On the Trace Mappings for the Space $B_{p,\mu}(\mathbb{R}^N)$

Mitsuyuki Itano

(Received September 20, 1977)

1. Introduction

By $H^{\mu}(\mathbb{R}^{N})$ we shall understand the space of $u \in \mathscr{S}'(\mathbb{R}^{N})$ such that its Fourier transform \hat{u} is a locally summable function satisfying

$$\|u\|_{\mu}^{2}=\left(\frac{1}{2\pi}\right)^{N}\int_{\mathbb{R}^{N}}|\hat{u}(\xi)|^{2}\mu^{2}(\xi)d\xi<\infty,$$

where \mathbb{R}^N is an N-dimensional Euclidean space, Ξ^N its dual Euclidean space and μ is a temperate weight function in Ξ^N . In our previous paper [2] we have given a trace theorem for the space $H^{\mu}(\mathbb{R}^N)$. Let $\mu = \mu(\xi', \tau), \xi' = (\xi_1, ..., \xi_n), \tau = (\tau_1, ..., \tau_m), N = n + m$ and assume $\int_{\Xi^m} \frac{|\tau|^{2M}}{\mu^2(\xi', \tau)} d\tau < \infty$ for a non-negative integer M. Put $\psi(\xi') = \int_{-\infty}^{\infty} \frac{|\tau|^{2k}}{\mu^2(\xi', \tau)} d\tau < \infty$ for a non-negative negative negative.

Put $v_k(\xi') = \left\{ \int_{\mathbb{Z}^m} \frac{\tau^{2k}}{\mu^2(\xi', \tau)} d\tau \right\}^{-1/2}$ for $k = (k_1, \dots, k_m), k_j$ being a non-negative integer, such that $|k| \leq M$. Then the mapping

$$H^{\mu}(\mathbb{R}^{N}) \ni u \longrightarrow \{D^{k}_{t}u(x', 0)\} \in \prod_{|k| \leq M} H^{\nu_{k}}(\mathbb{R}^{n})$$

is an epimorphism if and only if there exists a positive constant C such that det $|\kappa_{k+l}| \ge C \prod_{|k| \le M} \kappa_{2k}$ with $\kappa_k(\xi') = \int_{\mathbb{Z}^m} \frac{\tau^k}{\mu^2(\xi', \tau)} d\tau$.

The purpose of this paper is to investigate the trace mappings for the space $B_{p,\mu}(\mathbb{R}^N)$, $1 , which consists of all distributions <math>u \in \mathscr{S}'(\mathbb{R}^N)$ such that \hat{u} is a function and

$$\|u\|_{p,\mu}^{p} = \left(\frac{1}{2\pi}\right)^{N} \int_{\Xi^{N}} |\hat{u}(\xi)|^{p} \mu^{p}(\xi) d\xi < \infty.$$

Here $B_{2,\mu}(R^N) = H^{\mu}(R^N)$. We shall give some sufficient conditions for the trace mapping of above type for $B_{p,\mu}(R^N)$ to be an epimorphism. We shall also investigate the trace mappings by making a comparison with the notions of multiplication of distributions and section of distributions.

2. Preliminaries

We shall use the same notations and terminologies as in our previous paper

[2]. For any points $x = (x_1, ..., x_N) \in \mathbb{R}^N$ and $\xi = (\xi_1, ..., \xi_N) \in \Xi^N$ the scalar product is defined by $\langle x, \xi \rangle = \sum_j x_j \xi_j$ and the lengths of x, ξ are defined by $|x| = (\sum_j |x_j|^2)^{1/2}$, $|\xi| = (\sum_j |\xi_j|^2)^{1/2}$. For an *N*-tuple $\alpha = (\alpha_1, ..., \alpha_N)$ of non-negative integers α_j , we put $|\alpha| = \sum_j \alpha_j$ and $\alpha! = \alpha_1! \cdots \alpha_N!$. With $D = (D_1, ..., D_N)$, $D_j = \frac{1}{i} \frac{\partial}{\partial x_j}$, we put $D^{\alpha} = D_1^{\alpha_1} \cdots D_N^{\alpha_N}$ and similarly $\xi^{\alpha} = \xi_1^{\alpha_1} \cdots \xi_N^{\alpha_N}$. For a polynomial $P(\xi) = \sum_{\alpha} a_{\alpha} \xi^{\alpha}$ in ξ , we put $P(D) = \sum_{\alpha} a_{\alpha} D^{\alpha}$, $\overline{P}(\xi) = \sum_{\alpha} \overline{a}_{\alpha} \xi^{\alpha}$ and $P^{(\alpha)} = i^{|\alpha|} D^{\alpha} P$.

For any rapidly decreasing C^{∞} -function $\phi \in \mathscr{S}(\mathbb{R}^N)$, its Fourier transform $\hat{\phi}$ is defined by the formula

$$\hat{\phi}(\xi) = \int_{\mathbb{R}^N} \phi(x) e^{-i \langle x, \xi \rangle} dx$$

and for any temperate distribution $u \in \mathscr{S}'(\mathbb{R}^N)$, its Fourier transform \hat{u} is defined by

$$\langle \hat{u}, \phi \rangle = \langle u, \hat{\phi} \rangle, \quad \forall \phi \in \mathscr{S}(\mathbb{R}^N),$$

where $\langle \cdot, \cdot \rangle$ means the dualform between $\mathscr{S}'(\mathbb{R}^N)$ and $\mathscr{S}(\mathbb{R}^N)$. We shall use the same notation also for the dualform between $\mathscr{D}'(\mathbb{R}^N)$ and $\mathscr{D}(\mathbb{R}^N)$.

A positive-valued continuous function μ defined in Ξ^N will be called a temperate weight function if there exist positive constants C and k such that

$$\mu(\xi + \eta) \leq C(1 + |\xi|^k)\mu(\eta), \quad \forall \xi, \eta \in \Xi^N.$$

 $\mu_1 + \mu_2, \ \mu_1 \mu_2, \ \frac{1}{\mu_1}$ are temperate weight functions with μ_1 and μ_2 . By $B_{p,\mu}(R^N)$, $1 , we shall understand the space of <math>u \in \mathscr{S}'(R^N)$ such that \hat{u} is a function satisfying $||u||_{p,\mu} < \infty$. The discussion on the space $B_{p,\mu}(R^N)$ has been in full detail in L. Hörmander [1] and in L. R. Volevich and B. P. Paneyakh [8]. $B_{p,\mu}(R^N)$ is a Banach space with the norm $||u||_{p,\mu}$ and $\mathscr{S}(R^N) \subset B_{p,\mu}(R^N) \subset \mathscr{S}'(R^N)$ in the topological sense. $\mathscr{D}(R^N)$ is dense in $B_{p,\mu}(R^N)$ [1, p. 37]. The strong dual of $B_{p,\mu}(R^N)$ is $B_{p',1/\mu}(R^N), \frac{1}{p} + \frac{1}{p'} = 1$ [1, p. 42] and we have

$$\langle w, \bar{u} \rangle = \left(\frac{1}{2\pi}\right)^N \int_{\Xi^N} \hat{w}(\xi) \overline{\hat{u}(\xi)} d\xi$$

for any $u \in B_{p,u}(\mathbb{R}^N)$ and $w \in B_{p',1/u}(\mathbb{R}^N)$.

Let N = n + m. We shall use the notations: $x = (x', t) \in \mathbb{R}^{N}$, $x' = (x_1, ..., x_n)$, $t = (t_1, ..., t_m)$ and $\xi = (\xi', \tau) \in \mathbb{Z}^{N}$, $\xi' = (\xi_1, ..., \xi_n)$, $\tau = (\tau_1, ..., \tau_m)$. For any temperate weight function μ in \mathbb{Z}^{N} , the integral $\nu(\xi') = \int_{\mathbb{Z}^m} \mu(\xi) d\tau$ diverges for every point $\xi' \in \mathbb{Z}^n$, or converges for every point $\xi' \in \mathbb{Z}^n$ and it is a temperate weight function in \mathbb{Z}^n [8, p. 10]. For any $\phi \in \mathcal{S}(\mathbb{R}^N)$ the partial Fourier transforms $\hat{\phi}_{x'}$.

and $\hat{\phi}_t$ are defined by the formulas

$$\hat{\phi}_{x'}(\xi', t) = \int_{\mathbb{R}^n} \phi(x', t) e^{-i \langle x', \xi' \rangle} dx', \quad \hat{\phi}_t(x', \tau) = \int_{\mathbb{R}^m} \phi(x', t) e^{-i \langle t, \tau \rangle} dt$$

and for any $u \in \mathscr{S}'(\mathbb{R}^N)$ its partial Fourier transforms are defined by

$$\langle \hat{u}_{x'}, \phi \rangle = \langle u, \hat{\phi}_{x'} \rangle, \quad \langle \hat{u}_t, \phi \rangle = \langle u, \hat{\phi}_t \rangle, \quad \forall \phi \in \mathscr{S}(\mathbb{R}^N).$$

For any $u = u(x', t) \in \mathcal{D}(\mathbb{R}^N)$ the trace u(x', 0) on \mathbb{R}^n clearly belongs to the space $\mathcal{D}(\mathbb{R}^n) \subset \mathcal{D}'(\mathbb{R}^n)$. $\mathcal{D}(\mathbb{R}^N)$ is dense in $B_{p,\mu}(\mathbb{R}^N)$. If the mapping $u \to u(x', 0)$ can be continuously extended to the mapping from $B_{p,\mu}(\mathbb{R}^N)$ into $\mathcal{D}'(\mathbb{R}^n)$ with weak topology, then the extended mapping is called the trace mapping on \mathbb{R}^n and the image of $u \in B_{p,\mu}(\mathbb{R}^N)$ is called the trace of u and denoted by u(x', 0). From its very definition, the trace mapping is defined if and only if $\phi \otimes \delta \in B_{p',1/\mu}(\mathbb{R}^N)$ for any $\phi \in \mathcal{D}(\mathbb{R}^n)$, where δ is the Dirac measure in \mathbb{R}^m . From this fact we see that the trace mapping is defined if and only if $1/\mu(0, \tau) \in L^{p'}(\mathbb{R}^m)$. From the equations

$$u(x',0) = \frac{1}{(2\pi)^N} \iint_{\Xi^N} \hat{u}(\xi',\tau) e^{i < x',\xi' >} d\xi' d\tau = \frac{1}{(2\pi)^m} \iint_{\Xi^m} \hat{u}_t(x',\tau) d\tau$$

for any $u \in \mathcal{S}(\mathbb{R}^N)$, we obtain

$$\widehat{u(x',0)}(\xi') = \frac{1}{(2\pi)^m} \int_{\Xi^m} \hat{u}(\xi',\tau) d\tau,$$

which remains valid for any $u \in B_{p,\mu}(\mathbb{R}^N)$.

3. Trace mappings

LEMMA 1. For any non-trivial polynomial $P(\xi)$, the function \tilde{P}_p defined by

$$\tilde{P}_p(\xi) = \left(\sum_{|\alpha| \ge 0} |P^{(\alpha)}(\xi)|^p\right)^{1/p}$$

is a temperate weight function in Ξ^N .

PROOF. From Taylor's formula

$$P^{(\alpha)}(\xi + \eta) = \sum_{|\beta| \ge 0} \frac{\xi^{\beta}}{\beta!} P^{(\alpha+\beta)}(\eta) ,$$

it follows immediately that

$$\sum_{|\alpha|\geq 0} |P^{(\alpha)}(\xi+\eta)|^p \leq C(\sum_{|\alpha|\geq 0} |P^{(\alpha)}(\eta)|^p) \left(1 + |\xi|^{Mp}\right),$$

where M is the degree of P and C is a constant depending only on M and N. Thus we obtain

$$\tilde{P}_{p}(\xi + \eta) \leq C' \tilde{P}_{p}(\eta) (1 + |\xi|^{M})$$

with a constant C'.

PROPOSITION 1. Let P be a non-trivial polynomial of $\xi = (\xi', \tau)$ and μ a temperate weight function in Ξ^N . A necessary and sufficient condition that the trace mapping $B_{p,\mu}(\mathbb{R}^N) \ni u \rightarrow [P(D)u](x', 0) \in \mathscr{D}'(\mathbb{R}^n)$ may be defined is that one of the following conditions is satisfied:

(1)
$$\frac{1}{\mu_{\tilde{P},p'}(\xi')} = \left\{ \int_{\Xi^m} \frac{\tilde{P}_{p'}(\xi',\tau)}{\mu^{p'}(\xi',\tau)} d\tau \right\}^{1/p'} < \infty \quad \text{for some point } \xi' \in \Xi^n.$$

(2)
$$\int_{\Xi^m} \frac{|P(\xi',\tau)|^{p'}}{\mu^{p'}(\xi',\tau)} d\tau < \infty \quad \text{for every point } \xi' \in \Xi^n.$$

In this case $[P(D)u](x', 0) \in B_{p,\mu_{\widetilde{P},n'}}(\mathbb{R}^n)$.

Furthermore, $[P(D)u](x', 0) \in B_{p,v}(\mathbb{R}^n)$ for every $u \in B_{p,\mu}(\mathbb{R}^n)$ if and only if one of the following conditions is satisfied:

- (3) $v(\xi') \leq C_1 \mu_{\vec{p}, p'}(\xi')$ with a constant C_1 .
- (4) $v^{p'}(\xi') \int_{\mathbb{Z}^m} \frac{|P(\xi',\tau)|^{p'}}{\mu^{p'}(\xi',\tau)} d\tau \leq C_2$ with a constant C_2 .

PROOF. We suppose the trace mapping $B_{p,\mu}(R^N) \ni u \rightarrow [P(D)u](x', 0) \in \mathscr{D}'(R^n)$ is defined. For any $\eta \in \Xi^N$ the mapping $u \rightarrow e^{i < x, \eta > u}$ is continuous from $B_{p,\mu}(R^N)$ into itself and we have $P(D)e^{i < x, \eta > u} = e^{i < x, \eta > P(D+\eta)u}$. For any $\phi \in \mathscr{D}(R^n)$ the map

$$u \longrightarrow \langle [P(D + \eta)u](x', 0), \phi \rangle = \langle u, \overline{P}(D + \eta)(\phi \otimes \delta) \rangle$$

is a continuous linear form on $B_{p,\mu}(\mathbb{R}^N)$ and therefore

$$\overline{P}(D+\eta)(\phi\otimes\delta)\in (B_{p,\mu}(R^N))'=B_{p',1/\mu}(R^N),$$

which implies

$$\frac{\overline{P}(\xi+\eta)\widehat{\phi}(\xi')}{\mu(\xi)} = \frac{\widehat{\phi}(\xi')}{\mu(\xi)} \sum_{|\alpha|\geq 0} \frac{\eta^{\alpha}}{\alpha!} \overline{P}^{(\alpha)}(\xi) \in L^{p'}(\Xi^N) .$$

From the fact that $\{\eta^{\alpha}\}$ is linearly independent, it follows that $\hat{\phi}(\xi')\overline{P}^{(\alpha)}(\xi)/\mu(\xi) \in L^{p'}(\Xi^N)$ for each α and then

$$\int_{\mathbb{Z}^n} |\hat{\phi}(\xi')|^{p'} d\xi' \int_{\mathbb{Z}^m} \frac{\widetilde{P}_{p'}^{p'}(\xi',\tau)}{\mu^{p'}(\xi',\tau)} d\tau < \infty.$$

As a result,

$$\int_{\Xi^m} \frac{\widetilde{P}_{p'}^{p'}(\xi',\tau)}{\mu^{p'}(\xi',\tau)} d\tau < \infty \quad \text{for a.e. } \xi' \in \Xi^n.$$

Since μ and $\tilde{P}_{p'}$ are temperate weight functions, the integral exists for every $\xi' \in \Xi^n$ and it is a temperate weight function in Ξ^n .

The implication $(1) \Rightarrow (2)$ is trivial.

Suppose (2) holds. From the equation

$$\widehat{[P(D)u](x',0)}(\xi') = \frac{1}{(2\pi)^m} \int_{\Xi^m} P(\xi)\hat{u}(\xi)d\tau$$

for any $u \in \mathscr{D}(\mathbb{R}^N)$ we have for any $\phi \in \mathscr{D}(\mathbb{R}^n)$

$$| < [P(D)u](x', 0), \bar{\phi} > | = \frac{1}{(2\pi)^N} \left| \int_{\mathbb{Z}^N} P(\xi) \hat{u}(\xi) \overline{\phi(\xi')} d\xi \right|$$

$$\leq \frac{1}{(2\pi)^N} \left[\int_{\mathbb{Z}^n} |\hat{\phi}(\xi')|^{p'} \left\{ \int_{\mathbb{Z}^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau \right\} d\xi' \right]^{1/p'} \left[\int_{\mathbb{Z}^N} |\hat{u}(\xi)|^p \mu^p(\xi) d\xi \right]^{1/p}.$$

Since $\mathscr{D}(\mathbb{R}^N)$ is dense in $B_{p,\mu}(\mathbb{R}^N)$, it suffices to show that $\int_{\mathbb{R}^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau$ is a slowly increasing function of ξ' . From Taylor's formula $P(\xi) = \sum_{|\alpha'| \ge 0} \frac{\xi'^{\alpha'}}{\alpha'!} P^{(\alpha')}(0, \tau)$ and (2) it follows that the integral $\int_{\mathbb{R}^m} \frac{|P^{(\alpha')}(0, \tau)|^{p'}}{\mu^{p'}(0, \tau)} d\tau$ exists. Since $\mu(0, \tau)$ $\leq C(1+|\xi'|^k)\mu(\xi', \tau)$ with constants k and C we have

$$\int_{\Xi^m} \frac{|P^{(\alpha')}(0,\tau)|^{p'}}{\mu^{p'}(\zeta',\tau)} d\tau \leq C^{p'}(1+|\zeta'|^k)^{p'} \int_{\Xi^m} \frac{|P^{(\alpha')}(0,\tau)|^{p'}}{\mu^{p'}(0,\tau)} d\tau.$$

Thus the trace mapping $B_{p,\mu}(\mathbb{R}^N) \ni u \to [P(D)u](x', 0) \in \mathscr{D}'(\mathbb{R}^n)$ is defined.

Furthermore, we have for any $u \in \mathscr{D}(\mathbb{R}^N)$

$$\begin{split} \| [P(D)u](x',0) \|_{p,\mu_{\widetilde{P},p'}}^{p} &= \left(\frac{1}{2\pi}\right)^{n+pm} \int_{\Xi^{n}} \mu_{\widetilde{P},p'}^{p}(\xi') \left| \int_{\Xi^{m}} P(\xi)\hat{u}(\xi)d\tau \right|^{p} d\xi' \\ &\leq \left(\frac{1}{2\pi}\right)^{n+pm} \int_{\Xi^{n}} \mu_{\widetilde{P},p'}^{p}(\xi') \left(\int_{\Xi^{m}} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau \right)^{p/p'} \left(\int_{\Xi^{m}} |\hat{u}|^{p} \mu^{p} d\tau \right) d\xi' \\ &\leq \left(\frac{1}{2\pi}\right)^{n+pm} \int_{\Xi^{n}} \mu_{\widetilde{P},p'}^{p}(\xi') \left(\int_{\Xi^{m}} \frac{\widetilde{P}_{p'}^{p'}}{\mu^{p'}} d\tau \right)^{p/p'} \left(\int_{\Xi^{m}} |\hat{u}|^{p} \mu^{p} d\tau \right) d\xi' \\ &= \left(\frac{1}{2\pi}\right)^{(p-1)m} \|u\|_{p,\mu}^{p}. \end{split}$$

Since $\mathscr{D}(\mathbb{R}^N)$ is dense in $B_{p,\mu}(\mathbb{R}^N)$, $[P(D)u](x', 0) \in B_{p,\mu_{\widetilde{P},p'}}(\mathbb{R}^n)$ for any $u \in B_{p,\mu}(\mathbb{R}^N)$.

Suppose the trace $[P(D)u](x', 0) \in B_{p,v}(\mathbb{R}^n)$ for any $u \in B_{p,\mu}(\mathbb{R}^N)$. As we have shown before $\hat{\phi}(\xi')\tilde{P}_{p'}(\xi')/\mu(\xi) \in L^{p'}(\Xi^N)$ for any $\phi \in B_{p',1/\nu}(\mathbb{R}^n)$, that is,

$$\infty > \int_{\mathbb{Z}^N} |\hat{\phi}(\xi')|^{p'} \frac{\widetilde{P}_{p'}^{p'}(\xi)}{\mu^{p'}(\xi)} d\xi' d\tau$$
$$= \int_{\mathbb{Z}^n} \frac{|\phi(\xi')|^{p'}}{\nu^{p'}(\xi')} \left(v^{p'}(\xi') \int_{\mathbb{Z}^m} \frac{\widetilde{P}_{p'}^{p'}(\xi)}{\mu^{p'}(\xi)} d\tau \right) d\xi'.$$

Thus we have for some constant $C_1 > 0$

$$v^{p'}(\xi') \int_{\Xi^m} \frac{\widetilde{P}_{p'}^{p'}(\xi)}{\mu^{p'}(\xi)} d\tau \leq C_1^{p'}$$
 a.e. $\xi' \in \Xi^n$.

Since v, μ and $\tilde{P}_{p'}$ are temperate weight functions, the estimate remains valid for every $\xi' \in \Xi^n$ and therefore we have $v(\xi') \leq C_1 \mu_{\bar{P}, p'}(\xi')$ for all $\xi' \in \Xi^n$.

Clearly (3) implies (4).

Suppose (4) holds. For any $u \in \mathcal{D}(\mathbb{R}^N)$ we have

$$\begin{split} \| [P(D)u](x',0) \|_{p,\nu}^{p} &= \left(\frac{1}{2\pi}\right)^{n+pm} \int_{\mathbb{S}^{n}} v^{p}(\xi') \left| \int_{\mathbb{S}^{m}} P(\xi)\hat{u}(\xi)d\tau \right|^{p} d\xi' \\ &\leq \left(\frac{1}{2\pi}\right)^{n+pm} \int_{\mathbb{S}^{n}} v^{p}(\xi') \left(\int_{\mathbb{S}^{m}} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau \right)^{p/p'} \left(\int_{\mathbb{S}^{m}} |\hat{u}|^{p} \mu^{p} d\tau \right) d\xi' \\ &\leq \left(\frac{1}{2\pi}\right)^{n+pm} C_{2}^{p} \int_{\mathbb{S}^{N}} |\hat{u}|^{p} \mu^{p} d\xi \\ &= \left(\frac{1}{2\pi}\right)^{m(p-1)} C_{2}^{p} \|u\|_{p,\mu}^{p} \end{split}$$

and therefore

$$\|[P(D)u](x',0)\|_{p,\nu} \leq \left(\frac{1}{2\pi}\right)^{m/p'} C_2 \|u\|_{p,\mu}.$$

Since $\mathscr{D}(\mathbb{R}^N)$ is dense in $B_{p,\mu}(\mathbb{R}^N)$, the estimate holds true for any $u \in B_{p,\mu}(\mathbb{R}^N)$.

PROPOSITION 2. Suppose the integral

$$\frac{1}{\mu_{\boldsymbol{p},\boldsymbol{p}'}(\boldsymbol{\xi}')} = \left\{ \int_{\boldsymbol{\Xi}^m} \frac{\tilde{P}_{\boldsymbol{p}'}^{\boldsymbol{p}'}(\boldsymbol{\xi}',\,\boldsymbol{\tau})}{\mu^{\boldsymbol{p}'}(\boldsymbol{\xi}',\,\boldsymbol{\tau})} d\boldsymbol{\tau} \right\}^{1/\boldsymbol{p}'}$$

is finite. A necessary and sufficient condition that the trace mapping

$$\widetilde{\mathcal{O}}: B_{p,\mu}(\mathbb{R}^N) \ni u \longrightarrow [P(D)u](x', 0) \in B_{p,\mu_{\widetilde{n}-1}}(\mathbb{R}^n)$$

may be an epimorphism is that one of the following conditions is satisfied:

(1) The range of the transposed map ${}^t\mathcal{D}$ is closed in $B_{p',1/\mu}(\mathbb{R}^N)$.

(2) $v_{p'}(\xi') = \left\{ \int_{\Xi^m} \frac{|P(\xi', \tau)|^{p'}}{\mu^{p'}(\xi', \tau)} d\tau \right\}^{-1/p'}$ is a temperate weight function in Ξ^n

(3) If $f(\xi')\overline{P}(\xi)/\mu(\xi) \in L^{p'}(\Xi^N)$ with a locally integrable function $f(\xi')$, then $f/\mu_{\overline{P},p'} \in L^{p'}(\Xi^n)$.

In this case, $v_{p'} \sim \mu_{\tilde{p},p'}$, namely, there exist two positive constants C_1, C_2 such that $C_1 v_{p'} \leq \mu_{\tilde{p},p'} \leq C_2 v_{p'}$.

PROOF. For any $f \in \mathscr{D}(\mathbb{R}^N)$ and $v \in \mathscr{D}(\mathbb{R}^n)$ we have

$$<\widetilde{\emptyset} f, \ \overline{v} > = \left(\frac{1}{2\pi}\right)^n \int_{\Xi^n} \widehat{\left[P(D)f\right](x',0)}(\xi')\overline{\vartheta(\xi')}d\xi'$$
$$= \left(\frac{1}{2\pi}\right)^n \int_{\Xi^N} P(\xi)\widehat{f}(\xi)\overline{\vartheta(\xi')}d\xi$$

and

$$< {}^{t}\widetilde{\mathscr{O}v}, f > = \left(\frac{1}{2\pi}\right)^{N} \int_{\mathbb{R}^{N}} {}^{t}\widetilde{\widehat{\mathscr{O}v}}(\xi) \widehat{f}(\xi) d\xi.$$

Since $\mathscr{D}(\mathbb{R}^n)$ is dense in $B_{p',1/\mu_{\widetilde{P},p'}}(\mathbb{R}^n)$, we have $\widehat{\mathcal{O}v}(\xi) = \widehat{v}(\xi')\overline{P}(\xi)$ for any $v \in B_{p',1/\mu_{\widetilde{P},p'}}(\mathbb{R}^n)$. If $\widehat{\mathcal{O}v} = 0$, then

$$\int_{\Xi^n} |\hat{v}(\xi')|^{p'} \left(\int_{\Xi^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau \right) d\xi' = 0$$

and therefore $\hat{v}(\xi')=0$ a.e. in Ξ^n , which implies v=0. Thus the map $\tilde{0}$ is an epimorphism if and only if the range of $\tilde{0}$ is closed in $B_{p',1/\mu}(\mathbb{R}^N)$.

Suppose (1) holds. Then there exists a constant C such that

$$\|v\|_{p',1/\mu_{\widetilde{P},p'}} \leq C \|t \widetilde{O}v\|_{p',1/\mu}$$

for any $v \in B_{p',1/\mu_{\widetilde{P},p'}}(\mathbb{R}^n)$, and hence

$$\int_{\mathbb{Z}^m} |\hat{v}(\xi')|^{p'} \frac{1}{\mu_{\widetilde{P},p'}^{p'}(\xi')} d\xi' \leq C^{p'} \int_{\mathbb{Z}^n} |\hat{v}(\xi')|^{p'} \left(\int_{\mathbb{Z}^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau \right) d\xi',$$

which implies $1/\mu_{\bar{p},p'} \leq C/\nu_{p'}(\xi') \leq C/\mu_{\bar{p},p'}$. Thus $\nu_{p'}$ is a temperate weight function in Ξ^n and $\nu_{p'} \sim \mu_{\bar{p},p'}$.

Suppose (2) holds. We shall first note that $v_{p'} \sim \mu_{F,p'}$. For any $\eta \in \Xi^N$ with $|\eta| \leq 1$ there exist two positive constants C_1 , C_2 such that

$$\frac{C_1}{v_{p'}^{p'}(\xi')} \ge \frac{1}{v_{p'}^{p'}(\xi'+\eta')} = \int_{\mathcal{Z}^m} \frac{|P(\xi+\eta)|^{p'}}{\mu^{p'}(\xi+\eta)} d\tau \ge C_2 \int_{\mathcal{Z}^m} \frac{|P(\xi+\eta)|^{p'}}{\mu^{p'}(\xi)} d\tau.$$

By Taylor's formula $P(\xi + \eta) = \sum_{|\alpha| \ge 0} \frac{\eta^{\alpha}}{\alpha!} P^{(\alpha)}(\xi)$ we can find a positive constant

 C_3 such that

$$\frac{1}{v_{p'}^{p'}(\xi')} \ge C_3 \int_{\mathbb{Z}^m} \frac{|P^{(\alpha)}(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau$$

and therefore $v_{p'} \sim \mu_{\bar{P},p'}$. Suppose $f(\xi')\overline{P}(\xi)/\mu(\xi) \in L^{p'}(\Xi^N)$ with $f(\xi') \in L^{1}_{loc}(\Xi^n)$. From the relations

$$\int_{\Xi^n} |f(\xi')|^{p'} \frac{1}{v_{p'}^{p'}(\xi')} d\xi' = \int_{\Xi^N} |f(\xi')|^{p'} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\xi < \infty$$

and $v_{p'} \sim \mu_{\overline{P},p'}$ we obtain $f/\mu_{\overline{P},p'} \in L^{p'}(\Xi^n)$. Suppose (3) holds. We shall first show that $\int_{\Xi^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau > 0$ for any $\xi' \in \Xi^n$. Let ξ'_0 be any point of Ξ^n and B be a closed unit ball with center at ξ'_0 . Let E be the set of $f \in L^1_{loc}(\Xi^n)$ such that supp $f \subset B$ and

$$\int_{\mathbb{Z}^n} |f(\xi')|^{p'} \left(\int_{\mathbb{Z}^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau \right) d\xi' < \infty.$$

Then E is a Banach space with the norm $||f||_{E}$:

$$\|f\|_E^{p'} = \left\{ \int_B |f(\xi')| d\xi' \right\}^{p'} + \int_B |f(\xi')|^{p'} \left(\int_{\Xi^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau \right) d\xi'.$$

Let $f \in E$. Then $f \in L^1_{loc}(\Xi^n)$ and $f(\xi')\overline{P}(\xi)/\mu(\xi) \in L^{p'}(\Xi^N)$ and therefore $f/\mu_{\overline{P},p'}$ $\in L^{p'}(\Xi^n)$ by (3). By the closed graph theorem the map $f \rightarrow f/\mu_{F,p'}$ is continuous from E into $L^{p'}(\Xi^n)$. Let B_{ε} be a closed ball with center at $\xi'_0 \in \Xi^n$ and radius ε , $0 < \varepsilon < 1$. If we take the characteristic function f on B_{ε} , then there exists a positive constant C independent of ε (depending on ξ_0) such that

$$C \leq |B_{\varepsilon}|^{p'-1} + \frac{1}{|B_{\varepsilon}|} \int_{B_{\varepsilon}} \left(\int_{\Xi^{m}} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau \right) d\xi',$$

where $|B_{\epsilon}|$ stands for the Lebesgue measure of B_{ϵ} . Passing to the limit $\epsilon \rightarrow 0$, we have

$$0 < C \leq \int_{\Xi^m} \frac{|P(\xi'_0, \tau)|^{p'}}{\mu^{p'}(\xi'_0, \tau)} d\tau.$$

Let us now show that the range of ${}^{t}\widetilde{O}$ is closed in $B_{p',1/\mu}(\mathbb{R}^{N})$. Let $\{v^{j}(\xi')\}$ be any sequence of $B_{p',1/\mu_{\widetilde{P},p'}}(\mathbb{R}^n)$ such that ${}^t\widetilde{O}v^j$ tends to u in $B_{p',1/\mu}(\mathbb{R}^N)$. Then ${}^t\widetilde{O}v^j$ = $\hat{v}^j(\xi')\overline{P}(\xi)/\mu(\xi)$ tends to \hat{u}/μ in $L^{p'}(\Xi^N)$ and therefore $\hat{v}^j(\xi')\left\{\int_{\Xi^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)}d\tau\right\}^{1/p'}$ is a Cauchy sequence in $L^{p'}(\Xi^n)$. From the fact that $\int_{\Xi^m} \frac{|P(\xi)|^{p'}}{\mu^{p'}(\xi)} d\tau > 0$ for $\xi' \in \Xi^n$, $\hat{v}^j(\xi')$ tends to $f(\xi')$ in $L^1_{loc}(\Xi^n)$ and we can write $\hat{u} = f(\xi')\overline{P}(\xi)$. From

 $\hat{u}/\mu = f(\xi')\overline{P}(\xi)/\mu(\xi) \in L^{p'}(\Xi^N)$ and (3) we obtain $f/\mu_{\overline{P},p'} \in L^{p'}(\Xi^n)$, that is, $f \in B_{p',1/\mu_{\overline{P},p'}}(\mathbb{R}^n)$. Thus *u* belongs to the range of $t^{\mathcal{O}}$, which completes the proof.

If P(D) is a polynomial in D_t and

$$\frac{1}{v_{p'}(\xi')} = \left\{ \int_{\mathbb{Z}^m} \frac{|P(\tau)|^{p'}}{\mu^{p'}(\xi',\tau)} d\tau \right\}^{1/p'} < \infty,$$

then $v_{p'}$ is a temperate weight function in Ξ^n . By virtue of Proposition 2 the trace mapping $u \to [P(D_t)u](x', 0)$ from $B_{p,\mu}(\mathbb{R}^N)$ into $B_{p,\nu_p'}(\mathbb{R}^n)$ is an epimorphism in this case.

4. Trace theorems

Let $\mu = \mu(\xi', \tau)$ be a temperate weight function defined in Ξ^N . We assume that for some non-negative integer M

$$\int_{\Xi^m} \frac{|\tau|^{p'M}}{\mu^{p'}(\xi',\tau)} d\tau < \infty.$$

For any $k = (k_1, ..., k_m)$, k_i being a non-negative integer, such that $|k| \leq M$ we put

$$v_{k,p'}(\xi') = \left\{ \int_{\Xi^m} \frac{|\tau^k|^{p'}}{\mu^{p'}(\xi',\tau)} d\tau \right\}^{-1/p}$$

and consider the trace mapping \mathcal{D} :

$$B_{p,\mu}(\mathbb{R}^N) \ni u \longrightarrow \{D_t^k u(x', 0)\} \in \prod_{|k| \le M} B_{p,v_{k,p'}}(\mathbb{R}^n).$$

For p=2 we have already obtained the following theorem and its corollary in our previous paper [2].

THEOREM 1. A necessary and sufficient condition that the mapping \mathcal{O} : $B_{2,\mu}(\mathbb{R}^N) \ni u \to \{D_t^k u(x', 0)\} \in \prod_{|k| \le M} B_{2,\nu_{k,2}}(\mathbb{R}^n)$ may be an epimorphism is that one of the following conditions is satisfied:

(1) The range of the transposed mapping ${}^{t}\mathcal{O}$ is closed in $B_{2,1/\mu}(\mathbb{R}^{N})$.

(2) There exists a positive constant C such that det $|\kappa_{k+1}| \ge C \sum_{|k| \le M} \kappa_{2k}$,

where $\kappa_k(\xi') = \int_{\Xi^m} \frac{\tau^k}{\mu^2(\xi', \tau)} d\tau.$ (3) If $u \in B_{2,1/\mu}(\mathbb{R}^N)$ and $\hat{u}(\xi) = \sum_{|k| \le M} f_k(\xi')\tau^k$, then $f_k/v_{k,2} \in L^2(\Xi^n)$ for $|k| \le M.$

(4) If $u \in B_{2,1/\mu}(\mathbb{R}^N)$ and $\hat{u}(\xi) = \sum_{|k| \le M} f_k(\xi') \tau^k$, then

$$\hat{u}(\xi',\,\tau_1,\ldots,\,\tau_{j-1},\,\frac{\tau_j}{2},\,\tau_{j+1},\ldots,\,\tau_m)/\mu(\xi)\in L^2(\Xi^N)$$

for j = 1, 2, ..., m.

COROLLARY. If $\mu(\xi', \tau_1, ..., \tau_{j-1}, 2\tau_j, \tau_{j+1}, ..., \tau_m) \ge C\mu(\xi)$, C being a positive constant, for j = 1, 2, ..., m, then the mapping \mathcal{O} considered in the theorem is an epimorphism.

For any p with 1 we have

THEOREM 2. The trace mapping \tilde{O} : $B_{p,\mu}(\mathbb{R}^N) \ni u \to \{D_t^k u(x', 0)\} \in \prod_{|k| \leq M} B_{p,\nu_{k,p'}}(\mathbb{R}^n)$ is an epimorphism if and only if the range of the transposed mapping $t\tilde{O}$ is closed in $B_{p',1/\mu}(\mathbb{R}^N)$.

PROOF. We first note that the transposed image ${}^t \tilde{\mathcal{O}} \tilde{v}$ of $\tilde{v} = \{v_k\} \in \prod_{|k| \le M} B_{p', 1/v_{k, p'}}(\mathbb{R}^n)$ has the form

$${}^{t}\widehat{\mathscr{O}}\widetilde{v}(\xi) = \sum_{|k| \leq M} \widehat{v}_{k}(\xi') \tau^{k}.$$

It is sufficient to show this relation when $v_k \in \mathscr{D}(\mathbb{R}^n)$. For any $f \in \mathscr{D}(\mathbb{R}^N)$ we have

$$<\widetilde{0}f, \ \overline{\vartheta} > = \left(\frac{1}{2\pi}\right)^n \sum_{z_n} \widehat{D_t^k f(x', 0)}(\xi') \overline{\vartheta_k(\xi')} d\xi$$
$$= \left(\frac{1}{2\pi}\right)^n \sum_{z_n} \widehat{D_t^k f(\xi)} \overline{\vartheta_k(\xi')} d\xi$$
$$= \left(\frac{1}{2\pi}\right)^n \sum_{z_n} \widehat{f}(\xi) \tau^k \overline{\vartheta_k(\xi')} d\xi$$

and therefore $i\widehat{\mathcal{O}}\widehat{v}(\xi) = \sum_{\substack{|k| \le M}} \widehat{v}_k(\xi')\tau^k$. By this relation we see that the transposed map $i\widehat{\mathcal{O}}$ is injective. Thus the map $\widehat{\mathcal{O}}$ is an epimorphism if and only if the range of $i\widehat{\mathcal{O}}$ is closed in $B_{p',1/\mu}(\mathbb{R}^N)$.

THEOREM 3. The following conditions are equivalent:

(1) If $u \in B_{p',1/\mu}(\mathbb{R}^N)$ and $\hat{u}(\xi) = \sum_{|k| \le M} f_k(\xi')\tau^k$, then $f_k/v_{k,p'} \in L^{p'}(\Xi^n)$ for any k with $|k| \le M$.

(2) If $u \in B_{p',1/\mu}(\mathbb{R}^N)$ and $\hat{u}(\xi) = \sum_{|k| \le M} f_k(\xi')\tau^k$, then

$$\hat{u}\left(\xi',\,\tau_1,\ldots,\,\tau_{j-1},\frac{\tau_j}{2},\,\tau_{j+1},\ldots,\,\tau_m\right)/\mu\in L^{p'}(\Xi^N)$$

for every j = 1, 2, ..., m.

(3) If
$$u \in B_{p',1/\mu}(\mathbb{R}^N)$$
 and $\hat{u}(\xi) = \sum_{|k| \le M} f_k(\xi')\tau^k$, then
 $\hat{u}\left(\xi', \frac{\tau_1}{2^{i_1}}, \dots, \frac{\tau_m}{2^{i_m}}\right) \in L^{p'}(\Xi^N)$

for any non-negative integers i_i.

In this case, the trace mapping \mathcal{D} : $B_{p,\mu}(\mathbb{R}^N) \ni u \to \{D_t^k u(x', 0)\} \in \prod_{|k| \le M} B_{p,\nu_k,p'}(\mathbb{R}^n)$ is an epimorphism.

PROOF. (1) \Rightarrow (2). Suppose (1) holds. Then $f_k/v_{k,p'} \in L^{p'}(\Xi^n)$, that is, $f_k(\xi')\tau^k/\mu(\xi) \in L^{p'}(\Xi^N)$, and then $f_k(\xi')\tau^k/2^{k_j}\mu(\xi) \in L^{p'}(\Xi^N)$. Thus we have

$$\hat{u}\left(\xi',\,\tau_1,\ldots,\frac{\tau_j}{2},\ldots,\,\tau_m\right) \middle| \mu = \sum f_k(\xi')\tau^k/2^{k_j}\mu(\xi) \in L^{p'}(\Xi^N) \,.$$

(2) \Rightarrow (3). Suppose (2) holds. Then $\hat{u}\left(\xi', \tau_1, ..., \frac{\tau_j}{2}, ..., \tau_m\right)/\mu \in L^{p'}(\Xi^N)$ and $\hat{u}\left(\xi', \tau_1, ..., \frac{\tau_j}{2}, ..., \tau_m\right) = \sum_k f_k(\xi')\tau^k/2^{k_j}\mu \in L^{p'}(\Xi^N)$, which implies $\hat{u}\left(\xi', \tau_1, ..., \frac{\tau_j}{2^2}, ..., \tau_m\right)/\mu \in L^{p'}(\Xi^N)$. Repeating this procedure, we have (3).

(3) \Rightarrow (1). Suppose (3) holds. Then $\hat{u}\left(\xi', \frac{\tau_1}{2^{i_1}}, \dots, \frac{\tau_m}{2^{i_m}}\right)/\mu \in L^{p'}(\Xi^N)$ for any non-negative integers i_j and

$$\hat{u}\left(\xi',\frac{\tau_1}{2^{i_1}},\ldots,\frac{\tau_m}{2^{i_m}}\right) / \mu(\xi) = \sum f_k(\xi') \left(\frac{\tau_1}{2^{i_1}}\right)^{k_1} \cdots \left(\frac{\tau_m}{2^{i_m}}\right)^{k_m} / \mu(\xi) \in L^{p'}(\Xi^N).$$

For any fixed i_1, \ldots, i_{m-1} if we take $i_m = 0, 1, \ldots, M$, then we have

$$\sum_{k_1+\dots+k_{m-1}\leq M-k_m} f_k(\xi') \left(\frac{\tau_1}{2^{i_1}}\right)^{k_1} \cdots \left(\frac{\tau_{m-1}}{2^{i_{m-1}}}\right)^{k_{m-1}} \tau_m^{k_m} / \mu(\xi) \in L^{p'}(\Xi^N)$$

for each $k_m = 0, 1, ..., M$. Repeating this procedure, we have $f_k(\xi')\tau^k/\mu \in L^{p'}(\Xi^N)$ for any k with $|k| \leq M$, which means $f_k/v_{k,p'} \in L^{p'}(\Xi^n)$.

We shall next show that the range of $t \widetilde{O}$ is closed in $B_{p',1/\mu}(\mathbb{R}^N)$ when (1) holds true. Let $v^j = \{v_k^j\} \in H' = \prod_{\substack{|k| \leq M}} B_{p',1/\nu_{k,p'}}(\mathbb{R}^n)$ and suppose $t \widetilde{O} v^j$ converges to u in $B_{p',1/\mu}(\mathbb{R}^N)$. Namely $\sum_{\substack{|k| \leq M}} v^j_k(\zeta') \tau^k/\mu$ converges to u^j/μ in $L^{p'}(\Xi^N)$. From the fact that μ is a positive-valued continuous function, we see that $\sum_k v^j_k(\zeta') \tau^k$ converges to u in $L^1_{loc}(\Xi^N)$. Thus we can write $u = \sum_{\substack{|k| \leq M}} f_k(\zeta') \tau^k$ with $f_k \in L^1_{loc}(\Xi^n)$. By the condition (1) $f_k/\nu_{k,p'} \in L^{p'}(\Xi^n)$ for $|k| \leq M$. If we take $v_k = \mathscr{F}^{-1}(f_k)$, then $v_k \in B_{p',1/\nu_{k,p'}}(\mathbb{R}^n)$ and $u = \sum_{\substack{|k| \leq M}} v_k(\zeta') \tau^k$. Thus the range of $t \widetilde{O}$ is closed in $B_{p',1/\mu}(\mathbb{R}^N)$. By virtue of Theorem 2 the map \widetilde{O} is an epimorphism.

COROLLARY. If $\mu(\xi', \tau_1, ..., \tau_{j-1}, 2\tau_j, \tau_{j+1}, ..., \tau_m) \ge C\mu(\xi)$ with a positive constant C for j = 1, 2, ..., m, then the trace mapping $\tilde{0} : B_{p,\mu}(\mathbb{R}^N) \ni u \rightarrow \{D_t^k u(x', 0)\} \in \prod_{|k| \le M} B_{p,\nu_{k,p'}}(\mathbb{R}^n)$ is an epimorphism.

PROOF. $B_{p,\mu}(\mathbb{R}^N) \subset B_{p,\nu}(\mathbb{R}^N)$ if and only if there exists a positive constant C

such that $v \leq C\mu$. Hence the condition $\mu(\xi', \tau_1, ..., 2\tau_j, ..., \tau_m) \geq C\mu(\xi)$ means that $u\left(\xi', \tau_1, ..., \frac{\tau_j}{2}, ..., \tau_m\right) / \mu \in L^{p'}(\Xi^N)$ for any $u \in B_{p', 1/\mu}(\mathbb{R}^N)$. Since the condition (2) of Theorem 3 is satisfied, the map \widetilde{O} is an epimorphism.

PROPOSITION 3. Let $\{f_k\}$ be an arbitrary element of $\prod_{|k| \leq M} B_{p,v_{k,p'}}(\mathbb{R}^n)$ and suppose for each k there exist a positive valued continuous function λ_k on Ξ^n and a slowly increasing continuous function Φ_k on Ξ^m such that

$$\mu(\xi', \lambda_k(\xi')\tau) \leq \lambda_k^{|k|+m/p'}(\xi')v_{k,p'}(\xi')\Phi_k(\tau).$$

Let $\psi \in \mathcal{D}(\mathbb{R}^m)$ such that $\psi = 1$ in a neighbourhood of 0. If we put

$$\hat{u}_{x'}(\xi',t) = \sum_{|k| \le M} \hat{f}_k(\xi') \frac{(it)^k}{k!} \psi(\lambda_k(\xi')t),$$

then $u \in B_{p,\mu}(\mathbb{R}^N)$ and $D_t^k u(x', 0) = f_k(x')$ for $|k| \leq M$.

PROOF. By the equations

$$\hat{u}(\xi) = \sum_{|k| \le M} \frac{(-i)^{|k|}}{k!} \hat{f}_k(\xi') D_\tau^k \int_{\Xi^m} \psi(\lambda_k t) e^{-i < t, \tau >} dt$$
$$= \sum_{|k| \le M} \frac{(-i)^{|k|}}{k!} \hat{f}_k(\xi') \frac{1}{\lambda_k^{|k|+m}} D_\tau^k \hat{\psi}\left(\frac{\tau}{\lambda_k}\right)$$

we have

$$\begin{split} &\int_{\mathbb{Z}^N} |\hat{u}|^p \mu^p d\xi \\ &\leq C_{|k| \leq M} \frac{1}{(k!)^p} \int_{\mathbb{Z}^n} |\hat{f}_k(\zeta')|^p \frac{d\zeta'}{\lambda_k^{p(|k|+m)-m}} \int_{\mathbb{Z}^m} |D_\tau^k \hat{\psi}(\tau)|^p \mu^p(\zeta', \lambda_k \tau) d\tau \\ &\leq C_{|k| \leq M} \frac{1}{(k!)^p} \int_{\mathbb{Z}^n} |\hat{f}_k(\zeta')|^p v_{k,p'}^p(\zeta') d\zeta' \int_{\mathbb{Z}^m} |D_\tau^k \hat{\psi}(\tau)|^p |\Phi_k(\tau)|^p d\tau < \infty. \end{split}$$

Thus $u \in B_{p,\mu}(\mathbb{R}^N)$ and clearly $D_t^k u(x', 0) = f_k(x')$ for $|k| \leq M$.

EXAMPLE. Let μ be written in the form

$$\mu(\xi) = \mu_1(\xi') + |\tau|^a \mu_2(\xi'),$$

where μ_1 and μ_2 are temperate weight functions defined in Ξ^n and a is a real number with a > m/p'. Let M be the largest integer such that M < a - m/p'. Then we have

$$v_{k,p'} \sim \mu_1^{1-(|k|+m/p')/a} \mu_2^{(|k|+m/p')/a}$$
 for $|k| \leq M$.

If we take $\lambda_k = (\mu_1/\mu_2)^{1/a}$ and $\Phi_k(\tau) = 1 + |\tau|^a$ for |k| < a - m/p', then

On the Trace Mappings for the Space $B_{p,\mu}(R^N)$

$$\mu(\xi', \lambda_k(\xi')\tau) \leq C\lambda_k^{|k|+m/p'}(\xi')v_{k,p'}(\xi')\Phi_k(\tau).$$

In fact, we have

$$\begin{aligned} \frac{1}{v_{k,p'}(\xi')} &= \left\{ \int_{\mathbb{Z}^m} \frac{|\tau^k|^{p'}}{(\mu_1(\xi') + |\tau|^a \mu_2(\xi'))^{p'}} d\tau \right\}^{1/p'} \\ &= \frac{1}{\mu_1^{1-(|k|+m/p')/a} \mu_2^{(|k|+m/p')/a}} \left\{ \int_{\mathbb{Z}^m} \frac{|\tau^k|^{p'}}{(1+|\tau|^a)^{p'}} d\tau \right\}^{1/p} \end{aligned}$$

and

$$\mu(\xi', \lambda_k(\xi')\tau) = \mu_1(\xi')(1+|\tau|^a) \sim \lambda_k^{|k|+m/p'}(\xi')\nu_{k,p'}(\xi')\Phi_k(\tau).$$

Then Proposition 3 is applicable to this case; that is, for any given $\bar{f} = \{f_k\} \in \prod_{k \in M} B_{p,v_{k,p'}}(\mathbb{R}^n)$ if we take

$$\hat{u}_{x'}(\xi',t) = \sum_{|k| \le M} \hat{f}_k(\xi') \frac{(it)^k}{k!} \psi\left(\left(\frac{\mu_1}{\mu_2}\right)^{1/a} t\right)$$

with $\psi \in \mathscr{D}(\mathbb{R}^m)$ such that $\psi = 1$ in a neighbourhood of 0, then $u \in B_{p,\mu}(\mathbb{R}^N)$ and $D_t^k u(x', 0) = f_k(x')$ for $|k| \leq M$.

5. The relation between trace mappings and other notions

Let us recall the concept of multiplication of distributions. Let $u, v \in \mathcal{D}'(\mathbb{R}^N)$. If the distributional limit $\lim_{j\to\infty} (u*\rho_j)v$ exists for every δ -sequence $\{\rho_j\}$ on \mathbb{R}^N , then the limit is uniquely defined and it is called the multiplicative product of u and v in the strict sense and denoted by $u \cdot v$ [7]. In this case the distributional limit $\lim_{j\to\infty} u(v*\rho_j)$ exists for every δ -sequence $\{\rho_j\}, \rho_j \in \mathcal{D}(\mathbb{R}^N)$ and $\lim_{j\to\infty} (u*\rho_j)v = \lim_{i\to\infty} u(v*\rho_j)$.

For any $\phi \in \mathscr{D}(\mathbb{R}^N)$ such that $\phi \ge 0$ and $\int_{\mathbb{R}^N} \phi \, dx = 1$ we put $\phi_{\varepsilon}(x) = \frac{1}{\varepsilon^N} \phi\left(\frac{x}{\varepsilon}\right)$ for small $\varepsilon > 0$. If the distributional limit $\lim_{\varepsilon \downarrow 0} (u * \phi_{\varepsilon})v$ exists for any ϕ and does not depend on the choice of ϕ , then the limit is called the multiplicative product of u and v and denoted by uv. The product uv is also defined as the distributional limit of $(u*\rho_j)v$ for any restricted δ -sequence $\{\rho_j\}$, which is a sequence $\{\rho_j\}$, $\rho_j \in \mathscr{D}(\mathbb{R}^N)$, such that (i) $\sup \rho_j \to \{0\}$ as $j \to \infty$, (ii) $\int_{\mathbb{R}^N} \rho_j dx \to 1$ as $j \to \infty$ and (iii) $\int_{\mathbb{R}^N} |x|^{|k|} |D^k \rho_j| dx \le M_k$, M_k being a constant independent of ρ_j [6, p. 91].

Let $u \in \mathscr{D}'(\mathbb{R}^n)$ and $\psi \in \mathscr{D}(\mathbb{R}^n_{x'})$. By $\langle u, \psi \rangle_{x'}$ we shall denote the distribution $\in \mathscr{D}'(\mathbb{R}^m_t)$ defined by

$$\mathscr{D}(R_t^m) \ni \chi \longrightarrow \langle u, \psi \otimes \chi \rangle$$

and similarly, for any $\chi \in \mathscr{D}(\mathbb{R}^n_t)$ we shall denote by $\langle u, \chi \rangle_t$ the distribution $\in \mathscr{D}'(\mathbb{R}^n_{x'})$ defined by

$$\mathscr{D}(R_{x'}^n) \ni \psi \longrightarrow \langle u, \psi \otimes \chi \rangle.$$

Let $w \in \mathscr{D}'(\mathbb{R}_t^m)$ and $u \in \mathscr{D}'(\mathbb{R}^N)$. If the product $(1 \otimes w)u$ exists, then it is called the partial product of w and u and denoted by wu [3, p. 170]. Let δ be the Dirac measure on \mathbb{R}_t^m . Then the partial product δu exists if and only if $\delta < u, \psi >_{x'}$ exists in $\mathscr{D}'(\mathbb{R}_t^m)$ for any $\psi \in \mathscr{D}(\mathbb{R}_{x'}^n)$. In this case $< \delta u, \psi >_{x'} = \delta < u$, $\psi >_{x'}$. Also δu is defined as the unique limit $\lim_{j \to \infty} (\delta * \rho_j)u = \lim_{j \to \infty} \rho_j u$ or equivalently $\lim_{j \to \infty} \delta(u *_t \rho_j)$ for any restricted δ -sequence $\{\rho_j\}, \rho_j \in \mathscr{D}(\mathbb{R}_t^m)$, where $*_t$ means the partial convolution with respect to the variable t.

In accordance with S. Łojasiewicz [5, p. 15] we say that $u \in \mathscr{D}'(\mathbb{R}^n)$ has the section $\in \mathscr{D}'(\mathbb{R}^n)$ for t=0 if the distributional limit $\lim_{e \neq 0} u(x', \epsilon t)$ exists and does not depend on t, namely, $\lim_{e \neq 0} < u$, $\phi_{\epsilon} >_t$ exists in $\mathscr{D}'(\mathbb{R}^n_{x'})$ for any $\phi \in \mathscr{D}(\mathbb{R}^m_t)$ with $\phi(t) \ge 0$, $\int \phi(t) dt = 1$, and it is independent of ϕ . By the equation < u, $\phi_{\epsilon} >_t \otimes \delta = \delta(u *_t \check{\phi}_{\epsilon})$ we see that u has the section for t=0 if and only if the partial product δu exists [4, p. 406]. In this case, if $\alpha \in \mathscr{D}'(\mathbb{R}^n_{x'})$ is the section of u, then $\alpha = \lim_{\epsilon \neq 0} < u$, $\phi_{\epsilon} >_t$, $\lim_{\epsilon \neq 0} u(x', \epsilon t) = \alpha \otimes 1_t$ and $\delta u = \alpha \otimes \delta$.

If $\lim_{j\to\infty} \langle u, \rho_j \rangle_t$ exists in $\mathscr{D}'(\mathbb{R}^n_x)$ for any δ -sequence $\{\rho_j\}, \rho_j \in \mathscr{D}(\mathbb{R}^m_t)$, we shall say that u has the section for t=0 in the strict sense. Then, by the equation $\langle u, \rho_j \rangle_t \otimes \delta = \delta(u*_t \check{\rho}_j)$ we see that the partial product $\delta \cdot u$ exists if and only if u has the section for t=0 in the strict sense.

THEOREM 4. For the space $B_{p,\mu}(\mathbb{R}^N)$ the following statements are equivalent:

(1) The trace mapping $B_{p,\mu}(\mathbb{R}^N) \ni u \rightarrow u(x', 0) \in \mathscr{D}'(\mathbb{R}^n)$ is defined.

(2) The section for t=0 exists for every $u \in B_{p,\mu}(\mathbb{R}^N)$.

(2)' The condition (2) holds in the strict sense.

(3) The partial product δu exists for every $u \in B_{p,\mu}(\mathbb{R}^N)$, where δ is the Dirac measure in \mathbb{R}_t^m .

(3)' The partial product $\delta \cdot u$ exists for every $u \in B_{p,u}(\mathbb{R}^N)$.

(4) The distributional limit $\lim_{j\to\infty} (1\otimes\delta)(u*\rho_j)$ exists for a fixed restricted δ -sequence $\{\rho_j\}, \rho_j \in \mathcal{D}(\mathbb{R}^N)$, for every $u \in B_{p,\mu}(\mathbb{R}^N)$.

(5) The distributional limit $\lim_{j\to\infty} \rho_j u$ exists for a fixed restricted δ -sequence $\{\rho_j\}, \rho_j \in \mathscr{D}(\mathbb{R}^m_t)$, for every $u \in B_{p,\mu}(\mathbb{R}^N)$.

PROOF. We have already noted the equivalences $(2)\Leftrightarrow(3)$ and $(2)'\Leftrightarrow(3)'$. The implications $(3)'\Rightarrow(3), (3)'\Rightarrow(4), (5)$ are trivial. It suffices to show the implications $(1)\Rightarrow(3)', (4)\Rightarrow(1)$ and $(5)\Rightarrow(1)$.

(1) \Rightarrow (3)'. Suppose (1) holds. Then $\psi \otimes \delta \in B_{p',1/\mu}(\mathbb{R}^N)$ for every $\psi \in \mathscr{D}(\mathbb{R}^n)$.

Let $u \in B_{p,\mu}(\mathbb{R}^N)$. Then $u * \rho_j$ converges to u in $B_{p,\mu}(\mathbb{R}^N)$ for any δ -sequence $\{\rho_j\}$, $\rho_j \in \mathcal{D}(\mathbb{R}^N)$. In fact, we have

$$\int_{\mathbb{R}^N} |(u*\rho_j - u)^{\wedge}|^p \mu^p d\xi = \int_{\mathbb{R}^N} |\hat{u}(\hat{\rho}_j - 1)|^p \mu^p d\xi$$
$$\leq \sup |\hat{\rho}_j - 1|^p \int_{\mathbb{R}^N} |\hat{u}|^p \mu^p d\xi$$

and $\hat{\rho}_j$ converges to 1 boundedly and uniformly on every compact subset of Ξ^N when $j \to \infty$. For any $\phi \in \mathscr{D}(\mathbb{R}^N)$ we have

$$<(1\otimes\delta)(u*\rho_j), \phi >_{\mathfrak{g}',\mathfrak{g}} = < u*\rho_j, \phi(x',0)\otimes\delta >_{B_{p,\mu},B_{p',1/\mu}},$$

which implies the existence of $\lim_{j\to\infty} (1\otimes\delta)(u*\rho_j)$. Thus the partial product $\delta \cdot u$ exists.

(4) \Rightarrow (1). Let $\{\rho_j\}, \rho_j \in \mathcal{D}(\mathbb{R}^N)$, be a fixed restricted δ -sequence. For each *j* the map

$$B_{p,\mu}(R^N) \ni u \longrightarrow (1 \otimes \delta)(u * \rho_j) = (u * \rho_j)(x', 0) \otimes \delta \in \mathcal{D}'(R^N)$$

is continuous, for the map $u \to u * \rho_j$ is continuous from $\mathscr{D}'(\mathbb{R}^N)$ into $\mathscr{E}(\mathbb{R}^N)$. By the Banach-Steinhaus theorem the map

$$B_{p,\mu}(\mathbb{R}^N) \ni u \longrightarrow \lim_{j \to \infty} (1 \otimes \delta)(u * \rho_j) \in \mathcal{D}'(\mathbb{R}^N)$$

is also continuous. Thus, for any $\phi \in \mathscr{D}(\mathbb{R}^N)$ there exists $w_{\phi} \in B_{p',1/\mu}(\mathbb{R}^N)$ such that

$$<\!\!\lim_{j\to\infty}(1\otimes\delta)(u*\rho_j),\,\phi\!>_{\mathscr{D}',\mathscr{D}}=<\!\!u,\,w_\phi\!>_{B_{p',\mu},B_{p',1/\mu}}\!\!.$$

If we take $u = \alpha \in \mathcal{D}(\mathbb{R}^N)$, then

$$\langle \alpha \delta, \phi \rangle_{g',g} = \langle \alpha, \phi(x',0) \otimes \delta \rangle = \langle \alpha, w_{\phi} \rangle.$$

Since $\mathscr{D}(\mathbb{R}^N)$ is dense in $B_{p,\mu}(\mathbb{R}^N)$, $\phi(x', 0) \otimes \delta = w_{\phi} \in B_{p',1/\mu}(\mathbb{R}^N)$, which means that the trace mapping is defined.

(5)=(1). Let $\{\rho_j\}, \rho_j \in \mathcal{D}(\mathbb{R}^m_t)$, be a fixed restricted δ -sequence. Then the map

$$B_{p,u}(\mathbb{R}^N) \ni u \longrightarrow \rho_i u \in \mathscr{D}'(\mathbb{R}^N)$$

is continuous. By the Banach-Steinhaus theorem the map

$$B_{p,\mu}(\mathbb{R}^N) \ni u \longrightarrow \lim_{j \to \infty} \rho_j u \in \mathscr{D}'(\mathbb{R}^N)$$

is continuous, and $\lim_{j\to\infty} \rho_j u = u(x', 0) \otimes \delta$ for any $u \in \mathscr{D}(\mathbb{R}^N)$. Thus the trace map-

ping is defined.

We suppose $1/\mu(0, \tau) \in L^{p'}(\Xi^m)$ and put $v_{p'}(\xi') = \left\{ \int_{\Xi^m} \frac{1}{\mu^{p'}(\xi)} d\tau \right\}^{-1/p'}$. Let $t_0 \in R^m$ and $u \in \mathscr{D}(R^N)$. Then $\tau_{-t_0} u \in \mathscr{D}(R^N)$ and $(\tau_{-t_0} u)^{\wedge} = e^{i < t_0, \tau > u}$. In the proof of Proposition 1 we have shown

$$\|u(\cdot, t_0)\|_{p,v_{p'}} \leq \left(\frac{1}{2\pi}\right)^{m/p'} \|u\|_{p,\mu}.$$

Thus the trace $u(\cdot, t_0)$ on $t=t_0$ belongs to the space $B_{p,v_p}(R^n)$ for any $u \in B_{p,\mu}(R^N)$. For any $u \in B_{p,\mu}(R^N)$ there exists a sequence $\{u_j\}, u_j \in \mathcal{D}(R^N)$ such that $u = \lim_{n \to \infty} u_j$ in $B_{p,\mu}(R^N)$ and we have

$$\|u_{j}(\cdot, t_{0}) - u(\cdot, t_{0})\|_{p, v_{p'}} \leq \left(\frac{1}{2\pi}\right)^{m/p'} \|u_{j} - u\|_{p, \mu}$$

Thus $u_j(\cdot, t_0)$ converges to $u(\cdot, t_0)$ in $B_{p,v_p}(R^n)$ uniformly with respect to t_0 . Since $t \to u_j(\cdot, t)$ are $B_{p,v_p}(R^n)$ -valued continuous functions, $u(\cdot, t)$ may be considered as a $B_{p,v_p}(R^n)$ -valued continuous function $\mathbf{u}(t)$ of t. Thus we have the following

PROPOSITION 4. Suppose $1/\mu(0, \tau) \in L^{p'}(\Xi^m)$. Then every $u \in B_{p,\mu}(\mathbb{R}^N)$ is identified with the $B_{p,\nu_{p'}}(\mathbb{R}^n)$ -valued continuous function $\mathbf{u}(t)$, where $\nu_{p'}(\xi') = \left\{ \int_{\Xi^m} \frac{1}{\mu^{p'}(\xi', \tau)} d\tau \right\}^{-1/p'}$

References

- [1] L. Hörmander, Linear partial differential operators, Springer, 1969.
- [2] M. Itano, On a trace theorem for the space $H^{\mu}(\mathbb{R}^{N})$, J. Sci. Hiroshima Univ. Ser. A-I **30** (1966), 11-29.
- [3] —, On the theory of the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 151–181.
- [4] —, Note on the canonical extensions and the boundary values for distributions in the space H^{*}, Hiroshima Math. J. 1 (1971), 405–425.
- [5] S. Łojasiewicz, Sur la fixation des variables dans une distribution, Studia Math. 17 (1958), 1-64.
- [6] R. Shiraishi, On the value of distributions at a point and the multiplicative products, J. Sci. Hiroshima Univ. Ser. A-I 31 (1967), 89–104.
- [7] and M. Itano, On the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I 28 (1964), 223–235.
- [8] L.R. Volevich and B.P. Paneyakh, Certain spaces of generalized functions and embedding theorems, Uspehi Mat. Nauk 121 (1965), 3-74; Russian Math. Surveys 20 (1965), 1-73.

Faculty of Integrated Arts and Sciences, Hiroshima University