## The Minimal Condition for Ascendant Subalgebras of Lie Algebras

Shigeaki TôGô (Received April 20, 1977)

1.

Let L be a Lie algebra over an arbitrary field  $\Phi$  which is not necessarily of finite dimension. We write  $H \le L$  when H is a subalgebra of L and  $H \bowtie L$  when H is an ideal of L. For an integer  $n \ge 0$ ,  $H \le L$  is an n-step subideal of L if there is a series of not necessarily distinct subalgebras

$$H = H_0 \lhd H_1 \lhd H_2 \lhd \cdots \lhd H_{n-1} \lhd H_n = L.$$

In this case we write  $H \triangleleft^n L$ . H is a subideal of L if  $H \triangleleft^n L$  for some n. We then write H si L.

There is a transfinite generalization: For an ordinal  $\sigma$ ,  $H \leq L$  is a  $\sigma$ -step ascendant subalgebra of L if there is a series  $\{H_{\alpha}\}_{\alpha \leq \sigma}$  of not necessarily distinct subalgebras of L such that

- (i)  $H_0 = H, H_\sigma = L,$
- (ii)  $H_{\alpha} \triangleleft H_{\alpha+1}$  for any  $\alpha < \sigma$ ,
- (iii)  $H_{\lambda} = \bigcup_{\alpha \in \Lambda} H_{\alpha}$  for any limit ordinal  $\lambda \leq \sigma$ .

In this case we write  $H \triangleleft^{\sigma} L$ . H is an ascendant subalgebra of L if  $H \triangleleft^{\sigma} L$  for some ordinal  $\sigma$ . We then write H asc L. When  $\sigma$  is finite, the  $\sigma$ -step ascendant subalgebras are of course the  $\sigma$ -step subideals.

We denote by Min-si (resp. Min- $\triangleleft^{\sigma}$ ) the class of Lie algebras over  $\Phi$  satisfying the minimal condition for subideals (resp.  $\sigma$ -step ascendant subalgebras).

The classes Min-si and Min- $\triangleleft^n$   $(n \in \mathbb{N})$  are related by the series of inclusions

(1) 
$$\operatorname{Min} - \triangleleft \supseteq \operatorname{Min} - \triangleleft^2 \supseteq \operatorname{Min} - \triangleleft^3 \supseteq \cdots \supseteq \operatorname{Min} - \operatorname{si}$$
.

In [2] Stewart showed that

$$Min- = Min-si.$$

The purpose of this paper is to investigate the minimal condition for ascendant subalgebras and to show a transfinite analogue of the result (2).

We introduce the class Min-(asc of step  $< \sigma$ ). By this we mean the class of Lie algebras over  $\Phi$  satisfying the minimal condition for ascendant subalgebras

of step  $< \sigma$ . Then, for the first infinite ordinal  $\omega$ , Min-(asc of step  $< \omega$ ) is nothing but Min-si. Corresponding to (1), we have the following inclusions:

$$\operatorname{Min} - \triangleleft^{\omega^2} \supseteq \operatorname{Min} - \triangleleft^{\omega^2 + 1} \supseteq \cdots \supseteq \operatorname{Min} - \triangleleft^{\omega^2 n_1 + \omega n_2 + n_3} \supseteq \cdots \supseteq \operatorname{Min} - (\operatorname{asc of step} < \omega^3)$$

$$\operatorname{Min} \neg \neg \neg^{\omega^{\alpha}} \supseteq \operatorname{Min} \neg \neg \neg^{\omega^{\alpha+1}} \supseteq \cdots \qquad \cdots \supseteq \operatorname{Min} \neg (\operatorname{asc of step} \neg \neg^{\alpha+1})$$

We shall show that for any ordinal  $\alpha \ge 1$ 

$$Min - \omega^{\alpha+1} = Min - (asc of step < \omega^{\alpha+1}).$$

2

For a Lie algebra L,  $L^{\omega} = \bigcap_{n=1}^{\infty} L^n$  and  $L^{(\omega)} = \bigcap_{n=1}^{\infty} L^{(n)}$ . The following lemma is well known (see [3]).

LEMMA 1. If L is a Lie algebra and H si L, then  $H^{\omega} \triangleleft L$  and  $H^{(\omega)} \triangleleft L$ .

L is perfect if  $L=L^2$ . By using Lemma 1 and transfinite induction, we can easily show the following lemma ([1, p. 11]).

LEMMA 2. Every perfect ascendant subalgebra of a Lie algebra L is an ideal of L.

Furthermore we need the following two lemmas.

LEMMA 3. Min-(asc of step  $< \sigma$ ) is E-closed.

PROOF. Let L be a Lie algebra and assume that  $N \triangleleft L$  and  $N, L/N \in Min-$ (asc of step  $< \sigma$ ). If

$$H_1 \ge H_2 \ge \cdots$$
,  $H_i \triangleleft^{\sigma_i} L$  with  $\sigma_i < \sigma$   $(i = 1, 2, ...)$ ,

then

$$\begin{split} H_1 &\cap N \geq H_2 \cap N \geq \cdots, \quad H_i \cap N \vartriangleleft^{\sigma_i} N, \\ (H_1 + N)/N \geq (H_2 + N)/N \geq \cdots, \quad (H_i + N)/N \vartriangleleft^{\sigma_i} L/N. \end{split}$$

There exists  $n \in \mathbb{N}$  such that

$$H_n \cap N = H_{n+1} \cap N = \cdots$$

$$(H_n + N)/N = (H_{n+1} + N)/N = \cdots$$

Therefore for any  $m \ge n$ 

$$H_m = H_{m+1} + (H_m \cap N) = H_{m+1} + (H_{m+1} \cap N) = H_{m+1}.$$

Thus  $L \in \text{Min-(asc of step} < \sigma)$ .

LEMMA 4. Let  $\alpha$  and  $\beta$  be any ordinals such that  $\omega^{\alpha} < \beta < \omega^{\alpha+1}$ . Then there exist ordinals  $\rho$  and  $\sigma$  such that

$$\beta = \rho + \sigma$$
 and  $1 \le \sigma \le \omega^{\alpha}$ .

**PROOF.**  $\beta$  can be written in the form

$$\beta = \omega^{\alpha} \gamma + \delta$$
 with  $1 \le \gamma < \omega$  and  $\delta < \omega^{\alpha}$ .

If  $\delta = 0$ ,  $\gamma \ge 2$  and we can take

$$\rho = \omega^{\alpha}(\gamma - 1)$$
 and  $\sigma = \omega^{\alpha}$ .

If  $\delta > 0$ , it suffices to take

$$\rho = \omega^{\alpha} \gamma$$
 and  $\sigma = \delta$ .

3.

We shall now prove the following

THEOREM. Let  $\alpha$  and  $\beta$  be any ordinals such that  $\alpha \ge 1$  and  $\omega^{\alpha} < \beta < \omega^{\alpha+1}$ . Then

$$Min - \omega^{\alpha+1} = Min - \omega^{\beta} = Min - (asc of step < \omega^{\alpha+1})$$
.

**PROOF.** Put  $\gamma = \omega^{\alpha}$  and  $\delta = \omega^{\alpha+1}$ . Then

$$Min \multimap \gamma^{+1} \supseteq Min \multimap \beta \supseteq Min - (asc of step < \delta)$$
.

Assume that there exists a Lie algebra L such that

$$L \in \text{Min} \neg \neg^{\gamma+1}$$
 and  $L \notin \text{Min} \neg (\text{asc of step} < \delta)$ .

(a) There exists M minimal with respect to

$$M \triangleleft L$$
 and  $M \notin Min$ -(asc of step  $< \delta$ ).

This follows immediately from the fact that  $L \in Min-\triangleleft$ .

(b) Any proper ideal N of M belongs to Min-(asc of step  $< \delta$ ). In fact, we have

$$N^i$$
 ch  $N \triangleleft M \triangleleft L$ .

Hence  $N^i \triangleleft^2 L$ . Since  $L \in \text{Min} - \triangleleft^2$ ,

$$N^{\omega} = N^c$$
 for some  $c \in \mathbb{N}$ .

By Lemma 1  $N^c \triangleleft L$  and therefore by minimality of M

$$N^c \in \text{Min-(asc of step} < \delta)$$
.

Since  $L \in \text{Min} \rightarrow 3$ ,  $N^i \in \text{Min} \rightarrow 3$  and therefore

$$N^{i}/N^{i+1} \in \mathfrak{A} \cap \text{Min-} \subseteq \mathfrak{F},$$

where  $\mathfrak A$  (resp.  $\mathfrak F$ ) is the class of all abelian (resp. finite-dimensional) Lie algebras. It follows that

$$N/N^c \in \mathfrak{F}$$
.

We now use Lemma 3 to conclude that  $N \in \text{Min-(asc of step} < \delta)$ .

(c)  $M \in \text{Min-} \checkmark^{\gamma}$ . This follows from the fact that  $M < L \in \text{Min-} \checkmark^{\gamma+1}$ .

Now, since  $M \notin \text{Min-(asc of step} < \delta)$ , there exists an infinite series  $\{I_n\}$  of distinct subalgebras of M such that

$$I_1 \supset I_2 \supset \cdots$$
,  $I_i \vartriangleleft^{\beta_i} M$  with  $\beta_i < \delta$   $(i = 1, 2, \ldots)$ .

We may assume that  $I_i \lhd^{\varepsilon} M$  is false for any  $\varepsilon < \beta_i$ . By (c)  $\beta_i \ge \gamma + 1$  for almost all i. Therefore we may furthermore assume that  $\beta_i \ge \gamma + 1$  for all i.

Case 1.  $\beta_i$  is not a limit ordinal for some i. In this case,  $\beta_i = \varepsilon + 1$  and

$$I_i \lhd^{\varepsilon} N \lhd M$$
.

By (b),  $N \in \text{Min-(asc of step} < \delta)$ . But  $I_i < N$  and  $I_{i+k} < \beta_{i+k} N$  (k=1, 2,...) with  $\varepsilon$ ,  $\beta_{i+k} < \delta$ , which is a contradiction.

Case 2.  $\beta_i$  is a limit ordinal for some i. In this case, by Lemma 4 we have

$$\beta_i = \rho + \sigma \quad \text{with} \quad 1 \le \sigma \le \gamma.$$

Here  $\sigma$  is a limit ordinal. We can obviously write

$$I_{i} \lhd^{\rho} N \lhd^{\sigma} M.$$

But  $N^{(i)} \lhd^{\sigma} M$  and therefore  $N^{(i)} \lhd^{\sigma+1} L$ . Since  $\sigma+1 \leq \gamma+1$ ,  $L \in \text{Min} \multimap^{\gamma+1} \subseteq \text{Min} \multimap^{\sigma+1}$ . Consequently

$$N^{(\omega)} = N^{(c)}$$
 for some  $c \in \mathbb{N}$ .

Hence  $N^{(c)}$  is a perfect ascendant subalgebra of L. It follows from Lemma 2

that  $N^{(c)} \triangleleft L$ . By (b), we obtain

$$N^{(c)} \in \text{Min-(asc of step} < \delta)$$
.

On the other hand, observing the facts that  $N \triangleleft^{\sigma+1} L \in \text{Min} \triangleleft^{\sigma+1}$  and that  $\sigma$  is a limit ordinal, we obtain  $N^{(J)} \in \text{Min} \triangleleft^{\sigma+1} (j=1, 2,...)$ . Hence

$$N^{(j)}/N^{(j+1)} \in \mathfrak{A} \cap \text{Min-} \subseteq \mathfrak{F}.$$

Consequently

$$N/N^{(c)} \in \mathfrak{F}$$
.

Therefore we can use Lemma 3 to see that

$$N \in \text{Min-(asc of step} < \delta)$$
.

However,  $I_i \triangleleft^{\rho} N$  and  $I_{i+k} \triangleleft^{\beta_{i+k}} N$  (k=1, 2,...) with  $\rho$ ,  $\beta_{i+k} < \delta$ , which is a contradiction. This completes the proof.

REMARK. Stewart's result (2) stated in Section 1 is shown in the above proof of Theorem where we replace  $\omega^{\alpha}$  and  $\omega^{\alpha+1}$  by 2 and  $\omega$  respectively.

## References

- R.K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] I. Stewart, The minimal condition for subideals of Lie algebras, Math. Z. 111 (1969), 301-310.
- [3] S. Tôgô, Radicals of infinite-dimensional Lie algebras, Hiroshima Math. J. 2 (1972), 179-203.

Department of Mathematics, Faculty of Science, Hiroshima University