On Removable Singularities for Polyharmonic Distributions

Yoshihiro MIZUTA (Received May 19, 1977)

1. Introduction

Throughout this paper let 1 , <math>1/p + 1/q = 1 and m be a positive integer. For an open set G in the n-dimensional Euclidean space R^n , we denote by $BL_m(L^q(G))$ the space of all distributions on G whose distributional derivatives of order m are all in $L^q(G)$, that is, a distribution T on G belongs to $BL_m(L^q(G))$ if and only if

$$|T|_{m,q} = |T|_{m,q,G} = (\sum_{|\alpha|=m} ||D^{\alpha}T||_{L^{q}(G)}^{q})^{1/q} < \infty,$$

where α is an *n*-tuple $(\alpha_1, \alpha_2, ..., \alpha_n)$ of non-negative integers with length $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, $D^{\alpha} = \partial^{|\alpha|}/\partial x_1^{\alpha_1}\partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}$ and $\|\cdot\|_{L_q(G)}$ denotes the L^q -norm on G. We write simply $\|\cdot\|_q$ for $\|\cdot\|_{L^q(R^n)}$. We denote by Δ^m the Laplace operator iterated m times and write simply Δ for Δ^1 . The value of a distribution T on G at $\varphi \in C_0^{\infty}(G)$ is denoted by T, T.

Let E be a compact set in R^n . L. I. Hedberg proved the following result ([5; Theorem 1]): Let $\mathscr C$ be the space $C_0^\infty(R^n \setminus E)$ or the space of all functions $\varphi \in C_0^\infty(R^n)$ such that $|\operatorname{grad} \varphi| = 0$ on a neighborhood of E. Then $\mathscr C$ is dense in $C_0^\infty(R^n)$ with respect to the norm $|\cdot|_{1,p}$ if and only if any $T \in BL_1(L^q(R^n))$ such that $\langle T, \Delta \varphi \rangle = 0$ for any $\varphi \in \mathscr C$ is harmonic on R^n . We generalize this result as follows:

THEOREM 1. Let \mathscr{C} and \mathscr{C}' be subspaces of $C_0^{\infty}(R^n)$ such that $\mathscr{C} \subset \mathscr{C}'$. Then \mathscr{C} is dense in \mathscr{C}' with respect to the norm $|\cdot|_{m,p}$ if and only if any $T \in BL_m(L^q(R^n))$ such that $\langle T, \Delta^m \varphi \rangle = 0$ for any $\varphi \in \mathscr{C}$ satisfies $\langle T, \Delta^m \psi \rangle = 0$ for any $\psi \in \mathscr{C}'$.

As an application of this theorem, we shall give a condition, in terms of capacity, for a compact set in R^n to be removable for a class of polyharmonic distributions.

2. Proof of Theorem 1

We first suppose that \mathscr{C} is dense in \mathscr{C}' with respect to $|\cdot|_{m,p}$. We write

 $\Delta^m = \sum_{|\alpha| = m} c_{\alpha} D^{2\alpha}$ with constants c_{α} . Let T be a distribution in $BL_m(L^q(R^n))$ such that $\langle T, \Delta^m \varphi \rangle = 0$ for any $\varphi \in \mathscr{C}$. Let $\psi \in \mathscr{C}'$. Then there is a sequence $\{\varphi_j\} \subset \mathscr{C}$ such that $|\varphi_j - \psi|_{m,p} \to 0$ as $j \to \infty$. Hence we have

Next we show the converse assertion. Suppose $\mathscr E$ is not dense in $\mathscr E'$ with respect to $|\cdot|_{m,p}$. Then there is a function $u_0 \in \mathscr E'$ such that $M = \inf\{|u_0 - \varphi|_{m,p}^p; \varphi \in \mathscr E\} > 0$. Set

$$\Phi(u) = |u|_{m,p}^p, \qquad u \in BL_m(L^p(\mathbb{R}^n)).$$

Then there is a sequence $\{u_j\}\subset \mathscr{C}$ such that $M=\lim_{j\to\infty}\Phi(u_j-u_0)$. Since $\{\Phi(u_j)\}$ is bounded, we may assume that

$$D^{\alpha}u_{i} \rightarrow u^{(\alpha)}$$
 weakly in $L^{p}(R^{n})$ as $j \rightarrow \infty$

for each α with $|\alpha| = m$. Hence there is a sequence $\{a_{i,k}\}_{i=1,...,i_k;\ k=1,2,...}$ of non-negative numbers such that

$$a_{1,k} + a_{2,k} + \dots + a_{i_k,k} = 1,$$

$$a_{1,k} D^{\alpha} u_1 + a_{2,k} D^{\alpha} u_2 + \dots + a_{i_k,k} D^{\alpha} u_{i_k} \to u^{(\alpha)}$$

strongly in $L^p(\mathbb{R}^n)$ as $k \to \infty$ for any α with $|\alpha| = m$. Consequently

$$\begin{split} M & \leq \lim_{k \to \infty} \Phi(\sum_{i=1}^{i_k} a_{i,k} u_k - u_0) = \sum_{|\alpha| = m} \|u^{(\alpha)} - D^{\alpha} u_0\|_p^p \\ & \leq \lim_{j \to \infty} \Phi(u_j - u_0) = M, \end{split}$$

so that $M = \sum_{|\alpha| = m} \|u^{(\alpha)} - D^{\alpha}u_0\|_p^p$ and $\|D^{\alpha}u_j - D^{\alpha}u_0\|_p \to \|u^{(\alpha)} - D^{\alpha}u_0\|_p$ as $j \to \infty$ for any α with $|\alpha| = m$. It follows that $D^{\alpha}u_j \to u^{(\alpha)}$ strongly in $L^p(R^n)$ as $j \to \infty$. It is easy to check that for any $\varphi \in \mathscr{C}$

(1)
$$\sum_{|\alpha|=m} \int |u^{(\alpha)} - D^{\alpha}u_0|^{p-2} (u^{(\alpha)} - D^{\alpha}u_0) D^{\alpha}\varphi dx = 0.$$

We set

$$h^{(\alpha)} = |u^{(\alpha)} - D^{\alpha}u_0|^{p-2}(u^{(\alpha)} - D^{\alpha}u_0),$$

$$h^{(\alpha)}_j = |D^{\alpha}u_j - D^{\alpha}u_0|^{p-2}(D^{\alpha}u_j - D^{\alpha}u_0),$$

$$T_j = (-1)^m \sum_{|\alpha| = m} D^{\alpha}h^{(\alpha)}_j, \quad U_j = K*T_j,$$

where K is the following fundamental solution of Δ^m , i.e.,

$$K(x) = \begin{cases} c|x|^{2m-n}, & \text{in case } n - 2m > 0 \text{ or} \\ n \text{ is odd and } n - 2m < 0; \\ c|x|^{2m-n}\log|x|, & \text{in case } n \text{ is even and } n - 2m \le 0 \end{cases}$$

with some constant c. Since $D^{\alpha}u_j \to u^{(\alpha)}$ strongly in $L^p(\mathbb{R}^n)$ as $j \to \infty$, we can show that $h_j^{(\alpha)} \to h^{(\alpha)}$ weakly in $L^q(\mathbb{R}^n)$ as $j \to \infty$. Furthermore,

$$\begin{split} \lim_{j \to \infty} \|h_j^{(\alpha)}\|_q &= \lim_{j \to \infty} \|D^{\alpha}u_j - D^{\alpha}u_0\|_p^{p/q} \\ &= \|u^{(\alpha)} - D^{\alpha}u_0\|_p^{p/q} = \|h^{(\alpha)}\|_q. \end{split}$$

From these facts it follows that $h_j^{(\alpha)} \to h^{(\alpha)}$ strongly in $L^q(\mathbb{R}^n)$ as $j \to \infty$ for each α with $|\alpha| = m$. Note that

$$U_j(x) = \sum_{|\alpha|=m} \int D^{\alpha} K(x-y) h_j^{(\alpha)}(y) dy.$$

On account of [6; Lemmas 3.3 and 4.3], $\{U_j\}$ is a Cauchy sequence in $BL_m(L^q(\mathbb{R}^n))$, and hence, by [4; Théorème 2.1 in Chap. III] there is $U_0 \in BL_m(L^q(\mathbb{R}^n))$ such that $|U_j - U_0|_{m,q} \to 0$ as $j \to \infty$. For any $\varphi \in C_0^\infty(\mathbb{R}^n)$, we have

$$< U_0, \ \Delta^m \varphi > = (-1)^m \sum_{|\alpha| = m} c_\alpha \int D^\alpha U_0(x) D^\alpha \varphi(x) dx$$

$$= (-1)^m \sum_{|\alpha| = m} c_\alpha \lim_{j \to \infty} \int D^\alpha U_j(x) D^\alpha \varphi(x) dx = \lim_{j \to \infty} < \Delta^m U_j, \ \varphi >$$

$$= \lim_{j \to \infty} < T_j, \ \varphi > = \lim_{j \to \infty} \sum_{|\alpha| = m} \int h_j^{(\alpha)}(x) D^\alpha \varphi(x) dx$$

$$= \sum_{|\alpha| = m} \int h^{(\alpha)}(x) D^\alpha \varphi(x) dx.$$

Hence,

$$\begin{split} M &= \sum_{|\alpha|=m} \|u^{(\alpha)} - D^{\alpha}u_0\|_p^p = \sum_{|\alpha|=m} \int h^{(\alpha)}(x) \{u^{(\alpha)}(x) - D^{\alpha}u_0(x)\} dx \\ &= \sum_{|\alpha|=m} \lim_{j \to \infty} \int h^{(\alpha)}(x) \{D^{\alpha}u_j(x) - D^{\alpha}u_0(x)\} dx \\ &= \lim_{j \to \infty} \langle U_0, \Delta^m(u_j - u_0) \rangle \; . \end{split}$$

By (1), $\langle U_0, \Delta^m \varphi \rangle = 0$ for all $\varphi \in \mathscr{C}$, while $\langle U_0, \Delta^m (u_j - u_0) \rangle \neq 0$ for large j. This proves the converse part and thus our theorem is established.

COROLLARY. Let \mathscr{C} be a subspace of $C_0^{\infty}(R^n)$. Then \mathscr{C} is dense in $C_0^{\infty}(R^n)$ with respect to $|\cdot|_{m,p}$ if and only if any $T \in BL_m(L^q(R^n))$ such that $\langle T, \Delta^m \varphi \rangle = 0$ for any $\varphi \in \mathscr{C}$ satisfies $\Delta^m T = 0$ on R^n (in the distributional sense).

3. Removable singularities

For a compact set $E \subset \mathbb{R}^n$, we define the capacity

$$\Gamma_{m,p}(E) = \inf\{\|\varphi\|_{m,p}^p; \varphi \in C_0^{\infty}(\mathbb{R}^n) \text{ and } \varphi(x) \ge 1 \text{ for all } x \in E\},$$

where $\|\varphi\|_{m,p} = (\sum_{|\alpha| \le m} \|D^{\alpha}\varphi\|_p^p)^{1/p}$. Using [1; Theorem A] and [6; Theorem 2.4], we have

LEMMA 1. Let E be a compact set in R^n . Then $\Gamma_{m,p}(E)=0$ if and only if $C_0^{\infty}(R^n \setminus E)$ is dense in $C_0^{\infty}(R^n)$ with respect to $\|\cdot\|_{m,p}$.

By using Poincaré's inequality (cf. [4; p. 318]), we obtain

LEMMA 2. Let E be a compact set in R^n . If $C_0^{\infty}(R^n \setminus E)$ is dense in $C_0^{\infty}(R^n)$ with respect to $\|\cdot\|_{m,p}$, then $C_0^{\infty}(G \setminus E)$ is dense in $C_0^{\infty}(G)$ with respect to $\|\cdot\|_{m,p}$ for any open set $G \supset E$. Conversely, if $C_0^{\infty}(G \setminus E)$ is dense in $C_0^{\infty}(G)$ with respect to $\|\cdot\|_{m,p}$ for some bounded open set $G \supset E$, then $C_0^{\infty}(R^n \setminus E)$ is dense in $C_0^{\infty}(R^n)$ with respect to $\|\cdot\|_{m,p}$.

We shall show

THEOREM 2. Let E be a compact set in \mathbb{R}^n . If $\Gamma_{m,p}(E)=0$, then for any open set $G\supset E$, any distribution $T\in BL_m(L^q(G))$ such that $\Delta^mT=0$ on $G\setminus E$ satisfies $\Delta^mT=0$ on G. Conversely, if for some bounded open set $G\supset E$, any $T\in BL_m(L^q(G))$ such that $\Delta^mT=0$ on $G\setminus E$ satisfies $\Delta^mT=0$ on G, then $\Gamma_{m,p}(E)=0$.

PROOF. We first suppose $\Gamma_{m,p}(E)=0$. Let G be an open set in \mathbb{R}^n which contains E. By Lemma 1, $C_0^\infty(\mathbb{R}^n\backslash E)$ is dense in $C_0^\infty(\mathbb{R}^n)$ with respect to $\|\cdot\|_{m,p}$. Hence Lemma 2 implies that $C_0^\infty(G\backslash E)$ is dense in $C_0^\infty(G)$ with respect to $\|\cdot\|_{m,p}$. Since $\Delta^m T=0$ on $G\backslash E$ (G resp.) if and only if < T, $\Delta^m \varphi>=0$ for any $\varphi\in C_0^\infty(G\backslash E)$ ($C_0^\infty(G)$ resp.), the first assertion in our theorem follows from Theorem 1. The second assertion follows also from Lemmas 1, 2 and Theorem 1.

A function f on an open set $G \subset \mathbb{R}^n$ is said to be (m, q)-quasi continuous if given $\varepsilon > 0$, there is an open set ω such that $\Gamma_{m,q}(\omega) < \varepsilon$ and f is continuous as a function on $G \setminus \omega$. If $T \in BL_m(L^q(G))$, then there is an (m, q)-quasi continuous function f in $L^q_{loc}(G)$ such that < T, $\varphi > = \int f(x)\varphi(x)dx$ for any $\varphi \in C_0^\infty(G)$ (cf. [6; Lemma 2.3]). We shall say that a function f on G is ACL (absolutely continuous on lines) when f is absolutely continuous on each component of the part

in G of almost every line parallel to each coordinate axis.

LEMMA 3. Let k be a positive integer and G be an open set in \mathbb{R}^n . If f is a (k, q)-quasi continuous function in $BL_k(L^q(G))$, then f is ACL on G.

PROOF. Take $\varphi \in C_0^{\infty}(G)$ and set $u = \varphi \cdot f$. Then $u \in BL_k(L^q(\mathbb{R}^n))$ and is (k, q)-quasi continuous on \mathbb{R}^n . It suffices to show that u is ACL on \mathbb{R}^n . By [6; Theorem 3.1], there is a set $E \subset \mathbb{R}^n$ with $\Gamma_{k,q}(E) = 0$ such that if $x \in \mathbb{R}^n \setminus E$, then

$$\int |x-y|^{k-n} \left(\sum_{|\alpha|=k} |D^{\alpha}u(y)|\right) dy < \infty$$

and

(2)
$$u(x) = \sum_{|\alpha|=k} a_{\alpha} \int \frac{(x-y)^{\alpha}}{|x-y|^n} D^{\alpha} u(y) dy,$$

where a_{α} are constants. With the aid of [3; Lemma at p. 297] and [6; Theorem 2.4], u is seen to be ACL on R^n from the proof of [2; Theorem 1 in §7] with $G_{\alpha}g$ replaced by the right-hand side of (2).

By Lemma 3 and [6; Theorem 3.3], we have

COROLLARY. Let G be an open set in \mathbb{R}^n and let f be an (m, q)-quasi continuous function in $BL_m(L^q(G))$. Then f, together with its derivatives of order less than m, is ACL on G.

LEMMA 4. If E is a compact set in R^n with $\Gamma_{m,p}(E)=0$ and if $T \in BL_m(L^q(R^n \setminus E))$, then T can be extended to an element in $BL_m(L^q(R^n))$.

PROOF. Let f be an (m, q)-quasi continuous function in $BL_m(L^q(\mathbb{R}^n \setminus E))$ such that f = T in the distributional sense. Consider the function

$$\tilde{f}(x) = \begin{cases} f(x) & \text{for } x \in \mathbb{R}^n \backslash E \\ 0 & \text{for } x \in E. \end{cases}$$

Then \tilde{f} and its derivatives of order less than m are ACL on R^n in view of Corollary to Lemma 3. It is easy to see that $\tilde{f} \in BL_m(L^q(R^n))$. Thus \tilde{f} gives an extension of T to the whole space.

LEMMA 5. If any $T \in BL_m(L^q(\mathbb{R}^n \setminus E))$ such that $\Delta^m T = 0$ on $\mathbb{R}^n \setminus E$ can be extended to a distribution $T \in BL_m(L^q(\mathbb{R}^n))$ such that $\Delta^m T = 0$ on \mathbb{R}^n , then the n-dimensional (Lebesgue) measure of E is zero.

PPOOF. Suppose the *n*-dimensional measure of E is positive. We consider the function $U(x) = K * \chi_E(x) = \int_E K(x-y) dy$. Then $D^{\alpha}U \in BL_m(L^q(\mathbb{R}^n))$ for

 $|\alpha| = m$ according to [6; Lemmas 3.3 and 4.3]. Furthermore

$$\Delta^m(D^\alpha U) = D^\alpha \chi_E = 0$$
 on $R^n \setminus E$.

By the assumption, $D^{\alpha}U$ can be extended to a distribution $T_{\alpha} \in BL_m(L^q(\mathbb{R}^n))$ such that $\Delta^m T_{\alpha} = 0$ on \mathbb{R}^n , where $|\alpha| = m$. In view of [6; Lemma 4.1], T_{α} is a polynomial. Hence U is equal to a polynomial outside E, which is a contradiction.

We now show

THEOREM 3. Let E be a compact set in R^n . If $\Gamma_{m,p}(E)=0$, then for any open set $G\supset E$, any $T\in BL_m(L^q(G\setminus E))$ such that $\Delta^mT=0$ on $G\setminus E$ can be extended to a distribution $\tilde{T}\in BL_m(L^q(G))$ such that $\Delta^m\tilde{T}=0$ on G. Conversely, if for some bounded open set $G\supset E$, any $T\in BL_m(L^q(G\setminus E))$ such that $\Delta^mT=0$ on $G\setminus E$ can be extended to a distribution \tilde{T} such that $\Delta^m\tilde{T}=0$ on G, then $\Gamma_{m,p}(E)=0$.

PROOF. The first assertion follows from Theorem 2 and Lemma 4. To prove the converse part, suppose that any $T \in BL_m(L^q(G \setminus E))$ such that $\Delta^m T = 0$ on $G \setminus E$ can be extended to \widetilde{T} such that $\Delta^m \widetilde{T} = 0$ on G. Take any $T^* \in BL_m(L^q(G))$ satisfying $\Delta^m T^* = 0$ on $G \setminus E$. Let T^{**} be the restriction of T^* to $G \setminus E$, and T^{**} be an extension of T^{**} such that $T^{**} = 0$ on $T^$

REMARK. In case m=1, Theorem 3 is a consequence of [5; Theorem 1].

References

- [1] D. R. Adams and J. C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc. 37 (1973), 529–534.
- [2] N. Aronszajn and K. T. Smith, Theory of Bessel potentials, Part 1, Ann. Inst. Fourier 11 (1961), 385-475.
- [3] N. Aronszajn, F. Mulla and P. Szeptycki, On spaces of potentials connected with L^p classes, Ann. Inst. Fourier 13 (1963), 211-306.
- [4] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305-370.
- [5] L. I. Hedberg, Removable singularities and condenser capacities, Ark. Mat. 12 (1974), 181–201.
- [6] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiro-shima Math. J. 4 (1974) 375-396.

Department of Mathematics, Faculty of Science, Hiroshima University