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1. Introduction

Recently a great deal of effort has been spent in obtaining criteria and asymp-
ptotic properties of oscillatory and nonoscillatory solutions of equations of the
type

(1) (KO/(0)' + XO/(XO) = <7«.

The reader is referred to the works of Graef and Spikes [3, 4], Kusano and
Onose [6], this author [9, 10, 11, 12], Skidmore and Bowers [13] and Skidmore
and Leighton [14]. Most of these authors assume the nonnegative nature of
p(t) to arrive at various oscillation criteria.

Very little seems to be known for retarded equations of the form

(2) (KθJ>W + XO/(X0 (0)) = 4(0 .

Standard techniques that have been discovered for equation (1) simply do not
work for equation (2). Our purpose in this paper is to study equation (2) and
find conditions to force all solutions of equation (2) to be nonoscillatory. We
shall first prove that under very general conditions, all solutions of (2) may be
continued indefinitely on some positive half real line.

2. Definitions and assumptions

In what follows we shall assume: r, p, q, g e C[[ί0, oo), K], f0>0,/e C[jR,
JR], x/(x)>0,/(x)/x<m, m>0, r(ί)>0, g(f)<t, g'(t)>Q9 g(t)-+ao as ί-»oo. We
call a function h e C[[f0, oo), K] to be oscillatory if h(i) has arbitrarily large zeros
in [ί0, oo); otherwise we call h(t) nonoscillatory.

3. Indefinite continuation of solutions

In this section, we prove that under very general conditions, all solutions of
equation (2) can be continued indefinitely to the right of ί0>0. See [2, Theorem

(2.1)].
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THEOREM (3.1). The continuity of p(t\ f(t) and q(t) for ίe[s0, oo) is
sufficient to allow any solution of equation (2) to be continued indefinitely to
the right of tQ.

PROOF. Suppose to the contrary that there exists a solution y(t) of (2)
which exists on [s0, T), T< oo and cannot be continued to the right of Γ. Then
wehave0(T) =

(3) limsuplXOI = °°
f-*Γ-

(See Burton and Grimmer [2]). There is sie(sQ9 T) such that g(t)>s0 for ί^s^
Integrating equation (2) for t e [s0, T), we get

(4) /(,) -

Integrating (4) again between s0 and g(f), t e [sx, T), we get

Cβ(t) 1 fs Γg(t) 1 Γs

~ TΓίT p(*)f(y(a(χfi)dχds + -±-\ q(xJSQ r\S) JSQ JSQ r\S) JSQ

Since g(i)<t, there exists constants fe0, kί such that for t e [sl9 T) we have from
above

(5)

where Ilr(t)<kί9 and

k*o) + Γ r(s°W*άdS + Γ -̂ -f1 Jso ^l^J Js0r{S) Js

Since |/(X0(x)))|/IX^(x))|<m, we get from (5)

(6)

from which

ds
I I JSQ t S

for t e [s1? T). It follows that there are constants D0 and Dx such that



Forced Nonoscillations in Second Order Functional Equations 659

for t e [s1? T). By GronwalΓs inequality we get

\y(9(f))\ ^^expΓpA* s\p(s)\ds\< oo
* L Jsi J

for t e [sl5 T). This contradiction to (3) proves the theorem.

REMARK (1). This theorem extends Theorem (2.1) of Graef and Spikes
[3] to retarded equations. Their method does not apply to equation (2).

REMARK (2). From now on the term "solution" will apply to continuously
extendable solutions of equations under consideration.

4. On nonoscillation of solutions

In this section we first find conditions for boundedness of positive part of
oscillatory solutions of equation (2). We, then, use this information to find
criteria under which all solutions of equation (2) become nonoscillatory.

LEMMA (4.1). In addition to conditions outlined in Section (2) suppose

(i) 4(0 >0;

(ii)

(iii) l/r(OΛ < oo.

Then all oscillatory solutions of equation (2) are bounded above.

PROOF. Let y(i) be an oscillatory solution of equation (2) defined on
[ί0, oo). Suppose to the contrary that

(7) limsupXO = oo.
ί-κχ>

We choose s > ί0 so large that

(8)

(9) m p ( O Λ < 1,

and take ti > s for which g(f^ > s and y(t J = 0. In view of (7) there is T > 1 15 such
that

: s < ί < T} = y(T) > 0.

Let [*!, x2] designate the smallest closed interval containing T such that y(xί)
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= y(x2) = 0 and y(ί) > 0 for t e (xl9 x2). Put

(10) M = max (y(t): x{ < t < x2} .

It is clear that

(11) X O < M

and

(12) 1X0(0)1 < M

for t e [xl5 x2]. Let s0 e [xl9 x2] t>

Thus

On squaring and applying Schwarz's inequality we get

Integrating the second integral by parts we get

Making use of equation (2) in (13) we get

(14) 4M2

It follows that

which in view of (8), (9), (11) and (12) gives
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This contradiction shows that y+(t) = max (y(t), 0} is bounded for t e (5, oo). This

completes the proof of the lemma.

THEOREM (4.1). Suppose conditions of Lemma (4.1) hold. Further sup-

500
q(t)dt=ao. Then all solutions of equation (2) are nonoscillatory.

PROOF. Suppose to the contrary that y(t) is an oscillatory solution of equa-

tion (2). By Lemma (4.1) y+(t) is bounded. Now y'(t) must be oscillatory. Let

a0 >s be a zero of y'(t). From equation (2)

KO/W = -
Jao

dx

-ro(' p(x)y+(g(x» + Γ q(χ)dχ — > co
Jao Jaoao

as t > oo

since the first integral is bounded. Thus y'(i)>Q eventually and y(t) is non-

oscillatory. The proof is now complete by contradiction.

COROLLARY (4.1). // in Theorem (4.1) we have q<Q on (ί0, oo), all other

conditions being the same, then all solutions of equation (2) are nonoscillatory.

PROOF. If y(t) is a solution of equation (2), we set Z(ί)= — y(t). The same
Γ°°proof holds with \ — q(t)dt = oo.

THEOREM (4.2). Suppose conditions of Theorem (4.1) hold. Further sup-

pose that r(f)->oo as f-»oo and

\ q(s)ds
im inf J'o ,. > 0.

f-*oo r(t)
(iv) lim

ί-*

Then all solutions of equation (2) are eventually positive.

PROOF. Let y(t) be a solution of equation (2). Then y(f) is nonoscillatory.

Suppose to the contrary that y(g(t))<Q for t>P>t0. From equation (2)

(15) (KO/CO)' > «(0

for t>P. Integrating (15) and dividing by r(t) we have

(16) /(/) > r(P)y'(P)lr(f)
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Condition (iv) and (16) imply that y'(t) is bounded away from zero, which means
that y(t) is eventually positive. This contradiction proves the theorem.

REMARK (3). The following example shows that condition (iv) of Theorem
(4.2) cannot be weakened if all other conditions hold.

EXAMPLE (1). Consider the equation

(17) (/3/(/))' + -^ψ-y(t -0 = 1- -^πp- ' * 2

All conditions except (iv) of Theorem (4.2) hold. It is easily verified that

\ q(s)ds
lim inf ̂ -̂  = 0.lim *Uχ , .

r(t)

In fact equation (17) has y(t)= — \\t as a negative solution.

COROLLARY (4.2). If q(i)<Q and condition (iv) is modified accordingly,
then all solutions of equation (2) are eventually negative.

REMARK (4). The solution of equation (17) approaches zero. It may seem
that violation of condition (iv) of Theorem (4.2) might lead to negative solutions
of equation (2) approaching zero. The following example shows that this is not
the case.

EXAMPLE (2). Consider the equation

(18) (fexp(0/(0)' + exp(- t - π)y(t - π) = 1 - exp(-/-π)exp(- 2ί).

Again condition (iv) is not satisfied but all others are. This equation has y(t)
= — 1 — exp( — t) as a nonvanishing negative solution.

THEOREM (4.3). Suppose conditions of Theorem (4.2) hold. Let y(t) be
a solution of equation (2). Then y(t) is unbounded as f-*oo.

PROOF. By (iv), y(t) is eventually positive. Let T be large enough to allow
y(t) > 0 and y(g(t)) > 0 for t > T. Suppose to the contrary that

(19) XO<C, t>T.

Integrating equation (2) we have

r(ί)y'(f) - r(f)y'(T)

The above gives
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(20) KO/CO > r(T)y'(Γ> - mC^ptfds +

Dividing (20) by r(f) we get

(21) /(O > r(T)y'(T)lr(f) -

As ί- oo we find from (21) that

/(*)=> j9>0

for some β, implying that y(t)-*oQ as ί-»oo. This is a contradiction to (19) and
the proof is complete.

5. Case of bounded r(t)

In this section, it is shown that when r(t) is bounded, then oscillatory solutions
of equation (2) are precisely those that are "slowly oscillating." More precisely,
let y(t) be an oscillatory solution of equation (2). Let Zy be the set:

Zy = {α - δ : δ > α, y(a) = y(δ) = 0, α and δ being consecutive zeros of'

The following theorem is an adaptation of Theorem 4 of this author in [10].

THEOREM (5.1). Suppose \ l / r ( t ) d t = ao, p(t)>Q, \p(i)dt«x), q(i)>Q9
/•oo J J

\ q(i)dt=ao. Let y(i) be an oscillatory solution of equation (2). Then the

associated set Zy is unbounded.

PROOF. Suppose to the contrary that Zy is bounded, where we assume that
the solution y(t) is defined on [ί0, oo). It means that there exists a constant
N>Q such that for any pair xί <x2 of consecutive zeros of y(t) we have

(22) x2 - xl < N.

In a manner of the proof of Lemma (4.1) we will show that y+(f) is bounded. In

fact due to (22), there exists a constant B>0 such that

(23) (\lr(f)dt<B
Jx

for all α, δ such that y(α) = j;((5) = 0, y(t)^09 ίe(α, δ). Let now s>t0 be so large
that for α>s

(24)



664 Bhagat SINGH

(24) replaces conclusions (8) and (9) in the proof of Lemma (4.1). The whole

proof now stays the same verbatim. The last inequality in the proof of Lemma

(4.1) is essentially (24). Thus y(t) is bounded above. The rest of the proof

follows from Theorem (4.1). The proof of Theorem (5.1) is now complete.

The following example clarifies the situation by satisfying this theorem.

EXAMPLE (3). Consider the equation

(25) y"(i) + 4ry(i) = 5 + 4 sin (In/) + 3 cos (In/) .
/

It has y(t) = t2(l + sin (In ί)) as the oscillatory solution. Since the relative extremes

of the function g(0 = 5 + 4sin(lnO + 3cos(lnf) occur for tan(lnί) = 4/3, q(i)>Q

and \ q(i)dt=ao, the zeros of y(f) occur as tn = enn+3π/2, n = l, 2,.... It is easily

seen that (tn+ί — tn)-+co as n-»oo so that Zy is unbounded.
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