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1. Introduction

Consider a linear elastic solid occupying, in its non deformed state, a bounded
three dimensional domain Ω with a C°° -boundary dΩ. Let the medium be fixed
on some part of the boundary and free on the other part. In this paper we
consider the problem of controlling the deformation of the medium by applying
traction forces on a small subset of the free boundary part. Let us denote by
{w'(x, 0)i= 1,2,3 the displacement vector at the time t of the material particle
which lies at x = {xi}i=1>2,3 in the non deformed state. Then ul(x9 t) (ΐ = l, 2, 3)
satisfy the system of equations

(1.1) p ( χ ) - C ί , . u ( x ) ) = = 0 in ρΞ

with initial conditions

(1.2) w'0, 0) = 0 in Ω,

(1.3) [dwVdίJO, 0) = 0 in Ω

and mixed boundary conditions

(1.4) ui(x,t) = Q on Λ x(0, T),

(1.5) njCiJkl(x)^-(x9 1) = g^x, t) on Γ2 x (0, Γ) .

Here n = (nί, n2,
 na) *s tne outward unit normal vector on dΩ, Γt and Γ2 are dis-

joint relatively open subsets of dΩ such that dΩ = Γ1 U Γ2 = Γί U f 2, L = f x n Γ2

is a smooth curve and T is a positive number. The coefficients p(x) and cijkl(x)
are assumed to be C°°-functions and to satisfy the following symmetry and

definiteness conditions :

P m ^ P O O ^ P M in Ω, Q<pm^pM,

(x)\^pl in Ω, ί = l,2,3,

C u i ) in f l »
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υ < cm s CM

for any real ξy (i, j = l, 2, 3).
Throughout this paper, all suffixes range over the values 1, 2, 3 and the

usual convention of summing over repeated indices is adopted.
Let Γ0 be a relatively open subset of Γ2 and we denote by IF the set of all

infinitely continuously differentiable functions on Γ2 x (0, T) whose supports
are compact and contained in Γ0 x (0, T). This space & is called the control
space, and the set of all states [w(T), (du/dt)(T)'] of the solutions of (1.1)~(1.5)
when g ranges over the space IF is called the reachable space at time T. When
the reachable space at time T is dense in a certain Hubert space, the system is
said to be controllable at time T.

In case the whole boundary is free, that is, Γί = 0, B. M. N. Clarke [1]
showed that the system (1.1)~(1.5) is not controllable at a time less than 27\
and controllable at a time greater than 2T2 with constants 7\ and Γ2 which are
determined by Ω, ρ(x) and cίjkl(x). (Cf. also D. L. Russell [8] [9].) In this
paper we shall show that the same results still hold even if there is a fixed part

The author wishes to express his hearty thanks to Prof. A. Inoue for his kind
encouragement and valuable suggestions, and to Prof. F-Y. Maeda for his com-
ments in writing this paper.

2. The existence and uniqueness of solutions

In this section we shall show the existence and uniqueness of a solution of
the initial-boundary value problem

(2.1) p(.

(2.2) ui(x90) = ui

Q(x) in Ω,

(2.3) ^-C*> °) = "ίOO in Ω»

(2.4) ιι'(x,0 = 0 on Γ l X (0, T),

(2.5) njCiJklwΆx91) = g*(x9 /) on Γ2 x (0, Γ) ,

following the lines of [2], [3] and [4].
First we introduce some function spaces on which our problem is considered.

Let us denote by Hl(Ω) the Sobolev space of order /, and by K(Ω) the closure in
H\Ω) of the space of all u each of which belongs to C°°(ί2) and vanishes in a
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neighborhood of Γ^\JL. The Gothic types L2(Ω\ Hl(Ω) and K(Ω) denote the
product spaces L2(Ω)3, Hl(Ω)3 and K(Ω)3 respectively. For an element u(x)
in L2(Ω\ Hl(Ω) or K(Ω), ul(x) (ί = l, 2, 3) denotes the i-th component of u(x).
For a Banach space X, ^(X) [0, T] means the Banach space of fe-times con-
tinuously differentiable X- valued functions in 0<f<Γ. For u,veL2(Ω) or
L2(Ω)9 (M, υ) means the inner product in either of these Hubert spaces.

For simplicity let us put as follows :

Γ i ί Ί Γ O
v = du/dt9 U=\ I F=\

UJ I f

Aik = d^j(Cijkl^)' A = ^<Λ'.

0 1

p-^Aik 0

Then equation (2.1) is written as

(2.6) --U= AfU + F/p.

By means of K(Ω) we define the boundary condition (2.5) in the weak sense
as follows :

DEFINITION 2. 1 . Let u(x) e H\Ω\ Au(x) e L2(Ω) and g(x) e L2(Γ2).
Then u(x) is said to satisfy the boundary condition

(2.7) nJCiJkι~~ = gi ™eakly on

if it satisfies

for any φ 6 K(Ω).

We shall prove

THEOREM 2.2. Let g(x, t) e Cξ(Γ2 x [0, T])3 and f ( x , ί) e ^?(K(Ω)) [0, T].
Then for each [MO, w j e K(i2) x K(Ω) w/πc/i satisfies Au0eL2(Ω) and the
boundary condition njcίjkl[_du^/dxl"]=gi(x9 0) weakly on Γ2, there exists a
unique solution u(x, t) e <$l(K(Q)) [0, T] n ^?(L2(Ω)) [0, Γ] o/ ί/ie equation
(2.1) satisfying (2.2), (2.3)
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Λ ί.

-jfc-.(t) = 9l(t) weakly on Γ2

for each t e (0, T).

It is easy to construct a function ύ(x, t) e C°°(Ω x (0, T))3 satisfying

fl(x, ί) = 0 on Γί x [0, T]

and

*' on Γ*x c°'r]*

Denoting u = u + v, we have only to solve the problem

(2.8)

where

ι<x, , Γ] ,

njCίjkl-(x9 1) = 0 weakly on Γ2 for each f e(0, Γ) ,
C7Λr f

ι<x, 0) = t;0(x) in Ω,

[δι;/3ί](x, 0) = t ^x) in Ω,

where

ϋ0(x) = w0W - #(*, 0),

Now let us solve the problem (2.8) by the semi-group theory. Let 3? be the
space K(Ω) x L2(Ω) with the inner product

and resulting norm |£/ιl^=(t/1, £/ι)^1/2 for Ut = \ Ui e^(i = l, 2). By the

positive definiteness conditions on cίjkl(x) and p(x), the norm \ \#, is equivalent
to the standard one in H\Ω) x L2(Ω). Let us define the domain of <sf as follows:



Boundary Value Control Theory of Elastodynamic System 711

ί Γ u Ί M, Ό e K(Ω)9 Au e L2(Ω\ u satisfies the ]
(2.9) D(X) = 1 U=\ boundary condition njcίjkl(dukldxl) = ΰ \ .

[ \_ v J weakly on Γ2. J

Then $4 is a linear operator in «#*.

LEMMA 2.3. There exists a positive constant c^ such that for any U e

(2.10)

uΊ Γ υ
PFOOF. If 17= eD(^, then j/l7=

Since M, p^^eKίΩ) and u satisfies the boundary condition njcijkl(dukldxl)
weakly on Γ2,

, U), - p-'cuu-, - + (», ») + (/.-Ά. P)

Noting that \dp~1/dxl\^pξ/ρ*l, we obtain

LEMMA 2.4. For any real λ such that |A|^c1( the estimate

(2.11)

holds for any

PFOOF By Lemma 2.3

\(λl -
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LEMMA 2.5. There exists a constant c2 such that for all real λ satisfying

^c2, λl — jtf is a mapping from D(jtf) onto Jf.

REMARK. By Lemma 2.4, such λ belongs to the resolvent set of $4 and

c2)-ί holds.

PROOF OF LEMMA 2.5. TakeF= * e tf and consider the equation

(λl - rf)U = F.

If 17= " L then this equation is equivalent to

λu — v = f
(2.12)

— p~1Au + λυ = g.

By substituting the first relation in the second equation, we have

(2.12') - Au + pλ2u = pg + λpf.

Let us put

(2.13)

for φ, \l/eK(Ω). Then for λ=Aθ, B is a coercive bilinear form on K(Ω), that is,
there exists a constant δ >0 such that B[φ, φ~]^δ\φ\^i(Ω) holds for any φeK(Ω).
By Lax-Milgram's theorem there exists a unique function u in K(Ω) satisfying
B[u,φ'] = (pg + λpf,φ) for any φeK(Ω). In particular, taking φ in QΌΩ)3,
we obtain the equality

— Au + λ2pu = pg + λpf in Ω

and also Au=—ρg — λpf-\-λ2pueL2(Ω). Thus we have, for any φeK(Ω)

Hence

This equation means that u satisfies the boundary condition

duk
njcw-- = ° weakly on Γ2.
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Put v = λu -/. Then υ e K(Ω). Thus U = Γ " Ί e D(st) and (λI-^)U = F holds.

Now in order to apply the semi-group theory, that is, the theorem of Hille-
Yosida, we have only to see that D(jtf) is dense in jf. This will be proved in the

following two lemmas.

LEMMA 2.6. For any u0 e C°°(Ω)3 which vanishes in a neighborhood of
Γι\jL9 there exists a sequence of functions (um(x)} in H2(Ω) satisfying the
following conditions.

( i ) um = 0 on a neighborhood of Γt U L,

(ii) njCiJktfu*Jdxύ = Q on Γ2,
(iii) um - m0 in Hl(Ω),
(iv) um-

PROOF. Let Ω0 be a domain with smooth boundary such that it is contained

in Ω and contains the intersection of the support of MO with Ω and there exists a

neighborhood of Γt U L disjoint from Ω0 Now take /e C°°(Ω0)
3, and consider

the boundary value problem

(2.14)

A*Au + u = / in Ω0,

n j c ί j k i -*r— = 0 on dG0,

M = M0 on SΩ0,

where A* = the formal adjoint of A ( = A). Choose M6C°°(Ω0)
3 such that

njCijki[dukldxi] = Q and M = MO on dΩ0. Then the solution of (2.14) is of the form
with a solution v of the problem

(2.15)

in Ω0»

Sυk

= 0 on dΩ0.
°n

Because of the ellipticity of the boundary value problem (see e. g. [7, Chapitre

2])

( Au =/ in Ω0

duk

njcίjkl dx,
= 0 on

the inequality
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Mir'dio) ^ const. (\Au \L2(Ωo) + \u\L2(Ωo})

holds for any u e H^(Ω0). Hence the bilinear form on Hg(£20)

a(u, v) = (Aw, Av)L2(Ωo) + (u, v)L2(Ωo)

defines a norm equivalent to the standard H2(ί20)-norm. Let H§(β0)' be the

adjoint space of H§(Q0). Since /- (A* A + l)w 6 C°°(Ω0)
3 c H oW> there

exists a unique function t;efl"g(Ω0) such that α(t;, $) = (/— (AM + !)#, φ)
holds for any φ e Jffg(Ω0). Taking 0 e Co(Ωo)3, we see that v is a solution of
(2.15), and hence u = u + v is a solution of (2.14). Moreover, since a(φ9 ψ) =

((A*A + ϊ)φ, ψ) for any φ e Cf(Ω0)
3 and ψ 6Hg(Q0), we obtain

|ιι - (fi + ̂ )lir2(Ωo) ^ca(v-φ,v-φ)

= c(/- (AM + l)w - (A*A + 1)0, t? - ψ)

^ c|/ - (AM + l)fi - (AM 4-

X |l? -

Thus

(2.16) |ιι - (β + 0 ) 1 * 0 ) ̂  c|/- (AM + l)β - (AM

Now, u — u0eH^(Ωo)9 since M — M0 = 0 on δΩ0 Therefore, we can choose
e C?(O0)

3 (m = 1, 2, 3,. . .) satisfying

(2.17) \Φm + ύ~ WO|HI ( Ω O )^^

Furthermore, there exists /m e C°°(β0)
3 such that

\fm - (A*A + l)fi - (A*A + υ^l^Ωor ^^

Now, let um be the solution of (2.14) with/=/w. Then we obtain by (2.16)

(2.18) \um-(u + φJ\H*(ao)£±.

Extend um to Ω by setting 0 outside Ω0. Then um belongs to H2(Ω0), since

n^ϋw[δfi*/δxj =0 on δΩ0

and

wm = 0 on Ωr\dΩ0.
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Thus (2.17) and (2.18) imply that

Um ~ U0Hl — \Um ~~

Condition (iii) follows from this inequality and it is easy to see that condition
(iv) holds from the fact that um satisfies the boundary condition um = u0 on dΩ.

LEMMA 2.7. D(j/) is dense in tf.

PROOF. For each M0eC°°(Ω0)
3 which vanishes on a neighborhood of

, let us take the functions um obtained in Lemma 2.6. Let MeC°°(Ω)3

be a function satisfying u = u0 on dΩ and njcijkιldukldxl~\ = 0 on dΩ. Then each
um-ύ belongs to H^(Ω)Γ\H2(Ω). Hence we can take vmneC$(Ω) (n = l, 2,...)
such that vmn-+um — u as n-»oo in Hi(Ω). If we put wm = u + vmm, then wm belongs
to C°°(Ω)3 and

ww = u0 on 50, njcijkl-g^ = 0 on Γ2,

w m ^M 0 in Hi(0)

In view of the definition of K(Ω) and D(jtf)9 this completes the proof.

By the preceding lemmas, we can apply the semi-group theory and com-
plete the proof of Theorem 2.2 as follows.

In the equation (2.8), F(ί) = Γ ^/R / Ί is in D(J^), P(t\j*F(t) are in

^?(« )̂[0, T] and F0 = Γ ^°Ί is in D(ja^). By the theorem of Hille-Yosida (see

e.g. [11, Chap. IX]), there is a unique solution 7(ί) =

[0, T] of the equation

(2.19) --V(i) = ̂ (̂0 + ̂ (0 in 0 < / < Γ,

with the initial condition V(0)=V0. The equation (2.19) is equivalent to (2.8).
Since v = dv/dt and the weak boundary condition holds, we see that t?(x, t) is the

unique solution of (2.8).

THEOREM 2.8 (the energy inequality). Let u(x9 t) be the solution obtained
in Theorem 2.2 with g(x, t) = Q. Then the energy inequality
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^ C(Γ)(|u(0)|H1(Ω)

holds for any 0<f < Γ, where C(T) is a constant not depending on t, u(x, t) and

f(x, t).

PROOF. If we put F(/)=[ [5 "$](ί) ] and f« = [/(,)/p ], by Lemma 2.3

it is easily seen that

= 2(V(t),

and from this it follows that

Hence

3. The domain of dependence inequality

In this section we show the domain of dependence inequality. Our method

of the proof is due to C. H. Wilcox [10].

THEOREM 3.1. For vQ(x)eK(Ω) and vί(x)eL2(Ω)9 let ι?(x, t) be a solution
in £}(K(Ω)) [0, T] n #ΐ(L2(Ω)) [0, T] of the initial-boundary value problem

(3.1)

in Q=Ωx (0, Γ) ,

v(x, 0) = ι>0(x) in Ω,

njCijki[.dvkldxl'] (x, 0 = 0 weakly on Γ2 for each t e (0, T).

Then the following inequality holds:
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υ* dvk

T. Here

C2 = sup C t j k i W k j i 9 Σ = {£
xeΩ ξ,ι/el PW

PROOF. We consider the case tί > t0 because in the case ti < t0 the inequality
is proved in the same way.

Let us denote

Ω! = Sr(x0) Π Ω, Ω0 = Sr+Cl(ίl_ίo)(x0) Π Ω,

= the subregion of the cone {(x, ί)l 1̂  ~" ^ol < cιK ~ *ι ~ (r/cι)l}
bounded by Ω0 x {ί = ί0}> ΩI x {ί = ίj and dΩ x (0, Γ).

If we put ψ(x) = cϊl(r-\x-XQ\) + tί9 then F = {(x, t)eQ\ψ(x)-t>Q, t0<t<tί}.
Let us put φ(x, t) = φδ(ψ(x)-t) with ^ e C00^1) such that φ/τ) = 0 for τ^ ~δ,
0/τ) = 1 for τ ̂  <5, φi(τ) ̂  0 and 0 ̂  φ/τ) ̂  1 for all τ 6 R1 . If 5 > 0 is sufficiently
small, then φ(x, i) is in C°°(Ω x [>0, /J). Multiply the equation p[32v/dt2']
-Aυ = Q by φ{dυldt], and integrate over Ωx(ί0, fj. Because φ[dvldt]e

, T] and njcijkl[dυkldxl'] = 0 weakly on Γ2x(0, T),

0 -

«x(»o,<i) 2

Γ
\ î
Jβxίίo.n)

βχ(ίo,ίι)
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dvk dv1 dφ
-Έ -- 5 — ̂ -*
&*/ flί to,

By the definition of cl9

{pδik - cljklnjnl}ξtξk ^ 0 for any ξ = (ξi9 ξ2, £3) e JR3,

where nj = dψ/dXj= — cϊ^Xj — XQJ)/\X — x0| By substituting ξj = dυjldt9 the

inequality

dvi dvk

holds. Since dφ/dXj=njφ's and dφ/δt= —φ's, we have

Γ /δβ«\2 , δυ* δ ϋ ' Ί δ φ . »
~ + C ' " " 2Cί7JδΓ + 2CίJki~dx^~dΓ'dx~j

dvldυk dv" dv' δvk dv1

Therefore

As <5->0,
Therefore

ί=ίι

ί=r0

) = φδ(\l/(x) — t)-+χv, the characteristic function of K, boundedly.

dvk dv1

This implies
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4. Non-controllability at a short time

Let Γ0 be a relatively open set in dΩ, contained in Γ2, with smooth boundary.
To state the definition of controllability precisely, we introduce the energy space
HE(Ω). It is the space K(Ω) x L2(Ω) with the inner product

([>, n'L IX "'])* = (pu , V)

for [M, f*'], [t>, t/] e UL(Ω) x L2(Ω). By the definition of K(Ω\ it is easy to see
that H£=( , )£1/2 defines a norm equivalent to the norm in K(Ω)xL2(Ω).
Let

& = {/e C°°(Γ2 x (0, T))3| supp/ c Γ0 x (0, T)} .

By Theorem 2.2, for given /e & there is a solution u(x9 ί) in g\(K(Ω)) [0, Γ]
Π #2(L2(Ω)) [0, T] of the initial-boundary value problem

(4.1)

in Ω x (0, Γ) ,

njcijklldukldxl'] (x, ί) = /''(x, ί) weakly on Γ2 for each t e (0, Γ),

M(X, 0) = 0 in Ω9

[duldi] (x, 0) = 0 in Ω9

where A = (^('u*^))α=1,2,3- Then \u(t\ (du/dt)(ί)] e <f K#£(β)) [0, T}.

We define the reachable set Rτ by

(4.2) Rτ = {[u(T)9 (du/dt)(Γ)] \u: solution of (4.1), fe &}.

DEFINITION 4.1. When the reachable set Rτ is dense in H^Ω), the system
(4.1) is said to be controllable.

THEOREM 4.2. For [0, h] eDCO, tef v(x9 t) be the solution in <?Ϊ(K(Ω))[Q9

T] n ̂ (L2(Ω)) [0, T] o/ ί/ie initial-boundary value problem

in Q=Ω x (0, Γ),

in Ω9

(4.3)

«, T) = g(x)

dv [ x , T ) = h(x) in Ω,
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v(x9 0 = 0 on Γ\ x (0, T),

n j c ί j k i ~~^~(χ> 0 = 0 weakly on Γ2for each t e (0, Γ) .

Then [#, h]eR^ ( = the orthogonal complement of Rτ in HE(Ω)) if and only if

-£- = 0 almost everywhere on Γ0 x (0, T).

PROOF. Let u(x, t) be the solution of (4.1). Then

(4.4)

and

dul dvl duk\\t=τ

dx

Since du/dt, dυldte#°(K(Ω))[Q, T],

= f
J

* *
r2x(0,T)

Hence

(4.5) 0
x, t=o r2χ(o,τ)

Thus by (4.4) and (4.5)

(4.6) ([0, A], [ιι(Z ), (δ«/9ί) (Γ)])£ - f f ^-
JΓ2x(0,T) OT



Boundary Value Control Theory of Elastodynamic System 721

Hence [g, h] belongs to R%> if and only if

J r 2 x ( 0 , T ) St

for any/eJ^. Because dυ/dt is in <f?(K(ιQ)) [0, T], the trace (dv/df)\Γ2 is in
«f°(L2(Γ2)). Thus dv/dtεL2(Γ2x(Q, T)), and hence (4.7) holds if and only
if dυ/dt = 0 almost everywhere on Γ0 x (0, T).

To state non controllability, we introduce some notations. Put

c\= sup W*)Wk^ι, Σ={ξeR*\\ξ\ = 1}
xeβ P( ^)

as is defined in Theorem 3.1 and

d = inf ciJuWw*tjti .
xeΩ P(X)

For (x0, ί0) e β, put

x [ίo> 7Ίk 2(ί-ίo)-l^-^ol^O},

x [0, ί 0]kι(ί-ίo)-l^-^ol^0},

^2(^0. ίo) = fe Oefi x [0, ί0]|c2(ί - ί0) - 1^ ~ ^ol ^ 0},

and for G c D, put

t0) = ^ ^(^o^ ίo)» ^(G; ί0) =
xoεG

M(G; ί0, ίO = KJ(G; ί0) Π Xj(G;

whereΩ(ί)=Ωx{l}

THEOREM 4.3. At any time Γ<2TΊ, ί/ie system (4.1) is πoί controllable.

PROOF. If T<2Γ1? then the interior in Ω of the projection of J(T/2)s
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Ω(T/2) n N(Γ0ι 0, T) to Ω is not empty. Choose [ι?0(x), v^(xJ\eHE(Ω) n
such that \[y0, uJI^O and {the support of [>0, t J} x {f=T/2} is contained in
J(T/2), and consider the problem

(4.8)

d2v Av = 0 in g,y dt2

v(x, T/2) = ι?0(x) in Ω,

!>!(*) in Ω,

φc, 0 = 0 on Γj x (0, T),

njcίjkl(dvkldxl) (x, ί) = 0 weakly on Γ2 for each ί e (0, T).

Since the solution φc, f) of (4.8) satisfies the equality

d2v
o-(f

~ - AυAv>

dvk

the energy equality: |[>(0, (dvldt)(i)~\\E=\\vQ, v^^Q holds for any ίe[0, T].
By Theorem 3.1, the domain of the influence of the energy does not intersect
M(Γ0; 0, T) and thus dv/dt = Q in M(Γ0; 0, T). Since M(Γ0; 0, T)=>Γ0 x (0, T),
dv/dt = Q on Γ0x(0, T). If we put g = v(T) and h = (dv/di)(T), then [g 9 h]
belongs to Rj? because of Theorem 4.2. Since |[0, h]\E=\[vθ9 t J^^O, Rτ is
not dense in HE(Ω).

5. Controllability at a sufficiently large time

To prove the controllability, first we solve the problem (4.3) for arbitrary

THEOREM 5.1. For any [#, h] e K(Ω) x L2(Ω\ there exists a unique solu-

tion v(x,i) in *°(JC(fl))[0, T]n^W(^))[0, T]n/?(K(Q)')[0, Γ] o/ ̂
initial-boundary value problem

in β

(5.1)

φc, T) = flf(x) in Ω,

T) = h(x) in Ω,
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- <Aυ, φ> = any ί e (0, Γ),

for any φ e K(Ω),

where < , > denotes the duality between K(Ω)' and K(Ω).

PROOF. By virtue of Lemma 2.7, there exist [#„, ftn] e D(J/), n = ί, 2,...,
which converge to [0, h] in K(Ω)xL2(Ω). Let υn(t) be the solution in £}(K(Ω))

[0, T] n «W2(Ω)) [0, T] of (4.3) with g = ga and h = h.. By Theorem 2.8, vn(t),
n = ί,2,..., satisfy the inequality

(5.2) (0 - »Λ0lH.<0) + \(δvjdt)(t) - (dvJdt)(t)\L>w

ύ C(T)(\gn - 0JH,(Q) + lA. - Λm|rW

i, T] and {(δvjδi)®} is a CauchyThus {vn(t)} is a Cauchy sequence in ^?

sequence in <f ?(Z2(Ω)) [0, T].
Since vn(t) is the solution of

(5.3)

with the initial condition

_
dt

(t)
δυ,
3ί «

it follows that

(5.4)

" »,,(Γ) *

^(Γ)

" ».(/) "

3»./Λ

. δr l J J

=

=

^«

Aπ

" 0«π

in Ω,

+ ( V
Jr

^«W "

δW

L ' 5 / ( ί ) J

- (A(vn(t) - υm(t))9 φ) = ciίuivl(f) - »*

ds.

Let υn(t) converge to v(ί) in ^(K(Ω)) [0, T] and (dvjdt)(t) converge to w(ί)
in ^?(L2(Ω))[0, T]. Since υn(t)-υm(t) is in D(ĵ ), the equality

(5.5)

holds for each t e (0, T) and φ e K(Ω). Noting that the topology of K(Ω) is
induced by the fl'1(Ω)-norm, by this equality we have

MOnC) - »mW)l*(θ)' ^ Σ ko ug-yWW - »£(0)l£2(fl)

^const.|ϋπ(0-f>w(OI*(β),


