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1. Introduction

Let us consider the Cauchy problem for a hyperbolic system
WD) 0 = Spdin ) F(x ) O=IST, -0 <x, <),
J

(12) u(xs 0) = UO(X), uO(x) ELZs

where u(x, f) and uy(x) are N-vectors and Aj(x, t) (j=1,2,...,n) are NxN
matrices, and assume that this problem is well posed. For the numerical solu-
tion of this problem we consider the following difference scheme:

(1.3) o(x, t+ k)= Sy(t, Wo(x, 1) (O=t<T, — o0 <x; <),
(1.4) v(x, 0) = uy(x), k=4h 1>0),

where Sy(¢, u) is a sum of products of operators of the form Y ,c.(x,t, p)T%
(u=0), a is a multi-index, c,(x, t, ) is an N x N matrix, T, is the translation
operator and h is a space mesh width.

In our previous paper [5] we treated the case where A)(x, t) (j=1, 2,..., n)
are independent of ¢, and obtained sufficient conditions for L,-stability of the
scheme (1.3). In this paper we extend the results to the system (1.1) that satisfies
the following conditions: Eigenvalues of A(x, t, &)= X 7= A;(x, ©)¢;/|¢] (£+#0)
are all real and their multiplicities are independent of x, ¢t and ¢; elementary di-
visors of A(x, t, &) are all linear; there exists a positive constant é such that

M‘i(x, t’ 5) - lj(xs ta é)l g 5 (l 7&]’ l’] = 19 2’-'-’ S),

where 1(x, t, &) (i=1, 2,..., s) are all the distinct eigenvalues of A(x, ¢, ).

Our proof of stability is based on the following result: The scheme (1.3)
is stable if S,(¢, h) and S,(t, 0) are the families of bounded linear operators in L,
and if there exist positive constants c; (j=0, 1, 2) and a norm || ||, which de-
pends on ¢ and is equivalent to the L,-norm such that

(1.5) Nullere = (4 + coB) llufl, ¢+ k=T),
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(1.6) 1Su(t, Oulle = (1 + cyh) flull,
(1.7 I(SK(t, h) — Su(t, u|l < c,hljul| forall uelL,, te[0, T], h > 0.

The lemmas and theorems stated without proofs can be shown by the argu-
ments similar to those of the corresponding ones in [5].

2. Notations and preliminaries

2.1. Notations

Let C be the field of complex numbers and let a* stand for the conjugate
transpose of a matrix a. We denote by |a|, |z| and p(a) the spectral norm of an
N x N matrix a, the Euclidean norm of an N-vector z and the spectral radius of a
respectively. For any hermitian matrices a and b we use the notation a=b
if a— b is positive semidefinite.

We denote by R” the real n-space and write it as RZ, R2, R%, etc. to specify
its space variables. Unless otherwise stated, we denote by u(x), ¢(x), etc. the
N-vector functions defined on R*. We put J=[0, T] and I, =[O0, ).

The space L, (p=1) consists of all measurable functions u(x) in R" such that

|lu(x)|? is integrable, i.e. S|u(x)|de<oo. The scalar product and the norm in
L, are denoted by ( , ) and | - || respectively.
We denote by p(x, t, @) (x € R*) the Fourier transform of p(x, t, @) with re-

spect to x.

Let & be the space of all C* functions on R? which, together with all their
derivatives, decrease faster than any negative power of |x| as |x|»>o0. Then, for
each ¢(x) in &, ¢(x) can be written as follows:

.1) o) = ng_ix'l(p(x)dx forall ¢e,
where
(2.2 k=Qn)™"2 x-x=Xl1%X

For simplicity we make use of the notations
_ 0 _ 0 _ 0 .
0, = ot D;= ox;’ 0;= b, (Gj=1,2,..,n).

We denote by 51;1% u(x, t, ) and supu(x, t, ®) the supremum of u(x, t, ) on
[} ¢z

R — {0} for each fixed (x, f) and that on R? —Z respectively, where Z is a subset
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of R:.

We say that I(x, t, w) is absolutely continuous with respect to w, if it is so on
any finite closed interval for each fixed x, t and w; (j=1, 2,..., n; j#k), and that
I(x, t, ) is absolutely continuous with respect to ¢ if it is so on J for each fixed y
and w. We say that a scalar function c(x, t, w) satisfies the condition imposed
on matrix functions, if c¢(x, t, w)I does.

2.2. The difference approximations

We consider a mesh imposed on (x, t)-space with a spacing of h in each x;-
direction (j=1, 2,..., n) and a spacing of k in the t-direction. The ratio A=
k/h is to be kept constant as h varies. We approximate (1.1) and (1.2) by the differ-
ence scheme of the form:

2.3) v(x, t + k) = S,(t, h)v(x, 1) (t,t+keld)
2.4) o(x, 0) = up(x),
where

(2.5 Su(t, 1) = Zmn};l ij(x9 t,u, T,), m=(my, my,...,m),
(2.6) ij(xs tu Tp) = ZacaMJ(xa t, )T, o= (0, %y ),
2.7 TG =TT Tk, Tiu(x) = u(xy,.., Xjo1, X+ hy Xjiq,000y X,),

m; (m;20; j=0, 1,...,v) and «a;(j=1, 2,...,n) are integers, pel, and
Cam (X5 1, )’s are N x N matrices.

We approximate the partial differential operator hD; (1= j<n) by the differ-
ence operator 4, of the form

(2.8) 4;, = Xb(T}, — T;H/2,

where the summation is over a finite set of I (1=0) and b,’s are real constants. We
put

2.9) sj(w) = X;b;sin lw; (j=1,2,..,n),
(2.10) s(w) = (5,(w), s;(w),..., s,(®)),
and assume that, for some positive integer r, s;(w) can be written as follows:
@.11) s(@) = @; + 0™ (o] < ).
For example the following difference operators are well known:

(2.12) Fy(t) = Cy + APy(1),
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(2.13) M) = I 4 AP(1)C,, + 2{(Py(1)* + hQy(D)}/2,
where
(2.14)  Pyt) = T Afx, D4y, Cy=Um)Tiy (T + T;D/2,
Q) = Zj1 QA% DAy, Ajy = (T = T5)2 (=1, 2,0, m).

The schemes (2.3) with operators (2.12) and (2.13) are called Friedrichs’ scheme
and the modified Lax-Wendroff scheme respectively.

We say that the difference scheme (2.3) approximates (1.1) with accuracy of
order r [4, 6] if all smooth solutions u of (1.1) satisfy

(2.15) lu(x, t + k) — S(t, Wu(x, )] = O(h™*1)  (h—0)

for each (x, ).
The difference scheme is said to be stable in L, if there exists a constant M
such that

(2.16) ISk(vk, BSK(v — Dk, h)-+-S)(0, hul| < M]lu]

for all ueL, and for all h>0 and integers v=0 such that (v+1)k<T. Since
Sy(t, h) is a family of bounded linear operators in L, depending on h and ¢, we have
to study the boundedness of products of the form L,(vk)L,((v—1)k)---L,(0) of
such families of operators L,(t).

Let 57, be the set of all families of bounded linear operators H,(f) in L, such
that

2.17) |Hy(Oull £ c(h) ||ul forall uelL,,teJ, h>0,

where c(u) is a continuous function on I,.
For Ay(t), B,(t)e o, and aeC let A,(t)+ By(t), A ()B,() and ad,(t) be
defined by

(Ai(®) + By())u = Ay()u + By(tu,
(4, (O)By(O)u = A (D) (By(u), (2A,O)u = a(A(H)u).

Then s#, forms an algebra over C with unit element I,. Since the adjoint A¥(¢)
of a family A4,(f) also belongs to 5#,, the operation # is an involution in s, and
o, is an algebra with involution [2].

For At), B(t)es#, we use the notation A,(t)=B,(t) if there exists a
constant ¢ such that

(2.18) (4, — B,®)u| £ chllu| forall uelL,, teJ, h>0.
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Then we have the following

THEOREM 2.1. Let L,(t)€ 5#, and suppose there exist a norm ||-||, (teJ)
and positive constants d; (j=1, 2, 3) and c, such that

(2.19) dy|ull £ llull, = d|lul,
(2.20) Mulllere = (1 +dsk) lull,  (t+kel),
2.21) IL,®ull £ A + coh) lull, forall ueL, teJ and h>0.
Then there exists a constant M such that
(2.22) ILAVE)Ly((v — DK)-+-L,(O)u| = M{ull
for all ue L, and for all h>0 and integers v=0 such that (v+1)k<T.
Proor. Making use of (2.20) and (2.21), we have
Ly (v)Ly((v — 1K)--- LyQ)ue[ll i
< (1 + coM) 1LY — Dk)---LyO)ul
= (1 + coh) (1 + d3k) IL((v — D)+~ Ly(O)ull (o - 155
- ZS (1 + coh)* (1 + dsk)*||ull,  forall ueL,, h>0,
and by (2.19)
d,||L,(vk)L,((v — D)k)---L,(0)u] < c,d,|u] forall ueL,, h>0,
where ¢, =exp(coT/A)exp(d;T). Hence (2.22) holds with M =c,d,/d,.

COROLLARY 2.1. For any Sy(t)e s, let L,(t) be a family such that L,(t)
=S,(¢) and which satisfies the assumption of the theorem. Then there exists
a constant M such that

(2.23) ISK(vE)SK(v — DE)-+-SO)ul = M]lu]
for all ue L, and for all h>0 and integers v=0 such that (v+1)k<T.
ProoF. Since there is a constant ¢, such that
I(Ly(®) — Su(O)u] < c h]ul forall uelL,, tedJ, h>0,
by (2.19) and (2.21) we have
lISa®ulle = WL ®Bull; + NI(Sk(®) — Ly@®)ull,
< IL®ull; + c;dzh|ul
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= (4 + csh) flull,

where c3=cy+c,d,/d;. Hence (2.21) is satisfied and (2.23) follows from the
theorem.

By Theorem 2.1 and its corollary, in proving the stability of the scheme
(2.3), the problem is to find a norm || - |||, (t€J) and a family L,(¢) € #, such that
L,(t)=S,(t, h) in order to establish (2.21).

3. The subalgebra ", of £,

3.1. Definitions

Let o¢" be the set of all N x N matrix functions p(x, t, w) defined on R2xJ
x R® with the properties:
1) p(x, t, w) can be written as

p(x: L, Cl)) = Po(x, t Cl)) + poo(t’ Cl)),

where po(x, t, w) and p. (¢, w) are bounded and measurable on RZxJ x R? and
measurable on R x R? for each te J,

lim po(x,t, @) =0 for each (¢, w);
|x|—e

2) po(x, t, w) is integrable as a function of x for each (¢, w);
3) p(x t, w) is integrable as a function of y for each (¢, w) and
ess - sup |Po(x, t, @)|dy is bounded on J.

The Fourier transform p(y, t, ) of the element p(x, t, w) of ¢ can be written
as follows:

(3.1 (i t, ) = Po(x; 1, ®) + (NP1, @),
where d(y) is the delta function. We define || p(¢)|| by

(3.2) 18Ol = {ess ;sup Bo(z, 1, @)ldz + esssup lpat, ).

Then we have the following two lemmas.

LemMmA 3.1. If p, qe ot and a€C, then p+gq, pq, ap, p* € X and

S A
(3.3) Ip+4a®le = 161 + 14DIF IPaDlF < 1HON IO,

3.4 1pOle = el 1BOIe 12%O1r = 1O
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LEMMA 3.2. Let peX andue%. Then

(3.5) ”Sﬁ(é—&', L RVAENE| S 1BOIelal  forall ted, h>o,

and for each teJ and h>0

@3.6) Lim. K‘lge““‘igﬁ(é =&, t, hEHa(E)dE' dE

= K—lgeu-: p(x, t, hE)a(E)dE

for almost all x.

With each pe " we associate a family of operators P,(f) by the formula:
G Poue) = Limoe (ee(pe — & 1, nenaazae

forall ue%,teJd, h>0.

Then by (3.5) P,(¢) can be extended to the closure &=L, with preservation of
norm and the extension is unique. Denoting this extension of P,(f) again by
P,(t), we call P,(t) the family (of operators) associated with p and denote this
mapping by ¢ i.e. P (f)=¢(p). Unless otherwise stated, we denote by Q(t),
Ly(t), etc. the families associated with g, I, etc. respectively.

We note that by (3.6) P,(t)u (u € &) can be written as follows:

(3.8) Ptu() = k=1 (e 5p(x, 1, hOa(E)E
forall ue%,teld, h>0.
Let o ,=¢(x"). Then we have

LeMMA 3.3. The mapping ¢ is one-to-one.

By Lemma 3.1 ¢ forms an algebra with involution over C. For p, qe "
and « € C we have

o(p) + ¢(q) = ¢(p + q), ad(p) = $(p),
because X", cs#,. Let

d(p)d(q) = d(pq), (p)* = $(p*).

Then ¢, forms an algebra with involution over € and the mappings ¢ and ¢!
are morphisms [1].
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3.2. Products and adjoints
We introduce the following three conditions.

ConDITIONI. 1) pex;
2) Po(x t, w) and p.(t, w) are absolutely continuous with respect to w;

(j=1,2,...,n) and 0;po(x, t, ®) and 9;p,(t, ®) (j=1, 2,..., n) are measurable
in R% x R?, for each t;

3) Sess(;suplajﬁo(x, t, w)ldy and ess - sup 10;po(t, ®)| (j=1, 2,...,n) are
bounded on J.

ConpITiON II. ge " and Sess‘-‘,sup(lxl |4o(x% t, ®)|)dy is bounded on J.

ConpITION III. 1) rex;
2) fo(x, t, w) is absolutely continuous with respect to w; (j=1, 2,..., n)
and 0;7o(x, t, w) (j=1, 2,..., n) are measurable in R} x R%, for each ¢;

3) gess“-)sup(lle 10,26(1 t, @)Dy (j=1, 2,..., n) are bounded on J.
We have

THEOREM 3.1. If p, q and r satisfy Conditions 1, II and III respectively,
then

(3.9 Py(0Q,(0) = Py(1)-Q4(1), RE(1) = R}(2).
CoroLLARY 3.1. If a(x, t), b(w, t), p(x, t, )€ A", then
(3.10) A (OP(t) = A(t)oPy(t), P(1)B,(t) = Py(t)eBy(2),

(3.11) BX(f) = Bi(f).

3.3. Construction of a new norm

We construct a norm || - ||, (¢t € J) stated in Theorem 2.1.

Let ¢ and R (R=¢) be positive numbers and let S(R, &)= {x||x|<R+e¢}.
Let {x®} (i=1, 2,..., s) be all the lattice-points (ex,, &1,,..., &1,) contained in
S(R, &) (ny=mj//n; mj=0, £1, +2,...; j=1, 2,..., n) and let

Vo = {x]|x| >R}, V;={x|]x —xP| <¢e} (i=1,2,...,5).
Then we can construct a partition of unity {a?(x)};=o,., With the properties:
1) ai(x) _Z_ 09 <xi('x)e Coo, supp ai(x) < Vl (l = 0’ 13-'-, S),

2) Ti-oxi(x) =1;
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3) ap(x) and all its derivatives are bounded uniformly with respect to R
for each e.

We introduce the following

ConpiTioN N. 1) ge ™ and Dyg(x, t, w) (j=1, 2,..., n) are bounded on
R:xJ xR and continuous on R for each (f, w); D;g(x, t, w) (j=1, 2,..., n)

s
are integrable as functions of x for each (¢, w); Djg(x, t, w) (j=1, 2,..., n) are
N
integrable as functions of y for each (¢, w) and Sess‘;sup |D;g(x, t, w)ldy (j=1, 2,
..., n) are bounded on J;

T~
2) |lapgo(DllF converges to zero uniformly on J as R—co.

Then we have the following lemma and theorem.
LemMmA 3.4. If p and q satisfy Condition N, so also do p+q, pq and p*.

THEOREM 3.2. Suppose

1) g(x, t, w) satisfies Condition N;

2) g(x,t, w)=el for some constant e>0.
Then for sufficiently small ¢ and large R there exist positive constants
d; (j=1,2) independent of u,t and h such that

(3.12) dillul* £ Xi-oRe(Gy(Dau, ou) < di|lul?
forall uelL,,tedJ, h>0.
This theorem enables us to introduce the norm
(3.13) Null, = {Zi=0 Re (Gu(Hotu, ot;u)}i/? forall ueL,, teJ, h>0,

which has the property (2.19) by (3.12). (For simplicity the dependence of
Il - ll; on h is not expressed explicitly.)
To obtain sufficient conditions for (2.20), we introduce the following

ConpITION L. 1) gex’;

2) go(x t, ) and g (t, w) are absolutely continuous with respect to t;
there exist measurable functions @y(y, ¢, ®) and ¢, (¢, @) in R} xJ x R such that
for each (y, w) and for almost all teJ

atéo(x, t (0) = (pO(Xa t, (D), atgc‘o(t, CO) = (Poo(t’ 0)),

3) There exists a constant M >0 such that for almost all te J

Sess -suploo(x, 1, w)ldy £ M, ess:sup|o,(t, 0)| = M.
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We have

LemMMA 3.5. If g satisfies Condition L, then there exists a positive con-
stant c independent of u, t, t' and h such that

B.14)  (G,(t) — G,®)u| Ec|t’ — t||u]  forall ueL, t,t'eJ, h>0.
Proor. By Lemma 3.2 it suffices to show that for some constant ¢>0

(3.15) 1§@) — gl e —1t) forall t,t'eJ (f'=1).

From Condition L-2) it follows that for each (y, w)

¢
t

19606 15 ) = 8ot 1, @) = | 20z, 6, )

)
< S l0o(s 0, W)Ido.

Taking the essential suprema of both sides over R" and integrating them with
respect to y, we have by Condition L-3)

)
(3.16) 190(t) = do(0lr = {{ ess; suploa(z, 6, wldody
< S"Mde = M@t —1).
t

Similarly we have

(3.17) 19.o(t) = gu®)llr < M(" = 1).

Hence (3.15) holds with ¢c=2M by (3.16) and (3.17).
Combining Theorem 3.2 with Lemma 3.5, we have

THEOREM 3.3. Let g satisfy Conditions N and L and suppose g(x, t, w)=el
for some constant e>0. Then the norm ||-||, given by (3.13) satisfies (2.19)
and (2.20).

Proor. It suffices to show (2.20). By Lemma 3.5 for some constant c
independent of u, t, t' and h we have

Hllliz — Mulifl = 1250 Re(G(t) — Gu(O)tu, o]
= 2o l(GH(t) — Gu®)aue]| [l
< Zi=oclt’ — tl lau|)? = clt’ — o [Ju||?

forall uelL,, t,t'eJ, h > 0.
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The choice t'=t+k yields (2.20) with d;=c¢/d? by (2.19).

3.4. Lax-Nirenberg Theorem

We have the following analogue of Lax-Nirenberg Theorem [3] which plays
an important role in establishing (2.21).

THEOREM 3.4. Suppose pe€ X satisfies the conditions:

1) 0;0(x, t, w) and 0;p,(t, ®) (j=1, 2,..., n) are continuous on R}, for each
(x, t) and absolutely continuous with respect to w, (k=1, 2,..., n);

2) 00;P0(x> t, ®) and 0,0;p,(t, w) (j, k=1,2,...,n) are measurable in
R:xRp  for each t; Sess‘;suplakajﬁo(x, t, w)ldy and ess‘-osuplékajpm(t, )|
(j, k=1, 2,..., n) are bounded on J;

3) gess(;)sup (xl?po(x, t, w)))dy is bounded on J;

4) p(x,t, w) = 0.

Then there exists a positive constant ¢ independent of u, t and h such that

(3.18) Re(Py(u, u) = — ch|ul|>  forall ueL, tel, h>0.

4. Products of families of operators

4.1. The family of operators 4,

In this section s(w) denotes a real-valued vector function with the properties:

1) sf(w), 0;s(w) and 8,0;5(w) (j, k, =1, 2,..., n) are bounded and con-
tinuous on R

2) Zeros of |s(w)| are isolated points.

It is readily seen that |s(w)|l satisfies Condition I. Let Z={w]||s(w)|=0} and
A, be the family associated with |s(w)]I. Then by Corollary 3.1 we have 4,
=Af=A}.
Let p(x, t, w) be an element of & such that p(x, , w)/|s(w)| is bounded on

Rt xJx(Rr—2Z). For any constant « let

p(x, t, w)/ls(w)]  for weR} - Z,
4.1 4ox, t, ©) =

ol for weZ,

and suppose q,(x, t, w)eX". Then, since Z is a set of measure zero, we have for
each t

(4.2) 0o DU(®) = Op(Du(®) a.e.

for all ue ¥, where Q,,(f) and Qg (t) are the families associated with g, and g,
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(B#a) respectively. In the following we identify gq,(x, t, w) with gu(x, t, @)
and denote them by p(x, t, w)/|s(w)]. Then we have P,(t)=P,,(t)A,, where
P,,(t) is the family associated with p/|s|.

When e(w) is a scalar function with isolated zeros such that e(w)l € X",
p(x, t, w)/e(w) can be defined similarly by replacing |s(w)| by e(w).

Now we introduce the following conditions.

ConpITION I'. 1) pex’;

2) Po(x t, ) is bounded on R%x J x (R%—Z);

3) 9;lo(x, t, ) and 9,l.(t, w) (=1, 2,..., n) are bounded on RjxJx
(R —Z) and continuous on R% — Z for each (y, t), where l(x, t, @)= pols|, 1,(t, w)
=Polsl;

4) Sessa-,sup [0;lo(x, t, w)ldx (j=1, 2,..., n) are bounded on J.

ConprTioN IIT'. 1), 2) the same as I'-1), I'-2) respectively;
3) 0;lo(x, t, w) (j=1, 2,..., n) are bounded on R%xJx(R%—Z) and con-
tinuous on R” —Z for each (y, t);

4) SCSS‘;SUP(IXA [0;lo(x, t, @)dy (j=1, 2,..., n) are bounded on J.

ConpiTioN IV. pe st and Sess‘;sup (x1?1po(x> t, ®)|)dy is bounded on J.

ConpITION V. 1) p satisfies Condition I’;

2) Oumjo(x, t, ®) and 9,m;,(t, ®) (j, k=1, 2,..., n) are bounded on RjxJ
X (R%—Z) and continuous on R}, —Z for each (y, 1), where m;o(x, t, @)=(9,lo)[sl,
Mjo(t, @)=(0;lx) 5], lo=Polsl, lo=Puolsl;

3) Sess;’suplakmjo(x, t, w)ldy (j, k=1, 2,..., n) are bounded on J.

We have the following lemmas.

LemMmA 4.1. (i) If p satisfies Condition I', then p|s| satisfies Condition 1.
(ii) If p satisfies Condition II', then p|s| satisfies Condition 111.

LemMMA 4.2. (i) If p satisfies Condition ' and q satisfies Condition II,
then

(4.3) P (0,4, = Py(1)oQy(t)o Ay
(ii) If p satisfies Condition III', then
4.4 (Py(O4)* = Pi(t)oA,.

LemmA 4.3. If p satisfies Conditions IV and V, then p(x, t, w)|s(w)|?
satisfies conditions 1), 2) and 3) of Theorem 3.4.
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4.2. Subalgebras .# and .# of X~

Let .# be the set of all elements of o that satisfy Conditions I’, IT and III’
and let the set % consist of all elements of .# that satisfy Conditions IV and V.
For instance |s(w)|I and (s (w)/|s(@))I (j=1, 2,..., n) belong to .# and Z.

LemMA 44. (i) If p and q satisfy Condition 11, so also do p+q, pq and
*
a (ii) If p,qe 4, then p+q, pq, p*e 4.
(iii) Ifp, qe &, then p+q, pq, p*€ £L.
LeEMMA 4.5. Let g(x, t, w) satisfy Conditions I’ and 11, and let
4.5) I(x, t, ) = (@) + q(x, t, w)|s(w)|,
where q(x, t, w) € 4 and c(w) is a scalar function satisfying Condition I. Then
(4.6) LG (OLy(1) = Li(1)°Gy(1)-Ly(2) .
COROLLARY 4.1. Under the assumption of Lemma 4.5 let
4.7 g(x, t, ) = w¥(x, t, o)w(x, t, ®),

where w, wleX". Then

(4.8) Gy(t) — LEDG,(OL,(1) = Gy(f) — Li1)Gy(f)oLy(f)
= Wity — Li@oL ) Wy(0),
4.9) g — I*gl = w*(I — T*yw, 1=wiw1,

4.3. Integrability of Fourier transforms
We introduce

ConpiTioN VI. 1) p(x, t, ) can be written as
p(x, t, ®) = po(x, t, ®) + Po(t, ®),

where po(x, t, w) and p.(t, ®) are bounded and measurable on R”xJ x R% and
measurable on R? x R? for each ¢,

Il}m Po(x, t, w) =0 for each (1, w);

2) Dppy(x, t, w) (I=1,2,...,n; m=0, 1,..., n+3) are continuous on R?xJ
x(R%—Z) and continuous on RZxJ for each weZ; sup |D7py(x, t, )| and

sup |D7po(x, t, w)ldx (I=1, 2,..., n; m=0, 1,..., n+3) are bounded on RZxJ






