Corrections to "Module Spectra over the Moore Spectrum"

Shichirô Oka
(Received July 25, 1977)

Theorem 4.5 in [1] is false. The reason is that the proof of Lemma 4.6 in [1] is incorrect, which was kindly noticed by Professor Z. Yosimura. From Example 6.8(7) in [1], a counterexample for the theorem is constructed as follows: Let V and $X=C(g)$ be the spectra in the example. Then the sequence $[M \wedge X$, $X]_{0}^{M} \xrightarrow{\left(1 \wedge i_{g}\right) *}[M \wedge V, X]_{2}^{M} \xrightarrow{(1 \wedge g) *}[M \wedge V, X]_{-1}^{M}$ is $0 \rightarrow Z_{p} \rightarrow 0$, which is not exact.

Since this theorem played an essential role in the proofs of Lemma 6.5 and Theorem 6.6 in [1], we must add some assumptions to these results as well as Theorem 4.5 to complete them. In another paper [2] we used [1, Th. 4.5] to simplify several proofs and we must also correct their proofs, cf. [2, Note on p . 446].

1. Corrections to Theorems 4.5 and 6.6 in [1].

1-1. Theorem 4.5 in [1] should be replaced by the following, and Lemma 4.6 in [1] should be deleted.

Theorem 4.5'. In a cofiber sequence

$$
\Sigma^{k} X \xrightarrow{f} Y \xrightarrow{i} C(f) \xrightarrow{\pi} \Sigma^{k+1} X,
$$

assume that all spectra are associative M-module spectra and all maps are M-maps. Let Z be an M-module spectrum having the element in [1, Condition 7.1]. Then the following sequences are exact:

$$
\begin{aligned}
& \cdots \longrightarrow[Z, X]_{j-k}^{M} \xrightarrow{f_{*}}[Z, Y]_{j}^{M} \xrightarrow{i_{*}}[Z, C(f)]_{j}^{M} \xrightarrow{\pi_{*}}[Z, X]_{j-k-1}^{M} \longrightarrow \cdots, \\
& \cdots \longrightarrow[X, Z]_{j+k+1}^{M} \xrightarrow{\pi^{*}}[C(f), Z]_{j}^{M} \xrightarrow{i^{*}}[Y, Z]_{j}^{M} \xrightarrow{f^{*}}[X, Z]_{j+k}^{M} \longrightarrow \cdots .
\end{aligned}
$$

Proof. By the direct sum decompositions for $[Z,]_{*}$ and $[, Z]_{*}$ in $[1$, Th. 7.5], these exact sequences are easily derived from the usual ones of $[Z,]_{*}$ and $[, Z]_{*}$.

1-2. Lemma 6.5 in [1] should be replaced by the following
Lemma 6.5'. Let G be a finite Z_{q}-module and Y be an associative $M_{q^{-}}$
module spectrum such that G and $H_{*}(Y)^{1)}$ have no 3 -torsion in case $q \equiv \pm 3 \bmod 9$. Let $f: \sum^{k-1} M(G) \rightarrow Y$ be an M-map, and consider the following conditions:
(i) $(=[1,(6.1)])$ For any prime p, the p-component of G is free over the p-component of Z_{q}.
(ii) $[Y, M(G)]_{-k+4}=0,[Y, M(G)]_{-k+3}=0$.
(iii) $\theta:[Y, Y]_{3} \rightarrow[Y, Y]_{4}$ is surjective.
(iv) $[M(G), Y]_{k+2}^{M}=0$.

If (i), (ii) and (iii) are satisfied, then $C(f)$ has an admissible and associative M_{q}-action. Further if (iv) is also satisfied, any admissible M_{q}-action on $C(f)$ is associative.

Proof. Let m_{c} be any admissible M_{q}-action on $C(f)$. We consider the exact sequences involving [$C(f), C(f)]_{2}$ derived from the cofibering $Y \xrightarrow{i} C(f)$ $\xrightarrow{\pi} \sum^{k} M(G)$. Since $i^{*} a\left(m_{C}\right)=0$ and $\pi_{*} a\left(m_{c}\right)=0$ by [1, Cor. 5.9] and the associativity of $M(G)$, and since $\pi^{*}:[M(G), M(G)]_{2} \rightarrow[C(f), M(G)]_{-k+2}$ is one-toone by the assumption (ii), we can put $a\left(m_{c}\right)=i \xi \pi$ for $\xi \in[M(G), Y]_{k+2}$. By [1, Th. 5.10, Lemma 6.1], we see $i \theta(\xi) \pi= \pm \theta\left(a\left(m_{c}\right)\right)=0$, and so $\theta(\xi)=f \xi_{1}+\xi_{2} f$ for some $\xi_{1} \in[M(G), M(G)]_{4}, \xi_{2} \in[Y, Y]_{4}$. By (i), [1, Prop. 7.2] and $[M(G)$, $M(G)]_{5}=0$, Theorem 7.5 in [1] implies $\xi_{1} \in \operatorname{Im} \theta$. Also, $\xi_{2} \in \operatorname{Im} \theta$ by (iii), and hence $a\left(m_{c}\right)=i \theta(\eta) \pi$ for some $\eta \in[M(G), Y]_{k+1}$ by [1, Th. 7.5] with $X=M(G)$. Then, for $d=(-1)^{k} i \eta \pi, m_{C}^{\prime}=m_{C}+d\left(\pi \wedge 1_{C}\right)$ is admissible and associative. If (iv) is satisfied, $\theta(\eta)=0$ and m_{C} is associative.

1-3. Theorem 6.6 in [1] should be replaced by the following

Theorem 6.6'. Let X be an M_{q}-module spectrum, and in case $q \equiv \pm 3 \bmod 9$ assume that $H_{*}(X)$ has no 3-torsion. If X satisfies the following conditions (i)-(iii), then X admits an associative M_{q}-action.
(i) If $1 \leqq|i-j| \leqq 5, \# H_{i}(X)$ is relatively prime to $\# H_{j}(X)$, where $\# G$ denotes the order of a finite group G.
(ii) For any prime p, the p-component of $H_{i}(X)$ is free over the p-component of Z_{q}.
(iii) Let r (resp. s) be the minimal (resp. maximal) degree k for which $H_{k}(X) \neq 0$. If $r \leqq j<i<s$ and $\operatorname{GCD}\left(\# H_{i}(X), \# H_{j}(X)\right)>1$, then $\left[M\left(H_{i}(X)\right)\right.$, $\left.M\left(H_{j}(X)\right)\right]_{l}^{M}$ vanishes for $l=i-j+2$ and $i-j+5$.

Proof. We denote simply $H_{k}(X)$ by H_{k}. There is a filtration $\left\{X_{k}\right\}_{r \leqq k \leqq s}$ of X together with cofiber sequences $\left(X_{r-1}=*, X_{s}=X\right)$:

$$
\begin{equation*}
\sum^{k-1} M\left(H_{k}\right) \xrightarrow{f_{k}} X_{k-1} \xrightarrow{i_{k}} X_{k} \longrightarrow \sum^{k} M\left(H_{k}\right) \tag{1}
\end{equation*}
$$

for $r \leqq k \leqq s$. By (i), $\left[X_{k-1}, M\left(H_{k}\right)\right]_{-k+1}=0$, and so there are M-actions m_{k}

[^0]on X_{k} such that all maps in $(1)_{k}$ are M-maps, i.e., $(1)_{k}$ is admissible. We consider the following statements:
$\left(A_{k}\right) \quad m_{k}$ is associative.
(A_{k}^{\prime}) There is an admissible and associative M-action on X_{k} (which may be different from m_{k}).
$\left(B_{k}\right) \quad \theta:\left[X_{k}, X_{k}\right]_{3} \longrightarrow\left[X_{k}, X_{k}\right]_{4}$ is surjective.
(C_{k}) $\left[M\left(H_{k}\right), X_{k-1}\right]_{k+2}^{M}=0$.
(C C_{k}^{\prime}) $\left[M\left(H_{k}\right), X_{k-1}\right]_{k+5}^{M}=0$.
By Lemma 6.5' of above, we have immediately
(2) $\left(A_{k-1}\right)$ and $\left(B_{k-1}\right)$ imply $\left(A_{k}^{\prime}\right)$,
(3) $\left(A_{k-1}\right),\left(B_{k-1}\right)$ and $\left(C_{k}\right)$ imply $\left(A_{k}\right)$.

If $\left(A_{r}\right), \ldots,\left(A_{k-1}\right)$ are valid, we can apply $\left[M\left(H_{k}\right),\right]_{*}^{M}$ to the sequences (1),$r+1 \leqq l \leqq k-1$, to obtain exact sequences in Theorem 4.5' of above. By the assumption (iii), we have
(4) For $k<s,\left(A_{r}\right), \ldots,\left(A_{k-1}\right)$ imply $\left(C_{k}\right)$ and $\left(C_{k}^{\prime}\right)$.

Since $\left[X_{k-1}, M\left(H_{k}\right)\right]_{j}=0$ for $j=-k+3,-k+4$ by (i), $\left(i_{k}\right)_{*}:\left[X_{k-1}, X_{k-1}\right]_{j}$ $\rightarrow\left[X_{k-1}, X_{k}\right]_{j}$ is surjective for $j=3,4$, and so $\left(B_{k-1}\right)$ implies that θ is surjective on $\left[X_{k-1}, X_{k}\right]_{3}$. A similar discussion to the proof of $\xi_{1} \in \operatorname{Im} \theta$ in Lemma 6.5' shows that θ is injective on $\left[M\left(H_{k}\right), M\left(H_{k}\right)\right]_{2}$ and surjective on $\left[M\left(H_{k}\right), M\left(H_{k}\right)\right]_{3}$. Similarly, $\left(A_{k-1}\right)$ and $\left(C_{k}^{\prime}\right)$ imply that θ is surjective on $\left[M\left(H_{k}\right), X_{k-1}\right]_{k+3}$. By these facts and iterated use of the five lemma, we obtain

$$
\begin{equation*}
\left(A_{k-1}\right),\left(B_{k-1}\right),\left(C_{k}\right) \text { and }\left(C_{k}^{\prime}\right) \text { imply }\left(B_{k}\right) \tag{5}
\end{equation*}
$$

From (2)-(5), we obtain, by the induction on k, the statements $\left(A_{k}\right)$ for $k<s$ and finally $\left(A_{s}^{\prime}\right)$.

1-4. As a special case of Theorem 6.6', we have the following
Corollary. Let X be an M_{q}-module spectrum whose homology group $H_{i}(X)$ vanishes unless $i=r$ and sfor which $H_{i}(X)$ satisfies the condition (ii) in the above theorem and has no 3 -torsion in case $q \equiv \pm 3 \bmod 9$. Then X admits an associative M_{q}-action.

Proof. If $|s-r|>5$, this is immediate from the above theorem. In the remaining case, without loss of generality, we can assume $5 \geqq s>r=0$. Then X is a mapping cone of an M-map $f \in[M(G), M(H)]_{s-1}^{M}$, where $G=H_{s}(X)$ and $H=H_{0}(X)$, and $[M(G), M(H)]_{s-1}^{M}$ is nontrivial only if $s=4$ or 5 and both G and
H have 3-torsions. Then, it is sufficient to consider the case when $G=H=Z_{3}{ }^{a}$ $(a \geqq 2)$ where $q=3^{a} q^{\prime}$ with $q^{\prime} \not \equiv 0 \bmod 3$. In this case, f is a multiple of $\alpha_{1}(3)$ $\wedge 1_{M G}$ or $\lambda \alpha \rho$ according as $s=4$ or 5 , where $\alpha \in\left[M_{3}, M_{3}\right]_{4}=Z_{3}$ is a generator and $\alpha_{1}(3)=\pi \alpha i$. The associativity of $C\left(\alpha_{1}(3) \wedge 1\right)$ and $C(\lambda \alpha \rho)$ are easily derived from that of $M(G)$ and $C(\alpha)^{1)}$, respectively.

2. Corrections to some proofs in [2]

We have used Theorem 4.5 in [1] to prove the following results of [2]: Proposition 1.3, Theorem 2.1, Proposition 3.9, Lemma 4.2, Theorem 4.3. We can prove the first two by using Theorem 4.5' of above, and the last three without using exact sequences of $[,]_{*}^{M}$.

2-1. In the proof of [2, Prop. 1.3], we can take m^{\prime} and n^{\prime} so that $\theta_{1}\left(m^{\prime}\right)=0$ and $\theta_{1}\left(n^{\prime}\right)=0$ by using Theorem 4.5^{\prime}, since the spectra M and K in [2] satisfy [1, Condition 7.1]. Here we use the same notations θ_{1} and θ_{2} as in [2, (1.5), Lemma 2.2]. We must show that $\theta_{2}\left(m^{\prime}\right)=0$ and $\theta_{2}\left(n^{\prime}\right)=0$ are satisfied.

The difference element between the M-actions $K \wedge K$ (resp. $M \wedge K \circ$) and $\dot{K} \wedge K($ resp. $\dot{M} \wedge K)$ is given by $d=(1 \wedge m)(T \wedge 1)(n \wedge 1)$ (resp. $d^{\prime}=\left(1_{M} \wedge m\right)$. $\left(T_{M} \wedge 1\right)\left(n_{M} \wedge 1\right)$, and we have $d^{\prime}=-n m, d\left(i^{\prime} \wedge 1\right)=-\left(i^{\prime} \wedge 1\right) n m,\left(\pi^{\prime} \wedge 1\right) d=$ $n m\left(\pi^{\prime} \wedge 1\right)$ and $\theta_{1}(d)=0$. By [1, Th. 2.2], $\theta_{2}\left(m^{\prime}\right)=-m^{\prime} d n^{\prime}\left(\pi^{\prime} \wedge 1\right)$. Therefore $m^{\prime} d n^{\prime}$ lies in the group $\mathscr{A}_{p q+2}(M \wedge K) \cap \operatorname{Ker} \theta_{1} \cap \operatorname{Ker} \theta_{2}=A$. For any $\xi \in$ $\mathscr{A}_{p q+1}(M \wedge K) \cap \operatorname{Ker} \theta_{1}=A^{\prime}$, it holds $\left(m^{\prime}+\xi\left(\pi^{\prime} \wedge 1\right)\right) d\left(n^{\prime}-\left(i^{\prime} \wedge 1\right) \xi\right)-m^{\prime} d n^{\prime}=\xi n m$ $+n m \xi$, and easy calculations show the equality $A=\left\{\xi n m+n m \xi \mid \xi \in A^{\prime}\right\}$. Thus, there is an $m^{\prime} \in \operatorname{Ker} \theta$, for which $m^{\prime} d n^{\prime}=0$ holds. This implies $\theta_{2}\left(m^{\prime}\right)=0$ and $\theta_{2}\left(n^{\prime}\right)=-\left(i^{\prime} \wedge 1\right) m^{\prime} d n^{\prime}=0$ as desired.

Remark. The difference element d of above is equal to $-\left(i^{\prime} \wedge 1\right) n m m^{\prime}$ $+n^{\prime} n m\left(\pi^{\prime} \wedge 1\right)=-v_{2} \mu_{1}+v_{4} \mu_{3}$. The elements m^{\prime} and n^{\prime} of the proposition are unique because of $\mathscr{A}_{p q+1}(M \wedge K) \cap \operatorname{Ker} \theta_{1} \cap \operatorname{Ker} \theta_{2}=0$.

2-2. To prove Theorem 2.1 in [2], we used [1, Th. 4.5] on page 435, lines $20-22$ and page 439 , lines $20-22$. But the discussions there are valid if we use Theorem 4.5' instead of [1, Th. 4.5].

2-3. In the proof of [2, Prop. 3.9], the assertion that g is an M-map is not valid. We have $g=g_{1}+g_{2} \delta_{M}$ for some $g_{i} \in[M, K]_{*}^{M}$ by [2, Prop. 1.8], and each g_{i} lies in $i^{\prime} * \mathscr{C}_{*}(K)$. Hence $f=h \delta^{\prime}$ for some $h \in \mathscr{C}_{*}(K)$, and the proof of [2, Prop. 3.9] is now done as it is.

[^1]2-4. In the proof of [2, Lemma 4.2], " $g_{s}=h_{s}+h_{s}^{\prime} \delta^{\prime}$ for $h_{s}, h_{s}^{\prime} \in \mathscr{C}_{*}(K)$ " on page 444 , line 15 should be replaced by

$$
" g_{s} \equiv h_{s} \bmod \operatorname{Im} \delta^{*}+\operatorname{Im}\left(\delta^{\prime}\right)^{*} \quad \text { for } \quad h_{s} \in \mathscr{C}_{*}(K) "
$$

2-5. In the proof of [2, Th. 4.3], the sentence "Hence, by (4.4) (i) $\cdots g_{s} \lambda_{K}$ $=\lambda_{K}\left(f_{s}\right)^{p}$." on page 444, lines -7 to -6 should be replaced by
"Hence, by (4.4) (i), there are maps g_{s} such that $g_{s} \lambda_{K}=\lambda_{K}\left(f_{s}\right)^{p}$ and that $C\left(g_{s}\right)$ is a mapping cone of some map $\Sigma^{-1} C\left(\left(f_{s}\right)^{p}\right) \rightarrow C\left(\left(f_{s}\right)^{p}\right)$. Since $C\left(\left(f_{s}\right)^{p}\right)$ is an M-module spectrum, $C\left(g_{s}\right)$ is an M^{\prime}-module spectrum by [15, Cor. 3.6]. The map g_{s} is the M^{\prime}-map by [15, Lemma 4.7]".

References

[1] S. Oka, Module spectra over the Moore spectrum, Hiroshima Math. J. 7 (1977), 93-118.
[2] S. Oka, Realizing some cyclic BP $\boldsymbol{*}^{-}$-modules and applications to stable homotopy of spheres, Hiroshima Math, J., 7 (1977), 427-447.

Department of Mathematics,
Faculty of Science,
Kyushu University 33

[^0]: 1) For a spectrum $X, H_{*}(X)$ denotes the reduced homology group of X.
[^1]: 1) $C(\alpha)$ is the spectrum $V(1)$ at 3 of Toda. He showed the non-associativity of $C(\alpha)$ as $M_{3^{-}}$ module spectrum. But the formula [1, (5.7)] assures that it is associative as M_{q}-module spectrum if $q \equiv 0 \bmod 9$.
