Meromorphic Mappings into a Compact Complex Space

Junjiro Noguchi (Received December 20, 1976)

Introduction. Let M be an m-dimensional smooth complex projective variety, $\Delta_n = \{(z_j) \in C^n; |z_j| < 1\}$ the unit polydisc in the complex affine space C^n of dimension n and $\Delta_n^* = \Delta_n - \{z_1 = 0\}$. Kobayashi-Ochiai ([5]) proved that if a holomorphic mapping $f: \Delta_m^* \to M$ is of rank m, i. e., the differential df is non-singular at some point, and if the canonical bundle K_M over M is positive, then f has a meromorphic extension from Δ_m into M. Kodaira showed that this extension theorem remains valid in the case where M is of general type (see Kobayashi-Ochiai [5, Addendum]). The condition that M is of general type is birationally invariant, whereas the positivity of K_M is not. For holomorphic mappings $f: \Delta_n^* \to M$ with n < m, Carlson ([1]) proved the analogous extension theorem under the condition that the vector bundle $\Omega(n)$ of holomorphic n-forms over M is positive.

In the present paper we shall establish such an extension theorem for algebraically non-degenerate holomorphic mappings $f: \Delta_n^* \to M$ with $n \le m$ under an assumption for $\Omega(n)$ which is birationally, moreover, bimeromorphically invariant and coincides, in case n = m, with that M is of general type (see (1.1), Corollary 1.2 and Theorem 3.1). Furthermore we shall deal with the case where M is a Moišezon space.

In the proof of that theorem, the key is a lemma of the Schwarz type (Lemma 2.2). In the last section we shall apply this lemma to study the family \mathcal{M} of meromorphic mappings from an n-dimensional compact complex manifold N into M of rank n. We shall prove that if the analytic set B in M defined in section 4 is empty, then \mathcal{M} is m-normal and the limits belong to \mathcal{M} , i.e., the space \mathcal{M} endowed with m-convergence is compact (see Definitions 5.1, 5.2 and Theorem 5.3). In general, however, it seems that the m-convergence does not determine a topology in the precise sense. To make clear this fact we shall prove that \mathcal{M} can be embedded into some complex affine and projective spaces in such a way that \mathcal{M} is compact in each of them (Theorem 5.4).

1. Preliminaries

Let M be a compact complex manifold of dimension m and $\Omega(n)$ the vector bundle of holomorphic n-forms over M. Suppose that there exists an effective

divisor D on M with $\kappa(D, M) = m$ (Iitaka [4]), that is,

$$\overline{\lim}_{k\to\infty}\dim\Gamma(M,\,[kD])/k^m>0,$$

where $\Gamma(M, \lfloor kD \rfloor)$ denotes the vector space of global holomorphic sections of the line bundle $\lfloor kD \rfloor$ determined by the divisor kD with integral coefficient $k \in \mathbb{Z}$. By Iitaka [4] there is a positive integer k_0 such that the image of the meromorphic mapping

$$T: M \ni x \longmapsto (\tau_1(x), ..., \tau_N(x)) \in \mathbf{P}^{N-1}$$

is m-dimensional, where $\{\tau_j\}$ is a basis of $\Gamma(M, [k_0D])$, $N = \dim \Gamma(M, [k_0D])$ and P^{N-1} denotes the (N-1)-dimensional complex projective space. Pulling back rational functions on P^{N-1} through T we see that the meromorphic function field of M is of transcendental degree m, i. e., M is a Moišezon manifold. We consider the following condition for M:

(1.1) For some effective divisor D on M with
$$\kappa(D, M) = m$$
, there are a positive integer l and a point $x_0 \in M$ such that for any $\xi \in \Omega_{x_0}^*(n)$ with $\xi \neq 0$ there is a section $\sigma \in \Gamma(M, S^1(\Omega(n)) \otimes [-D])$ such that $\sigma_{x_0}(S^1\xi) \neq 0$,

where $\Omega^*(n)$ denotes the dual bundle of $\Omega(n)$ and $S^l(\cdot)$ the *l*-th symmetric tensor power. When E is a line bundle, we shall simply write $S^l(E) = E^l$.

REMARK. In the proof of Theorem 3.1 in section 3 and in section 4, we shall see that condition (1.1) is independent of the choice of such a D. In case n=m, (1.1) is equivalent to that M is of general type (cf. [7]).

Let O denote the zero section of the bundle $\Omega^*(n)$ and $P\Omega^*(n)$ the quotient of $\Omega^*(n) - O$ by the multiplicative group C^* . Then $\Omega^*(n) - O \to P\Omega^*(n)$ is a principal bundle with group C^* . Let L be the dual of the associated line bundle over $P\Omega^*(n)$. Letting $\pi: P\Omega^*(n) \to M$ denote the projection, we have

$$\Gamma(M, S^{l}(\Omega(n)) \otimes \lceil -D \rceil) = \Gamma(P\Omega^{*}(n), L^{l} \otimes \pi^{*}\lceil -D \rceil) \quad (cf. \lceil 3 \rceil).$$

Let A be the analytic set of the common zeros of global holomorphic sections of $L^1 \otimes \pi^*[-D]$ and $B = \pi(A)$. Then (1.1) is equivalent to

$$(1.1') B \neq M$$

and the set of points at which (1.1) does not hold is the analytic set B.

PROPOSITION 1.1. Let M_1 and M_2 be compact complex manifolds of dimension m and $f: M_1 \rightarrow M_2$ a surjective meromorphic mapping. If M_2 satisfies (1.1), then so does M_1 .

PROOF. Let S be the singular locus (indeterminant points) of f. Then $f|_{M_1-S}\colon M_1-S\to M_2$ is holomorphic and $d(f|_{M_1-S})$ is non-singular in a non-empty open set. Let D_2 be an effective divisor on M_2 with which (1.1) holds. By the above argument we may assume that (1.1) holds at a point $x_2=f(x_1)$ with $x_1\in M_1-S$ at which $(df)_{x_1}$ is non-singular. Let $D_1=f^*D_2$ be the pullback of the effective divisor D_2 on M_2 . Since dim $\Gamma(M_1, \lceil kD_1 \rceil) \ge \dim \Gamma(M_2, \lceil kD_2 \rceil)$, $\kappa(D_1, M_1)=m$. We naturally get a homomorphism

$$f^*: \Gamma(M_2, S^l(\Omega_{M_2}(n)) \otimes [-D_2]) \longrightarrow \Gamma(M_1, S^l(\Omega_{M_2}(n)) \otimes [-D_1]).$$

Since condition (1.1) for M_2 is satisfied at x_2 and $(df)_{x_1}$ is non-singular, M_1 satisfies (1.1) at x_1 .

COROLLARY 1.2. Condition (1.1) is bimeromorphically invariant.

DEFINITION 1.1. We say that a Moišezon space X^{*} satisfies condition (1.1) if a non-singular model \tilde{X} of X satisfies (1.1).

By Corollary 1.2 this condition for X is independent of the choice of \tilde{X} .

In general, a meromorphic mapping f into a complex space X is said to be algebraically degenerate if the image of f is contained in a proper subvariety of X. If it is not the case, f is said to be algebraically non-degenerate.

Let Y be a complex space and $f: Y \rightarrow X$ a holomorphic mapping. We define the rank of f by

rank of
$$f = \max_{y \in Y} \{ \dim Y - \dim_y f^{-1}(f(y)) \}$$
 (see [9, Chap. VII]).

In the case where f is meromorphic, there is a modification $\tilde{Y} \rightarrow Y$ and a holomorphic mapping $\tilde{f}: \tilde{Y} \rightarrow X$ such that the diagram

is commutative. We set

rank of
$$f = \text{rank of } \tilde{f}$$
.

2. Schwarz lemma

In this section we let M be a smooth complex projective variety, D an ample

^{*)} Throughout the present paper, complex spaces are assumed to be reduced and irreducible.

divisor*) on M, and assume that M satisfies (1.1) with D. Let $\{\tau_0, ..., \tau_N\}$ be a basis of $\Gamma(M, [D])$. Then $\rho = \sum |\tau_j|^2 \in \Gamma(M, [D] \otimes \overline{[D]})$ is a positive section which naturally determines a metric in $[D] \to M$, where the bar denotes the complex conjugate. We denote by ω the curvature form of the metric, which is positive definite. By using a local coordinate system (x_n) , we set

$$\omega = \sum h_{\alpha\bar{\beta}} \frac{i}{2\pi} dx_{\alpha} \wedge d\bar{x}_{\beta}.$$

The Kähler metric h associated with ω is locally given by

$$h=\sum h_{\alpha\bar{\beta}}\frac{1}{\pi}dx_{\alpha}\otimes d\bar{x}_{\beta}.$$

The metric naturally induces a metric $h^{(n)}$ in $\Omega^*(n)$ in the following manner: For decomposable vectors $\xi = \xi_1 \wedge \cdots \wedge \xi_n$ and $\eta = \eta_1 \wedge \cdots \wedge \eta_n$ in $\Omega^*_x(n)$,

$$(2.1) h_x^{(n)}(\xi, \eta) = \det(h_x(\xi_i, \eta_i))$$

and $h^{(n)}$ is defined for general ξ and η by linearity. Let $\{\sigma_1, ..., \sigma_s\}$ be a basis of $\Gamma(M, S^l(\Omega(n)) \otimes [-D])$ and set

$$\psi = (\sigma_1 \otimes \bar{\sigma}_1 + \dots + \sigma_s \otimes \bar{\sigma}_s) \otimes \rho \in \Gamma(M, S^l \Omega(n) \otimes S^l \overline{\Omega(n)}).$$

Let Σ be the unit sphere bundle of $\Omega^*(n)$ with respect to $h^{(n)}$. For $\xi \in \Sigma$,

$$\psi(S^l\xi, S^l\xi) = \sum_i |\sigma_i(S^l\xi)|^2 \otimes \rho$$

is a smooth function. Since Σ is compact, we can take the above $\{\sigma_i\}$ so that $\psi(S^l\xi, S^l\xi) \leq 1$ for $\xi \in \Sigma$. This implies

$$(2.2) \qquad \psi(S^l\xi, S^l\xi) \le (h^{(n)}(\xi, \xi))^l$$

for $\xi \in \Omega^*(n)$. Let W be an n-dimensional complex submanifold in a domain of M and assume that the restriction $\psi|_W \in \Gamma(W, K_W^l \otimes \overline{K}_W^l)$ does not vanish identically. Then $\psi|_W$ is locally written as

$$\psi|_{\mathbf{W}} = \rho|_{\mathbf{W}}(x)(\sum |a_i(x)|^2)|dx_1 \wedge \cdots \wedge dx_n|^{2l},$$

where $x = (x_1, ..., x_n)$ is a local coordinate system in W and a_i are holomorphic functions. We define the curvature form $\Theta(\psi, W)$ of ψ relative to W by

$$\Theta(\psi, W) = \frac{i}{2\pi} \partial \bar{\partial} \log ((\rho |_{W}) (\sum |a_{i}|^{2})),$$

^{*)} We call D ample if the associated line bundle [D] is ample in the sense of Griffiths [3], i.e., $\Gamma(M, [D])$ gives an immersion of M into some complex projective space.

which may be singular on a subvariety S of W. Since a_i are holomorphic,

(2.3)
$$\Theta(\psi, W) \ge \omega|_{W}$$
 out of S .

Therefore $\wedge \P \Theta(\psi, W) \ge \wedge \P \omega|_W$. Now we let $v(x) = b(x)(i/2)dx_1 \wedge d\bar{x}_1 \wedge \cdots \wedge (i/2)dx_n \wedge d\bar{x}_n$ be a volume form. Then v(x) can be written as $v(x) = b(x)|dx_1 \wedge \cdots \wedge dx_n|^2$. We shall freely use this identification. Combining (2.3) with (2.2) we have

LEMMA 2.1. For any n-dimensional complex submanifold W in a domain of M,

$$(\bigwedge_{l}^{n} \Theta(\psi, W))^{l} \geq \psi|_{W}.$$

We set

$$\Delta(r) = \{z \in C; |z| < r\},
\Delta^*(r) = \{z \in C; 0 < |z| < r\},
\Delta_n(r) = \Delta(r) \times \dots \times \Delta(r)$$
 (*n*-times),

$$\Delta^*_n(r) = \Delta^*(r) \times \Delta_{n-1}(r).$$

In case r=1, we simply write $\Delta_n(r) = \Delta_n$ and $\Delta_n^*(r) = \Delta_n^*$. Let $(z_1, ..., z_n)$ be the natural coordinate system in $\Delta_n(r)$ and set

$$v_r = \prod_{1}^{n} \frac{r^2}{(r^2 - |z_j|^2)^2} \left(\frac{1}{\pi}\right)^n |dz_1 \wedge \dots \wedge dz_n|^2,$$

$$v = v_1.$$

LEMMA 2.2. Let $f: \Delta_n \to M$ be a meromorphic mapping. Then

$$f^*\psi \leq c_0 v^l$$

where $c_0 = l^{ln}$.

PROOF. We may suppose that $f^*\psi \not\equiv 0$. Set

$$f^*\psi = a(z)|dz_1 \wedge \dots \wedge dz_n|^{21},$$

$$v_r(z) = b_r(z)|dz_1 \wedge \dots \wedge dz_n|^2,$$

$$c_r(z) = \log((b_r(z))^1/a(z)),$$

where 0 < r < 1. First one notes that a(z) is a smooth function. If some $|z_j| \to r$, then $b_r(z) \to +\infty$ and if a(z) = 0 at $z \in \Delta_n(r)$, then $c_r(z) = +\infty$. The infimum of

 $c_r(z)$ in $\Delta_n(r)$ is attained at some point $z_0 \in \Delta_n(r)$ at which

$$(2.4) a(z_0) \neq 0.$$

We shall see that f is holomorphic at z_0 . Let $\{\tau_0,...,\tau_N\}$ be the basis of $\Gamma(M, \lceil D \rceil)$ taken above and set

$$T = (\tau_0, \ldots, \tau_N) : M \longrightarrow \mathbf{P}^N,$$

which is an immersion. Then $f^*\psi = \sum_{i,j} |f^*(\sigma_i \otimes \tau_j)|^2$ and (2.4) implies that there is a section $f^*(\sigma_i \otimes \tau_j)$, say, $f^*(\sigma_1 \otimes \tau_0)$ such that $f^*(\sigma_1 \otimes \tau_0)(z_0) \neq 0$. The meromorphic mapping $T \circ f$ is represented by

$$T \circ f = (f^*(\sigma_1 \otimes \tau_0), \dots, f^*(\sigma_1 \otimes \tau_N)).$$

Since $f^*(\sigma_1 \otimes \tau_0)(z_0) \neq 0$, $T \circ f$ is holomorphic at z_0 and so is f. Since $i(2\pi)^{-1} \partial \bar{\partial} \log c_r(z_0)$ is semi-positive definite,

$$l\frac{i}{2\pi}\partial\bar{\partial}\log b_{r}(z_{0}) \geq \frac{i}{2\pi}\,\partial\bar{\partial}\log a(z_{0}),$$

so that

$$(2.5) l^n \bigwedge_{1}^{n} \frac{i}{2\pi} \partial \bar{\partial} \log b_r(z_0) \ge \bigwedge_{1}^{n} \frac{i}{2\pi} \partial \bar{\partial} \log a(z_0).$$

It follows from (2.4) that $(df)_{z_0}$ is of maximal rank. There is a neighborhood W of z_0 which is biholomorphically embedded into a domain of M by f. We regard W as a submanifold in the domain. The right hand side of (2.5) is equal to $\bigwedge_{i=1}^{n} \Theta(\psi, W)$. From Lemma 2.1 and the identity, $\bigwedge_{i=1}^{n} \mathrm{Ric} \, v_r = v_r$, it follows that

$$l^{nl}(v_r(z_0))^l \ge f^*\psi(z_0).$$

Hence $c_r(z_0) \ge -nl \log l$ and so $f^*\psi \le c_0 v_r^l$ in $\Delta_n(r)$. Letting $r \to 1$, we deduce that $f^*\psi \le c_0 v^l$ in Δ_n .

3. Extension theorem

THEOREM 3.1. Let X be a Moišezon space of dimension m satisfying condition (1.1) and $f: \Delta_n^* \to X$ an algebraically non-degenerate meromorphic mapping of rank n. Then f can be meromorphically extended over Δ_n .

REMARK. Since (1.1) is bimeromorphically invariant (Corollary 1.2), X may contain P^{m-1} . Therefore the algebraic non-degeneracy of f can not be dropped.

As immediate consequences of this theorem we get

COROLLARY 3.2. Let N be an n-dimensional complex manifold and S a thin analytic set in N. Then any algebraically non-degenerate holomorphic mapping of N-S into X of rank n has a meromorphic extension of N into X.

COROLLARY 3.3. Let $f: \mathbb{C}^n \to X$ be a meromorphic mapping. Then f is algebraically degenerate or the rank of f is less than n.

PROOF OF THEOREM 3.1. By Moišezon's theorem [8], there is a modification $\lambda \colon (\widetilde{X}, \widetilde{S}) \to (X, S)$, where \widetilde{X} is a smooth projective variety in some complex projective space P^N . By Proposition 1.1 \widetilde{X} satisfies (1.1) with a divisor D such that $\kappa(D, \widetilde{X}) = m$. Let \widetilde{D} be a general hyperplane section of \widetilde{X} . Then by Kodaira [7] there is an exact sequence

$$0 \longrightarrow \Gamma(X, [kD - \tilde{D}]) \longrightarrow \Gamma(\tilde{X}, [kD]) \longrightarrow \Gamma(\tilde{D}, [kD]|_{\tilde{D}}) \longrightarrow \cdots.$$

Since $\overline{\lim}_{k\to\infty} \dim \Gamma(\tilde{X}, \lceil kD \rceil)/k^m > 0$ and $\dim \Gamma(\tilde{D}, \lceil kD \rceil) = O(k^{m-1})$ as $k\to\infty$, $\dim \Gamma(\tilde{X}, \lceil kD - \tilde{D} \rceil) > 0$ for a large k. Replacing l in (1.1) by kl we easily see that (1.1) is valid for the divisor kD. Using a section $\alpha \in \Gamma(\tilde{X}, \lceil kD - \tilde{D} \rceil)$ with $\alpha \neq 0$, we get an into-isomorphism

$$\Gamma(\tilde{X}, S^{kl}(\Omega(n)) \otimes [-kD]) \ni \sigma \longmapsto \sigma \otimes \alpha \in \Gamma(\tilde{X}, S^{kl}(\Omega(n)) \otimes [-\tilde{D}]).$$

Hence X satisfies (1.1) with the very ample divisor \tilde{D} .

Since f is algebraically non-degenerate, f can be lifted to a meromorphic mapping $\tilde{f}: \Delta_n^* \to \tilde{X}$, which is algebraically non-degenerate and of rank n. Now assume that f has a meromorphic extension over Δ_n . We denote it by \hat{f} . Let $\hat{\Gamma} \subset \Delta_n \times \tilde{X}$ be the graph of \hat{f} and Γ that of f. Then we have

$$\Gamma \subset \Delta_n \times \widetilde{X}
\downarrow^{\Lambda}
\Gamma \subset \Delta_n^* \times X \subset \Delta_n \times X,$$

where $\Lambda = (\text{identity}) \times \lambda$. Since Λ is proper, $\Lambda(\hat{\Gamma})$ is an analytic set in $\Delta_n \times X$ and $\Lambda(\hat{\Gamma}) \supset \Gamma$. From the construction it is easily seen that $\bar{\Gamma}$ (closure of Γ) = $\Lambda(\hat{\Gamma})$. Thus f has a meromorphic extension from Δ_n into X.

Therefore it is sufficient to prove Theorem 3.1 in the case where X is a smooth complex projective variety M and the divisor D on M in condition (1.1) is very ample (i. e., global holomorphic sections of [D] give an embedding into some P^N). Let B be the analytic set in (1.1'). Since $f: \Delta_n^* \to M$ is algebraically non-degenerate, $f^{-1}(B)$ is a proper subvariety in Δ_n^* . Since df is of maximal rank in a non-empty open set in Δ_n^* , there is a section $\sigma \in \Gamma(M, S^l(\Omega(n)) \otimes [-D])$ such that $f^*\sigma \in \Gamma(\Delta_n^*, K_{\Delta_n^*}^l \otimes f^*[-D])$ does not vanish identically. Let $\{\tau_0, \ldots, \tau_N\}$ be a

basis of $\Gamma(M, [D])$ and set $T = (\tau_0, ..., \tau_N) : M \to P^N$, which is an embedding. We set

$$\alpha_i = f^*\sigma \otimes f^*\tau_i \in \Gamma(\Delta_n^*, K_{\Delta_n^*}^l),$$

$$(3.1) F = (\alpha_0, \dots, \alpha_N) : \Delta_n^* \longrightarrow \mathbf{P}^N.$$

Then (3.1) gives a representation of $T \circ f$. It is enough to show that each α_i can be meromorphically extended over Δ_n . Letting α denote one of $\{\alpha_i\}$, we may assume that

$$|\alpha|^2 \le f^* \psi$$
 (see section 2 for ψ).

Setting

$$\alpha(z) = a(z)(dz_1 \wedge \cdots \wedge dz_n)^l,$$

we have by Lemma 2.2

$$|a(z)|^2 \le c_0(b(z))^l,$$

where

$$b(z_1,...,z_n) = \pi^{-n}|z_1|^{-2}(\log|z_1|^2)^{-2}\prod_{j=2}^n(1-|z_j|^2)^{-2}.$$

We expand a(z) as a Laurent series

$$a(z) = \sum_{\substack{\mu_1 = -\infty \\ j \ge 2}}^{+\infty} z_1^{\mu_1} \sum_{\substack{\mu_j \ge 0 \\ j \ge 2}} a_{\mu_2 \dots \mu_n}^{(\mu_1)} z_2^{\mu_2} \dots z_n^{\mu_n}$$

and set each $z_j = r_j e^{i\theta_j}$ with $0 < r_j < 1$. Then

$$\begin{split} \int_0^{2\pi} \frac{d\theta_1}{2\pi} \cdots & \int_0^{2\pi} \frac{d\theta_n}{2\pi} |a(r_1 e^{i\theta_1}, \dots, r_n e^{i\theta_n})|^2 \\ & \leq c_0 \pi^{-ln} r_1^{-2l} (\log r_1^2)^{-2l} \prod_{j=2}^n (1 - r_j^2)^{-2l}. \end{split}$$

Hence

$$\begin{split} \sum_{\mu_1 = -\infty}^{+\infty} r_1^{2\mu_1} \sum_{\substack{\mu_j \ge 0 \\ j \ge 2}} |a_{\mu_2 \dots \mu_n}^{(\mu_1)}|^2 r_2^{2\mu_2} \dots r_n^{2\mu_n} \\ \le c_0 \pi^{-ln} r_1^{-2l} (\log r_1^2)^{-2l} \prod_{j=2}^n (1 - r_j^2)^{-2l}. \end{split}$$

Comparing the orders of both the sides as $r_1 \to 0$, we infer that $a_{\mu_2 \dots \mu_n}^{(\mu_1)} = 0$ for $\mu_1 \le -l$. Thus $\alpha(z)$ has singularities which are at most poles of order l-1 on $\{z_1 = 0\}$.

REMARK 1. It should be noted that the poles of all α_i in the representation of $T \circ f$ (see (3.1)) are at most of order l-1 which is independent of each f.

REMARK 2. As proved above, the theorem remains valid without the assumption that f is algebraically non-degenerate, unless $f(\Delta_n^*)$ is contained in B.

In the case where $\Omega(n)$ is positive, this theorem was proved by Carlson [1] without algebraic non-degeneracy. In this case, we can take l in condition (1.1) so that $B = \emptyset$.

4. The analytic set B

Let M be a smooth complex projective variety of dimension m and D an ample divisor on M. The purpose of the present section is to show that the analytic set B in (1.1') can be defined independently of each D, provided D is ample.

Let $B_{l,k}(D)$ be the analytic set of all points $x \in M$ at each of which there is an element $\xi \in \Omega_x^*(n)$ with $\xi \neq 0$ such that $\sigma_x(S^l\xi) = 0$ for all $\sigma \in \Gamma(M, S^l(\Omega(n)) \otimes [-kD]$). We set

$$(4.1) B(D) = \bigcap_{\substack{k>0\\k>0}} B_{l,k}(D).$$

PROPOSITION 4.1. Let D_i (i=1, 2) be ample divisors on M. Then

- (i) $B(D_1) = B(D_2)$,
- (ii) $B(D_1) = B_{l,1}(D_1)$

for some $l \in \mathbb{Z}$ (l>0).

PROOF. To prove (i), it is enough to show $B(D_1) \subset B(D_2)$. Let x be any point of $B(D_1)$. Since D_2 is ample, there is a positive integer k_0 such that there is a section $\phi \in \Gamma(M, \lceil k_0 D_2 - D_1 \rceil)$ with $\phi(x) \neq 0$. For an arbitrary $\sigma \in \Gamma(M, S^{l}(\Omega(n)) \otimes \lceil -kD_2 \rceil)$, $S^{k_0}\sigma \in \Gamma(M, S^{k_0l}(\Omega(n)) \otimes \lceil -kD_2 \rceil)$, so that $S^{k_0}\sigma \otimes \phi^k \in \Gamma(M, S^{k_0l}(\Omega(n)) \otimes \lceil -kD_1 \rceil)$. Since $x \in B(D_1)$, there is an element $\xi \in \Omega_x^*(n)$ with $\xi \neq 0$ such that $\sigma_x'(S^{k_0l}\xi) = 0$ for all $\sigma' \in \Gamma(M, S^{k_0l}(\Omega(n)) \otimes \lceil -kD_1 \rceil)$. Therefore we have $(S^{k_0}\sigma \otimes \phi^k)_x(S^{k_0l}\xi) = 0$. Since $\phi(x) \neq 0$, $\sigma_x(S^{l}\xi) = 0$. Hence $x \in B(D_2)$.

For the proof of (ii) we simply write $D_1 = D$. We first prove

(4.2)
$$B(D) = \bigcap_{l,1} B_{l,1}(D)$$
.

If it is proved that $B_{l,k}(D) \supset B_{l,1}(D)$, then (4.2) immediately follows. Let x be an arbitrary point of $B_{l,1}(D)$. Since D is ample, there is a section $\tau \in \Gamma(M, [D])$ with $\tau(x) \neq 0$. For any $\sigma \in \Gamma(M, S^l(\Omega(n)) \otimes [-kD])$, $\sigma \otimes \tau^{k-1}$ belongs to $\Gamma(M, S^l(\Omega(n)) \otimes [-D])$. Since $x \in B_{l,1}(D)$, there is an element $\xi \in \Omega^*(n)$ with $\xi \neq 0$ such that $\sigma'_x(S^l\xi) = 0$ for all $\sigma' \in \Gamma(M, S^l(\Omega(n)) \otimes [-D])$, so that $(\sigma \otimes \tau^{k-1})_x(S^l\xi) = 0$

0. Since $\tau(x) \neq 0$, $\sigma_x(S^l \xi) = 0$. This proves (4.2).

Since M is compact, $B(D) = \bigcap_{l=1}^{s} B_{l,1}(D)$ for a positive integer s. In the same manner as above, we see that $B_{l,1}(D) \supset B_{ll',1}(D)$ for any $l' \in \mathbb{Z}$, l' > 0. Let l_0 be the least common multiple of $\{2, ..., s\}$. Then $B(D) = B_{l_0,1}(D)$. This completes the proof.

In the rest of this paper we shall denote by B the analytic set B(D). One should note that this does not depend on the choice of D but essentially on the vector bundle $\Omega(n)$ of holomorphic n-forms over M.

5. Meromorphic mappings of N into M

Let M be a smooth complex projective variety of dimension m and N a complex manifold.

DEFINITION 5.1. A sequence $\{f_v\}_{v=1,2,...}$ of meromorphic mappings of N into M is said to be meromorphically convergent (simply, m-convergent) to a meromorphic mapping f of N into M if there are an embedding $T: M \to P^N$ and a neighborhood U of each point of N in which $T \circ f_v$ and $T \circ f$ have representations

(5.1)
$$T \circ f_{\nu} = (\alpha_{\nu 0}, \dots, \alpha_{\nu N}),$$
$$T \circ f = (\alpha_{0}, \dots, \alpha_{N}),$$

where $(w_0,...,w_N)$ is a homogeneous coordinate system in P^N and α_{vj} , α_j are holomorphic functions in U such that each $\{\alpha_{vj}\}_v$ converges uniformly on any compact set in U to α_j .

DEFINITION 5.2. A family \mathcal{M} of meromorphic mappings of N into M is said to be m-normal if any sequence of \mathcal{M} has a subsequence which is m-convergent.

REMARK. Fujimoto ([2]) first introduced the notion of *m*-convergence. In his definition the representation of each $T \circ f_v$ in (5.1) is assumed to be reduced, i.e., codim $\{f_{v0} = \cdots = f_{vN} = 0\} \ge 2$, while ours is not. By using Stoll's theorem [10] we easily see that if $\{f_v\}$ is *m*-convergent to f in the present sense, a subsequence of $\{f_v\}$ is *m*-convergent to f in that of Fujimoto. Hence, so far as the *m*-normality is concerned, the present definition coincides with that of Fujimoto.

In the rest of this paper we assume that N is a compact complex manifold of dimension n and restrict ourselves in the special case where the analytic set B in M defined in section 5 is empty. Let \mathcal{M} denote the family of meromorphic mappings from N into M of rank n.

Let D be a very ample divisor on M, $\{\tau_0, ..., \tau_N\}$ a basis of $\Gamma(M, [D])$ and $\{\sigma_1, ..., \sigma_s\}$ that of $\Gamma(M, S^l(\Omega(n)) \otimes [-D])$ where l is a positive integer such that

 $B_{l,1}(D) = \emptyset$ (see Proposition 4.1). Set $\vartheta_{ij} = \sigma_i \otimes \tau_j \in \Gamma(M, S^l \Omega(n))$ and

$$\psi = \sum_{i} \vartheta_{ij} \otimes \bar{\vartheta}_{ij}$$

By the assumption $B = \emptyset$, $\psi_x(S^t\xi, S^t\xi) = \sum_{i,i} |(\vartheta_{ij})_x(S^t\xi)|^2 > 0$ for $\xi \in \Omega_x^*(n)$ with $\xi \neq 0$. Let $T: M \to P^v$ be the embedding defined by

$$X \ni x \longmapsto (\tau_0(x), ..., \tau_N(x)) \in \mathbf{P}^N$$

and $\omega = i(2\pi)^{-1}\partial \bar{\partial} \log \left(\sum_{j=0}^{N} |\tau_{j}|^{2}\right)$ the positive (1, 1)-form belonging to the first Chern class $c_{1}([D])$ of [D]. Let χ be the Kähler form associated with the standard Fubini-Study metric on P^{N} . Then $\omega = T^{*}\chi$. We may assume that ψ satisfies (2.2). Let Σ be the unit sphere bundle of $\Omega^{*}(n)$ with respect to the metric defined by (2.1). Then

$$\inf \{ \psi(S^l \xi, S^l \xi); \xi \in \Sigma \} > 0,$$

since Σ is compact. Thus there is a positive constant c_0 such that for any *n*-dimensional complex submanifold W in a domain of M

$$(5.2) c_0(\bigwedge^n \omega|_{\mathcal{W}})^l \leq \psi|_{\mathcal{W}} \leq (\bigwedge^n \omega|_{\mathcal{W}})^l.$$

By Lemma 2.2 we have

LEMMA 5.1. There is a smooth volume form v on N satisfying

$$f^*\psi \leq v^l$$

for every $f \in \mathcal{M}$.

LEMMA 5.2. For every $f \in \mathcal{M}$

$$C_0 \leq \int_{N} (f^*\psi)^{1/l} \leq C_1,$$

where $C_0 = c_0^{1/l}$ with the constant c_0 in (5.2) and $C_1 = \int_N v$.

PROOF. The second inequality immediately follows from Lemma 5.1. Let W=f(N). Then W is a complex n-dimensional subvariety in M and

$$\int_{N} (f^* \psi)^{1/l} = \deg(f) \int_{W} (\psi|_{W})^{1/l},$$

where deg(f) denotes the degree of the meromorphic mapping $f: N \rightarrow W$ (cf. Kobayashi-Ochiai [6, Lemma 4]). By (5.2)

$$\int_{W} (\psi |_{W})^{1/l} \ge C_{0} \int_{W} T^{*}(\bigwedge_{1}^{n} \chi) = C_{0} \int_{T(W)} \bigwedge_{1}^{n} \chi = C_{0} \deg (T(W)),$$

where $\deg(T(W))$ denotes the degree of the subvariety T(W) in \mathbb{P}^N . Hence

$$\int_{N} (f^*\psi)^{1/l} \ge C_0 \deg(f) \deg(T(W)) \ge C_0.$$

Theorem 5.3. The family \mathcal{M} of meromorphic mappings from N into M of rank n is m-normal. Moreover the limits belong to \mathcal{M} .

PROOF. Let $\{f_{\nu}\}_{\nu=1,2,...}$ be a sequence of \mathcal{M} . By Lemma 5.1

$$|f_{v}^{*}\vartheta_{ii}|^{2} \leq f^{*}\psi \leq v^{l}$$
.

This implies that $f_v^* \vartheta_{ij} \in \Gamma(N, K_N^l)$ are uniformly bounded. There is a subsequence $\{f_{v_k}\}$ such that each $f_{v_k}^* \vartheta_{ij}$ converges uniformly to $\alpha_{ij} \in \Gamma(N, K_N^l)$. By Lemma 5.2

$$\int_{N} (\sum_{i,j} |f_{v_{k}}^{*} \vartheta_{ij}|^{2})^{1/l} \ge C_{0}.$$

We have

$$\int_{N} (\sum_{i,j} |\alpha_{ij}|^2)^{1/l} \ge C_0.$$

Therefore there is a section $\alpha_{ij} \neq 0$, say, $\alpha_{10} \neq 0$. We define a meromorphic mapping F by

$$F = (\alpha_{10}, ..., \alpha_{1N}): N \longrightarrow \mathbf{P}^{N}.$$

We may assume that all $f_{\nu_k}^* \vartheta_{10} \neq 0$. Then $T \circ f_{\nu_k}$ are represented by

$$T \circ f_{\nu_k} = (f_{\nu_k}^* \vartheta_{10}, \dots, f_{\nu_k}^* \vartheta_{1N}) \colon N \longrightarrow T(M) \subset \mathbf{P}^N.$$

Hence $F(N) \subset T(M)$. Setting $f = T^{-1} \circ F$ we infer that $\{f_{v_k}\}$ is *m*-convergent to f and

(5.3)
$$\alpha_{ij} = f^* \vartheta_{ij} \quad \text{for all} \quad i, j.$$

Since $f * \vartheta_{10} \not\equiv 0$, f belongs to \mathcal{M} .

Theorem 5.3 means that \mathcal{M} is compact in the sense of the *m*-convergence. But it seems that, in general, the *m*-convergence does not define a topology in the precise sense. In the following we shall make clear this point.

Let Γ_0 be the vector subspace in $\Gamma(M, S^l\Omega(n))$ generated by $\{\vartheta_{ij}\}$ and $\Gamma_1 = \Gamma(N, K_N^l)$. Then a meromorphic mapping $f \in \mathcal{M}$ induces a homomorphism

$$f^*: \Gamma_0 \ni \vartheta \longmapsto f^* \vartheta \in \Gamma_1$$
.

We set

$$\iota : \mathcal{M} \ni f \longmapsto f^* \in \operatorname{Hom}(\Gamma_0, \Gamma_1) - \{0\}.$$

Composing ι with the natural mapping

 $\operatorname{Hom}(\Gamma_0,\,\Gamma_1)-\{0\} \longrightarrow (\operatorname{Hom}(\Gamma_0,\,\Gamma_1)-\{0\})/C^* = P\operatorname{Hom}(\Gamma_0,\,\Gamma_1)\,,$ We get

$$\tilde{\iota}: \mathcal{M} \longrightarrow P\mathrm{Hom}(\Gamma_0, \Gamma_1).$$

We shall show that $\tilde{\iota}$ and ι are injective. Let $f_i \in \mathcal{M}$, i=1,2 and assume that $\tilde{\iota}(f_1) = \tilde{\iota}(f_2)$. Then $f_1^* = cf_2^*$ with some $c \in \mathbb{C}^*$. There is a section ϑ_{ij} , say, ϑ_{10} such that $f_1^*\vartheta_{10} = cf_2^*\vartheta_{10} \neq 0$. The meromorphic mappings $T \circ f_1$ and $T \circ f_2$ are represented by

(5.4)
$$T \circ f_1 = (f_1^* \vartheta_{10}, \dots, f_1^* \vartheta_{1N}),$$

$$T \circ f_2 = (f_2^* \vartheta_{10}, \dots, f_2^* \vartheta_{1N}).$$

Since $f_1^* \vartheta_{1j} = c f_2^* \vartheta_{1j}$ for all j, $T \circ f_1 = T \circ f_2$ and so $f_1 = f_2$.

Next we show that the image $\iota(\mathcal{M})$ is compact in $\operatorname{Hom}(\Gamma_0, \Gamma_1) - \{O\}$ endowed with the usual topology. Let $\{\iota(f_v)\}$ be any sequence of $\iota(\mathcal{M})$. Taking a suitable subsequence, we may assume by Theorem 5.3 that $\{f_v\}$ is *m*-convergent to a meromorphic mapping $f \in \mathcal{M}$. Then each $\{f_v^*\vartheta_{ij}\}_v \subset \Gamma(N, K_N^l)$ converges uniformly on any compact set in N minus a thin analytic set to $f^*\vartheta_{ij} \in \Gamma(N, K_N^l)$. By the maximal principle of holomorphic functions, each $\{f_v^*\vartheta_{ij}\}_v$ converges uniformly to $f^*\vartheta_{ij}$. Therefore $\{\iota(f_v)\}$ converges to $\iota(f)$ in $\operatorname{Hom}(\Gamma_0, \Gamma_1) - \{O\}$ and so $\iota(\mathcal{M})$ and $\bar{\iota}(\mathcal{M})$ are compact sets.

Let $\{\tilde{\imath}(f_{\nu})\}_{\nu}$ be a sequence of $\tilde{\imath}(\mathcal{M})$ converging to $\tilde{\imath}(f)$ in $P \operatorname{Hom}(\Gamma_0, \Gamma_1)$. Then, using the representations of $T \circ f_{\nu}$ and $T \circ f$ of the type (5.4), we deduce that $\{f_{\nu}\}$ is m-convergent to f. Thus we have

THEOREM 5.4. (i) The mappings $\iota: \mathcal{M} \to \operatorname{Hom}(\Gamma_0, \Gamma_1) - \{0\}$ and $\tilde{\iota}: \mathcal{M} \to P \operatorname{Hom}(\Gamma_0, \Gamma_1)$ are injective.

- (ii) $\iota(\mathcal{M})$ and $\bar{\iota}(\mathcal{M})$ are compact sets in each space.
- (iii) Let $f_v \in \mathcal{M}$, v = 1, 2, ..., and $f \in \mathcal{M}$. Then the following convergences are equivalent:
 - (a) $\{f_{\nu}\}\$ is m-convergent to f_{ν}
 - (b) $\iota(f_{\nu}) \longrightarrow \iota(f)$ in $\operatorname{Hom}(\Gamma_0, \Gamma_1)$,
 - (c) $\tilde{\iota}(f_v) \longrightarrow \tilde{\iota}(f)$ in $P\text{Hom}(\Gamma_0, \Gamma_1)$.

Therefore $\tilde{\iota}(\mathcal{M}) \ni \tilde{\iota}(f) \longmapsto \iota(f) \in \iota(\mathcal{M})$ is continuous.

REMARK 1. In the case where n=m and M is of general type, Kobayashi-Ochiai ([6]) recently proved that \mathcal{M} is a finite set. They also dealt with the case $n \ge m$ and obtained the same result.

In case n < m, the finiteness of \mathcal{M} does not hold in general. In fact, let N be a closed Riemann surface with genus greater than one, $M = N \times N$ and denote by G the holomorphic automorphism group of N. Then the vector bundle $\Omega(1)$ over M is positive, so that $B = \emptyset$. In this case we have

$$\mathcal{M} = \{(a, f); a \in N, f \in G\} \cup \{(f, b); f \in G, b \in N\} \cup \{(f, g); f, g \in G\},\$$

which is infinite.

REMARK 2. Theorem 5.4 (iii) implies that $\bar{\iota}(\mathcal{M})$ can not be an analytic set of positive dimension, since the C^* -bundle $\operatorname{Hom}(\Gamma_0, \Gamma_1) - \{O\} \to P\operatorname{Hom}(\Gamma_0, \Gamma_1)$, restricted to any subvariety of positive dimension in $P\operatorname{Hom}(\Gamma_0, \Gamma_1)$ is topologically non-trivial.

Remark 3. Let N' be an n-dimensional compact complex manifold N minus a thin analytic set. Let \mathcal{M}' be the family of meromorphic mappings from N' into M of rank n. Then, by the remark in section 3, Theorems 5.3 and 5.4 are still valid for \mathcal{M}' .

References

- [1] J. Carlson, Some degeneracy theorems for entire functions with values in an algebraic variety, Trans. Amer. Math. Soc. 168 (1972), 273-301.
- [2] H. Fujimoto, On families of meromorphic maps into the complex projective space, Nagoya Math. J. 54 (1974), 21-51.
- [3] P. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of Kodaira), Univ. Tokyo Press, Tokyo, 1969.
- [4] S. Iitaka, On D-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356-373.
- [5] S. Kobayashi and T. Ochiai, Mappings into compact complex manifolds with negative first Chern class, J. Math. Soc. Japan 23 (1971), 137-148.
- [6] ———, Meromorphic mappings onto compact complex spaces of general type, Invent. Math. 31 (1975), 7-16.
- [7] K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds,J. Differential Geometry 6 (1971), 33-46.
- [8] B. G. Moišezon, Resolution theorems for compact complex spaces with a sufficiently large field of meromorphic functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 1331-1356.
- [9] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math. 25, Springer, Berlin, 1966.

[10] W. Stoll, Normal families of non-negative divisors, Math. Z. 84 (1964), 154-218.

Department of Mathematics, Faculty of Science, Hiroshima University