITION 3.1. The following statements concerning a non-zero prime

* ideal p of A are equivalent:

(1) p is exceptional.

(2) p contains Aί.

(3) p contains A-v.

PROOF. Since A/p is a *field, which is of the form k{_X9 X~'l~]9 the assertions

of (2) and (3) are equivalent to each other. Suppose that p does not contain

both 4ι and^4_j. Let S be AQ — p; then S~*A is *local. There is a *element

y e p such that pS~1A = yS~ίA. Localizing A by *maxim.al *ideals, we can see

that, if y is contained in p0, then we obtain p = p0A. Set deg(j) = s. We take

out a *element x from At— p9 where f = — s/\s\. Set / = >υc |s|. Then / is con-

tained in p0.and y'S~{A = pS~lA. Hence p = p0A, which shows that the asser-

tion (1) implies (2) and (3). Now we suppose that p is not exceptional, i.e.,

p = pQA. If p contains Aί9. then Al = p0Al. Since Aγ is finitely generated over

A09 there is an element a of p0 such that (1 -\-ά)A^ = 0. This is a contradiction to

the fact A! 7*0. Hence p does not contain A±.

COROLLARY 3.2. There are only a finite number of exceptional prime

*ideals.

REMARK. Let p be exceptional. Any ^localization of p is also exceptional.

PROPOSITION 3.3. Let A be *local with the ^maximal *ίdeal p. If p

is not exceptional, then A is of the form AQ[V, I/"1], where U is a unit con-

tained in A!.

PROOF. We take a unit UeA^-p. For every n, U~nAn = A0. Hence

PROPOSITION 3.4. Let A and p be as above. If p is exceptional, then A

is of the form AΌ[_U9"U"ί'][mx]9 where U is a unit and x is a * element.

PROOF. We put <? = Min {n; (X/p)B^0 and n>0}. By Prop. 2.5 A<e) is a
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*local *Dedekind domain with the *maximal *ideal p(e) (=φ pen). Since p(e)

n

is not exceptional, A(e) = A0[U, I/"1], where U is a unit contained in Ae. Clearly
any unit of A is contained in A(e\ Let x be a generator of p. Then A is of the

formal/, l/ ^M

REMARK 1. deg(x) and deg(L7) are prime to each other because Aί^Q-
2. We call deg(ί/) the index of ramification of A to A0. We denote it by

e and let p be the prime element of the discrete valuation ring A0. Then p = xev,
where v is a unit.

3. By Prop. 3.4 any *local *Dedekind domain is obtained as follows: Let
A0 be a discrete valuation ring and let 17, X be indeterminates. We take two
integers e, fin such a way that e^l,/^0, (e, /)=! and i f/=0 (resp. e=l),
then e=l (resp. /^O). We set X = X0[I7, C/-1, XWX'-p), where p is
the prime element of A0» deg(£/) = e and degpQ=/. This is the required *ring.

4. *Dedekind domains of the second type

PROPOSITION 4.1. Let A0 be a Dedekind domain and let a be a non-zero
fractional ideal of A0. Then A = n®anXn is a *Dedekind domain of the second
type, where X is an indeterminate.

PROOF. Let {αlv.., am} (resp. {fc j , . . . , bs}) be a generators of α (resp. cr1)-
Then A = AΌ[aίX9...9amX9bίχ-l,...,bsχ-1']. Hence A is *noetherian. Let
S be the complement of a prime ideal in A0. Since αS~M0 is principal, S~1A is
of the form S~1AQ[Y, 7"1], where Y is an indeterminate. Hence *dim(A)^\.
Moreover A is *normal because A= n S~M, where S runs over all the comple-
ments of maximal ideals of A09 and S~1A is *normal for each S. By Prop. 2.1
A is a *Dedekind domain.

REMARK. In (4.1) A has no exceptional prime *ideals because A^.^

PROPOSITION 4.2. Let A be a * Dedekind domain of the second type. If
A has no exceptional prime *ideals9 then A is of the form (4.1).

PROOF. By Prop. 3.1 AίA.i—A0. We can see immediately that AnA.n

= A0 for every n. Then given any integers m, n, AmAn = Am+n. Let x be a non-
zero element of At. Then the ideal a = x~1Aί is a fractional ideal of A0. Since
Aί = ax and ^4_1 = α~1x~1, A = @anxn.

n

Let A be a *ring. We denote the ^40-*isomorPhism c^ass of A by \_A\.

THEOREM 4.3. Let AΌ be a Dedekind domain, and let D = {[R],R is a
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*Dedekind domain with no exceptional prime *ideals and RQ = A0}. Then,
there is a bijection of D onto c/(^40), where c/(A0) is the class group of A0.

PROOF. The proof follows by Prop. 4.1 and Prop. 4.2.

Let p be a non-zero prime *ideal of A, and let ep be the index of ramification

of A(p) to [v4(p)]0. We say the index of p to p0 is ep, where p0 = P Π A0. Then

PROPOSITION 4.4. Let A be a *Dedekind domain of the second type.
Then there is a *Dedekind *subdomain of A such that it has no exceptional
prime * ideals and A is finite over it.

PROOF. If A has no exceptional prime *ideals, then we have nothing to do.
Suppose that p1?..., ρr are all the exceptional prime *ideals. Let epi be the index
of Pf to [pJo for every i. Then A(m) is a *Dedekind *subdomain of A with no
exceptional prime *ideals, where m is the least common multiple of epl,..., e^r.
On the other hand A is integral over A(m\ AkAm = Ak+m and AkA_m = Ak.m

for every integer k. Since A = A(m)\_Am+l,..., A-i9 Λ l v.., Am^ί']9 A is finite over

5. *Class groups of *Dedekind domains

In this section we shall define 'class group' in the same way as the ungraded
case. In the ungraded case, the class group of a semi-local Dedekind domain is
trivial, but it is false for the graded case as follows (see Prop. 5.2).

PROPOSITION 5.1. Let A be a *Dedekind domain. Then *G(A) is a free
abelian group generated by all the prime *ideals as a basis.

PROOF. The proof is the same as in the ungraded case.
We define an equivalence relation on *G(A) as follows: Given α, b e *G(A)9

α ~ b if and only if αtrl is principal. *G(A)/ ~ is said to be the *class group of A9

and denoted by *cl(A).

PROPOSITION 5.2. Let A be a *semi-local *Dedekind domain, where 'semi-
locaΓ means that there are only a finite number of ^maximal *ideals. Then
the order of the *class group of A is equal to Y\e^L. C. M. (βp), where p runs over

all the ^maximal *ideals.

PROOF. Let p l5..., pn be all the *maximal *ideals. By Prop. 5.1 there is
the canonical isomorphism/of *G(A) onto Zw, where Z is the set of integers. We
identify a *element x with the principal *ideal xA for the convenience. Let H

be the image of the set of non-zero *elements of *Q(A) by the isomorphism /.
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Then *cl(A)~Zn/H. By the hypothesis A0 is semi-local and it is a PID. Hence

the image of [β(/l0)-{0}] by/, which we denote by /, is e p lZ+ + epnZ. H/I is
a cyclic group because the *field *Q(A) is of the form Q(A0)[X9 X~l~\. Let t
be a non-zero element of A±. f ( i ) + l is a generator of H/I. For an integer g,

qf(t)el if and only if there are a e A0 and a unit u such that tq = au. This implies
that the order of H/I is Min (deg(V); i; 6 A+ and IMS a unit}. On the other hand
every ep. divides deg(V) for any unit v. Each pf does not contain Ak for any multi-

ple k of ep.. Since As is a cyclic A0-module for every s, there is a unit with the de-
gree equal to L.C.M. (e^,..., e )̂. Thus the order of //// is L/C. M. (epl,...,
epn). Now the order of Z"// is ep l epn. The proof is completed.

REMARK. By Cor. 3.2 and the proof of Prop. 5.2, in Prop. 5.2 we may as-
sume only that A0 is a PID. In this case L. C. M. (ep) is well-defined by Cor. 3.2.

EXAMPLE. Let A = Z\_^Jpl~>prT, T, T"1], where the p, are prime numbers
of the ring of integers Z, different to each other, and Tis an indeterminate with the

degree 2. Then A is a *Dedekind domain. There are r exceptional prime *ideals
and the *class group has the order 2r~1.
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