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Introduction

Beside the original definition due to Kusunoki [3], there are several differ-
ent ways to define semiexact canonical differentials (see Kusunoki [4, 5], Mori
[9]; cf. also Ahlfors-Sario [2], Mizumoto [8] and Yoshida [13]). Above all,
the following characterization of semiexact canonical differentials also by Kusu-
noki ([4]) is remarkable: Let R be an open Riemann surface and ¢ a mero-
morphic semiexact differential on R. Then ¢ is a semiexact canonical differential
if and only if there is a canonical region R’ on R such that (i) the real part du of
¢ is exact and square integrable on R— R’, and (ii) for any square integrable real
harmonic semiexact differential @ on R—R’ the mixed Dirichlet integral (du,
0*)g_g Oof du and w* over R—R’ is equal to the contour integral S uw.

érR’
A similar characterization is obtained for harmonic differentials with I',-

behavior in the sense of Yoshida ([13], in particular, pp. 186-187). Since, as is
well known (cf. [S], [9]), semiexact canonical differentials correspond to one of
the special extreme cases, the case I', =TI, (the space of real harmonic measures
on R), the results in [13] is certainly a generalization of Kusunoki’s characteri-
zation. On the other hand, we considered in [11] spaces of (complex) harmonic
semiexact differentials with certain simple properties and called them behavior
spaces. We also showed that we can use such a behavior space A, to describe a
more general boundary behavior, A,-behavior, of analytic (meromorphic) differ-
entials.

The aim of the present article is to show some properties of behavior spaces.
It is easy to see that we can apply the very same definition of A,-behavior not only
to analytic differentials but also to C!-differentials (defined near the ideal bound-
ary of R). See Definition 3. We shall generalize some of Kusunoki’s charac-
terizations of semiexact canonical differentials to the case of C!-differentials with
Agy-behavior. Then we shall introduce an equivalence relation among behavior
spaces on R. We can easily see that A,- and A,-behaviors are the same if and
only if A, is equivalent to A,. In other words, Ay-behavior is determined by the
equivalence class of A,. As an immediate consequence of this, we know that
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generalized singularities introduced in [12] are also divided into equivalence
classes.

We shall also consider transformations of behavior spaces and show that
every transformation changes a behavior space into another behavior space.
Furthermore, we prove that two behavior spaces are equivalent if and only if any
one is the image of the other under some transformation.

Such consideration actually offers some advantages to us. For instance, we
can choose the most suitable behavior space(s) among the equivalence class(es)
in accordance with the nature of individual problem which we are concerned with.

1. Let R be an open Riemann surface of genus g (< ), J the set {1, 2,...,
g}. Take a fixed canonical exhaustion #={R,}7; of R. We denote by g, the
genus of R, and set J,={l, 2,...,g,}. Let S(R)={A4;, B;},,, be a canonical
homology basis of R modulo dividing cycles such that (i) {4;, B;};,, is a canon-
ical homology basis of R, modulo its border, and (ii) A;, B;j=R—R, for every
jeJ—J, (cf. [2], p. 72). For convenience’ sake we set Ry=¢ and Jo=¢d.

For a Lebesgue measurable complex differential 1 on R we denote by 1 the
complex conjugate of A and by A* the conjugate differential of A. Let A=A(R)
be the real Hilbert space of square integrable complex differentials on R with the

inner product <4, /12>=Regg A AA%, Ay, AeA. The norm of AeAd is
R

given by |[A] = \/'</1, A>. We set A,=A,(R)={1€ A|A is harmonic on R} and
Apse=Apso(R)={L € A})A is semiexact}. We also set AN =ADR)={Aea|3f
€ C¥(R), 3f,e C¥R) such that df=A and |df—df,|—0, n—>o0}. Finally let
Al=AL(R) be the totality of closed C!-differentials on R and set Al,=AL(R)=
{4 € Al|]A=0 outside a compact set on R}.

Let L be a straight line in the complex plane C which passes through the
coordinate origin. For brevity, we shall refer to such an L as a linein C. We
denote by L the complex conjugate of L: L={zeC|ZzeL}. For z,, z,eC we
write z, =z, mod L to express that z, —z, belongs to L.

DeriNiTION 1 ([7], [11]). A (closed) subspace Ay=Ay(R, L) of A, is
called a behavior space associated with £ ={L;};.;, a family of lines in C, if

(i) A = A [i.e, A, = Ay @ iAE],
(ii) g Ao = Sa o =0 modL;, jel, for every lye Ay,
45 J
where A§ denotes the orthogonal complement of A, in A,.

We denote by & the set of all behavior spaces on R.

DerINITION 2 ([11]). Let L be a line in C. Two behavior spaces A, and
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Ap associated with & ={L;};.; and &' ={L}},.; respectively are called dual to
each other with respect to L(or L-dual) if

1°) < 2o Ag* > + i < Ao, idg* > =0 modL for any pair (1o, Ap) € Ay X
Aps

2°) LjpL; ={zeC|z =z;z}, z;eL;, z;eL} = L for every jeJ
are satisfied.

For the sake of simplicity, we shall henceforth consider mainly the case L
=R, the real axis. Then it is obvious that a behavior space A, and its complex

conjugate Ao={ie A,)1e Ay} are mutually R-dual (cf. [7], [11]). Conversely
we have

ProrosITION 1. Let Ay and Ay be two behavior spaces which are R-dual
to one another. Then Ay= A,.

Proor. Since L=R, condition 1°) in Definition 2 means <Ay, ilg*> =0
for any pair (A, Ap) € Ag x Ay. Therefore Agcidg*t=A,. Similarly we have
Ay Ay Hence Ay= A,, which is to be proved.

COROLLARY. For any behavior space A, there exists a unique behavior
space Ay (= Ag) which is dual to Ay with respect to R.

More generally we have

PrROPOSITION 1’. Let Ly={zeC|z=te'%, teR} be a line in C, 8€[0, n).
Then two behavior spaces Ay and Ay are Ly-dual to each other if and only if
Apy=e94,.

The following proposition will be proved in sec. 4.
ProrosiTION 2. In Definition 2 condition 1°) implies condition 2°).

2. Fix an R,e®, n>1 and set V=R—R, where R, is the closure of R,.
We denote by V, (k=1, 2,..., k,) the components of V. Let ¢,  be semiexact
C!-differentials on V. Then, because of semiexactness of ¢, there is a single-
valued C2-function @ on V—\U,;_, (4, U B;)) such that d®=¢ on V. The func-
tion @ consists of k, functions @, which are separately defined on V,—\U ¢;— s.(4;
UB)NnV, k=1,2,..,«, Furthermore, each @, is determined only up to an
additive constant. Nevertheless the quantity

Saxm Py = ::lgaxmﬂl// (m > n)

is well defined, since ¥ is also semiexact. We shall call such @ a primitive func-
tion of ¢ on V.
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For later use we shall state the following lemma without proof (cf. [1], [11]).

LEMMA. Let ¢,  be semiexact Cl-differentials on V=R—R,(n>0).
Then for every m>n we have

<@, iY*>g g,

i, ol o5 eim z (1,005 -0,90,9)

jetJm=JIn
@ being a primitive function of ¢ on V.

3. Let Ag=A4y(R, £) be a behavior space on R associated with ¥ ={L;} ;.
We shall first prove the following

THEOREM 1.*) Let R,e# and V=R—R,. Let ¢ be a semiexact C!-dif-
ferential on V such that |¢|, <o and S (p._g ©=0 modL; forall jeJ—J,.

Let & be a primitive function of ¢ on A Then the following three conditions
are equivalent to one another.

(1) There exist Ag€ Ag, Ao € ALY such that o =2Ag+ Ao 0n V.

(I) <g,iv*>,=—Im\ dw for any weA,.
av
(IIT) limIm Sa dw =0 for every we A,.
m—» 0 Rm

Proor. Before carrying out the proof, we recall that A, < A4,,,.
First we shall show that (II)<>(III). Let m>n. Then by Lemma we have

<@, iw*>ypg,,

—Img tDcT)—ImS o5 +Im S (S (pS a—g (pg 5)
ov ORm jelm—JIn\JA; JB; By Aj

The last term on the right vanishes, since
Squ, =0, Sﬁ;:“’ =0 modL, jeJ—J,

By letting m tend to infinity, we obtain the equivalence (IT)<>(III).

Next we shall prove that (I) implies (III). Suppose that p=1,+41,, on V,
Ao€Ag, Apge AL, Set Yy=Ay+2,0 on R. Clearly y is semiexact. Let ¥ be a
primitive function of ¥ on V. For any m (>n) and w € A, we have

ImS 5 = ImS 2
OR

ORm

*) cf. Theorem 4 in sec. 9.
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= - <Y, iw*>xm +1m > (g,,j'l’g,,ja _Ssj"bSAj5>'

JeTm

Since Y € Ag+ ALY and iw* €iA¥=A§, the term <y, iw*>p tends to zero as

m—oo. The period sum vanishes for every m, because SAJ.!//= SAJ,)LOEO, gAjw

=0 modL;, jeJ. Thus we have proved (I)=(III). & > !
Finally we assume (III). Since Sayq)=0, we can extend ¢|, to a closed C!-

differential on the whole of R (cf. e.g., [10], [13]), which is denoted by ¢. Be-
cause of the semiexactness of ¢, p=d® can be assumed to be exact on R—V
=R, (see Remark below). Take an arbitrary we 4,. Then, since the A;- and
Bj-periods of ¢ and w vanish mod L;, je J—J,, Lemma yields

<P,iv*>p = <@, i0*>p + <@, io0*>g g

—Img tﬁ(’u‘—lmg oo +Im Y (S (pg w—g gog a)
R, Jo(Rm—Rn) jeJm—JIn\JA; JB; B; JA;

= — ImS 0.
ORm

On letting m— oo, we know that ¢ is orthogonal to iA§=A4§. (Note that ¢
belongs to A.) Now the Dirichlet principle (cf. Lemma S in [11]; cf. also [2])
implies the existence of differentials Jq€ Ag, A€ ALY such that ¢=1y+7,
holds on R. This completes the proof of (III)=-(I). q.e.d.

REMARK. We could dispence with the exactness of ¢ on R,. Indeed, if
¢ is not exact on R,, we take a regular analytic differential ¢, with A,-behavior

(see [11], Theorem 2) such that Sﬁ!(¢_¢°)50 modL;, jeJ. Applying a rea-

soning similar to that in the above pjroof for ¢ — ¢, instead of @, we know that
®— @y, and hence ¢ itself, has the property stated in (I).

4. In [11] we defined A,-behavior for only analytic (meromorphic) differ-
entials [defined near the ideal boundary of R]. Similarly, I',-behavior in
Yoshida’s sense ([13]) was defined for harmonic functions only. However, it
is easy to see that the same definition can be applied to any C!-differential (cf.
[6]). Namely, we have

DEerINITION 3. A C!-differential ¢ defined near the ideal boundary of R
is said to have Ay-behavior if there exist Ay € Ay, o€ ALY and R, e # such that
@=Ay+4 on R—R,.

A characterization of C!-differentials with A,-behavior is given by Theorem
1, which is considered a generalization of Kusunoki’s results ([4]). See also [13].
Particularly we have
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ProposiTION 3 (cf. [13], p. 187). Let ¢ be a semiexact C'-differential on
V=R—-R,, R, € R, such thatS (p_S ¢=0 modL;, jeJ—J, Supposethatq

has Ay-behavior. Then ¢ ad;mts a representatton Q@=Ao+ Aoy A€ Ay, Ao €
ALY on the whole of V.

Now the following proposition was proved in [11].

PrOPOSITION 4. Let ¢ be a regular analytic differential on R which has
Ag-behavior. If there is a family of lines in C, Z= {f, i}jess Such that S Qo=
(p 0 mod L for every jeJ, then ¢ should be identically zero [L =L; for all

but a finite number of je J].

It should be noted, however, that a similar theorem does not hold for har-
monic differentials (and a fortiori C!-differentials) with A,-behavior. In fact, we
have the following well known

PROPOSITION 5. There exist harmonic semiexact differentials w,,, wg, on
R such that

(i) for some dv', dv"eAly and Ny, Ajo€ ALY w4, =dv' + 1y, wg,=dv"+

Aeo on R (in particular, w,, and wg, have Ay-behavior),

(ii) S wA,=S ij=5jk,S wAJ=S wg, =0, j, kelJ.
A By By Ak

PROOF. Omitted (cf,, e.g., [2], [5]).

PROPOSITION 6. Let A, be a behavior space associated with £ ={L;};,
and z; be (non-zero) complex numbers such that z;=0 modL;, jeJ. Then
ijAj’ ijB,EAO-

Proor. Take a sufficiently large integer n (>0) and a primitive function
Q,, of w,, on R—R,. Since z;w,, has A,-behavior, we have by Theorem 1

< ijAj’ ilg > R—R, S Im[szaR QAJIO:I
for any A€ A4,. On the other hand, Lemma yields
< ZjWy4, iA§ > g, = Im[szBJIOJ - Im[zjgax,. QAJZOJ.

It follows that <z;w,, iA§> =0 for any A€ A,. Therefore z;w,, € iA§* =A,.
Similarly we have z j@s, € Ao. q.e.d.

PROOF OF PROPOSITION 2. Let L=L, Let Ay,=A,(R, ¥) and A,=
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Ao(R, £') be behavior spaces associated with & ={L;};,; and &' ={L’};., re-
spectively, and assume that they satisfy condition 1°). . Then by Proposition 1’
Ay=e°A,. If z; is a non-zero complex number such that z;=0 mod L;, then
z;0,, is an element of A, by Proposition 6. Hence ez, €A, so that
OaéSAjei”Z,cﬁAj:e“’EjEO mod L. Therefore L;=e®L;, jeJ. This implies 2°).

q.e.d.

Theorem 1 also suggests that A,-behavior actually defines boundary be-
havior of differentials. Namely, if A4, and A, are two behavior spaces which
coincide (yet in an ambiguous sense) near the ideal boundary, then A,- and A,-
behaviors will be the same; a differential with A,-behavior will have A,-behavior
and vice versa. Later we shall see that this is really true.

5. For our purposes, it will be convenient to introduce the following

DEFINITION 4. Two behavior spaces A, and A, are said to be equivalent
(Ao~ Ay) if and only if conditions (i), (i) below are fulfilled:

(i) every Ay Ay has A,-behavior,
(ii) every X, € Ay has Ag-behavior.

The relation ~ obviously defines an equivalence relation in £. Also, it is
an immediate consequence of the definition that two behavior spaces define the
same boundary behavior if and only if they are equivalent to each other. In other
words, there is a one-to-one correspondence between #/~ and the family £,
of boundary behaviors which are defined by means of behavior spaces.

Now let Ag=A¢(R, L)e B, ¥={L;};;- Let J* be a finite subset of J and
£*={L%¥},., a family of lines in C. We set

~ ’ L;, jedJ — J*,
L;=

L%,  jeJ*
and £={L;},,. We then define

A has A,-behavior and l

TJ_gttAo = A € A h - .
1 SAESAEOmodLj,jeJI
4; B,

Later we shall prove that every element of T%.A, can be obtained from some
element of A4, by subtracting a suitable finite linear combination of w,;, and wg,
(Proposition 5) with complex coefficients. See Corollary 2 to Theorem 3. We
shall call such a TZ. a transformation determined by J* and #*. In fact, we
shall soon prove that TZ.A, belongs to & so long as A, does. We set

I ={T=T%.|J* is a finite subset of J and #* is a family of lines in C}
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and
BLJ*, L*] = {Ay = Ao(R, L)€ Z|L; = L%, je J*}.

We state a theorem whose proof is given in the next section.
THEROEM 2. Every TL.€J) maps & onto B[J*, L*].

6. PROOF OF THEOREM 2. We set Ay=T%.A,, Ag€ B. By the definition
of TZ. it is obvious that A, is contained in A,, and that S IESB,ZO_O
mod L;, jeJ, for every 1oe A,. Therefore we only need to show the equality
iA¥=A}%. (Note that this implies the closedness of A,.) 3

In the first place, let @’ and w” be any two elements of A,. Then there are
Aoy M€ Ags Aoy Ao € A and an R, € 2 such that

o =2+ Ay @ =2+ Ay on R-—R,

Making use of Lemma twice, we have for m>n

<w,io"*>p = ——ImS Q" +Im ¥ (S a)’g " —-S w’S c'u'”)
m ORm jelm\J4; B;j B, Aj

= <o + Aeo, i(Ag + A20)* >k,

i 5 (el L ) e g (e, =, e, 2)

= <Ao + Apo, i(Ag + A50)* >,

where Q' is a primitive function of @’ on R—R,. But the last term tends to zero
as m— oo, for A, is a behavior space (hence iA¥=A}) and any two of A,, ALY,
AD* are orthogonal to each other. Thus we have proved iA¥ < A3.

Assume, conversely, that Ae 4, is orthogonal to A,. We have to show a)

the semiexactness of il*, ) S A**S i2*¥*=0 modL j€J and y) iA* has A,-

behavior. To prove a), we setjA,,,,,—F wm+ il wm, Where Iy, is the space of real
harmonic measures on R (see [2], p. 294). It is easily seen that A,,=AfL (cf.
[11]). Due to this property, we have for any du,, € A,, and w € Ay (= A,,,),

Img Upm® = <duy,, i0*> g —0 (m — ).
ORm

Now Theorem 1 yields that du,, has Ay -behavior. Since the period conditions
S duy, = S du,,=0 mod L;, jeJ, are trivially satisfied, we know that du,,, € A,
agd hence A,,,,,CA0 Consequently A¥Lc A% =A,,, and this proves ).

Next let w,; be the differential constructed in Proposition 5: w,,=dv’+ 1,

dv' e AL, }JoeA“’ The differential z;0,, belongs to A, for every complex
number z;, z;=0 mod f,j (cf. Proposition 6). Because i1* has been known to
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be semiexact, we can apply Lemma to i2* and z;w,, and obtain
0= <1, z;0, > = < ¥ z;dv"* >

= — 7 * dv’ — * dv’ = 5 *
Re{:zjk}e:.l SA;;A SBkdU SB;‘A SAudv ):l Re<zJSBjA >

Therefore we see that S il*=0 mod L j- Similarly we have S i2*=0 mod Ej.

We have proved B). > Y

Finally we shall prove y). Take an arbitrary @ in A,. By means of Prop-
osition 5 we see that there are & e A, due AL, and A, €AY such that d=w
+du+4,0n R. Let @ be a primitive function of iA* on R—R,, n being a suffi-

ciently large integer. Then, by Lemma, for m>n we have

i 05— <itwrsg +re 3 ([ 2] 5 #{ )
oRm Aj B; Bj Aj

jedm

= — <A, ®—du—Jo>g, +Re ¥ (S A*SB @ —duw
Ay i

j€lm
- SB;l*SAJ(d) a du))

<i,du>g —Re ¥ (S A*S a—g /1*S d_u)+s,,,,
Aj B; Bj Aj

jelm

where lim,,, . ¢,=0. A further use of Lemma implies
Img Po = <A du>p — <A*, du*>p + &, =&,
oRm

Theorem 1 now allows us to conclude that d® =il* has A,-behavior. We have
thus proved that TL.% c Z[J*, £*].

Finally let A,e #[J*, #*]. Then it is easy to see that T2 A,e # and
TL.(T4Ay)=A,. This completes the proof of Theorem 2.

COROLLARY. If Aye B and Te T, then TAy~ Ay.

7. We shall now define the product of two transformations. Suppose that

T,=T _g‘. is a transformation determined by J¥ and £¥={L%}; k=1,2. Then
k
the product T,oT, of T, and T, is defined as a transformation T%. determined

by J*=Jf U JF and ¥*={L%¥},,, where
Ll*l if jeJl—Jz,
L -
* =

L%  otherwise.

The transformation determined by J§=¢ and any #* gives the identity (neu-
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tral element) with respect to the product. We note that the product defined above
is non-commutative. Indeed, T,oTy#T,T, if J¥nJ¥#¢ and L% #L¥, for
some jeJ¥nJ¥, for example. Since the associative law T3o(T,0Ty)=(T3°T),)
oT,, T, € 7, is obviously satisfied, 7 becomes a monoid which operates on B.

Now we shall prove

THEOREM 3. Two behavior spaces A, and A, are equivalent if and only
if Ay=TA, for some Te T

Proor. The if part is obvious (cf. Corollary to Theorem 2). We shall now
prove the only if part.

Let Ag=Ao(R, £), £={L;};; and Ao=A(R, Z), Z={L}};;. Letw,,
and wg, (j € J) be the differentials constructed in Proposition 5. If &}, #; are non-
zero complex numbers such that {;=#;=0 modL;, and [{;|<(2/[w,,I)7", In,l
<(2/||wg, )71, j € J, then the series

w = Z (5,'60,4, + 'ljwu,)
JjelJ

is convergent and belongs to A,. Furthermore, S w=§j;é0,g w=n;#0 for
Ay B

every jelJ.
By our assumption @ has A,-behavior and therefore there are differentials
Aoe Ay, Ao ALY such that w=1y,+1,, outside some R,. Hence for jeJ—

Jw \4 /TO 4 w are non-zero complex numbers which are =0 mod L; as well as

=0 mod L Consequently we have L =L, for every jeJ—J,.

Now the set J¥*={jeJ|L; #L i} is a ﬁmte subset of J. If we set T=T§,
then we can easily verify that TA0=/TO. In fact, the inclusion TA,> A, is ob-
vious. To prove the converse inclusion relation, let A be any element of TA,.
By the definition of TA,, A has Ay-behavior. Since A, is equivalent to A,, we
see that A has A,-behavior. Therefore there are e Ay, i.,€ ALY for which
A=1{+1., outside some R,,.

If we set ’=A—1}, A’ is harmonic on R and is equal to i,, on R—R,,. Fur-

thermore, 5 M= S A'=0 mod L; for jeJ,, because S 1=S A=0 mod L;,
Aj B;j

Aj B;
jeJ. We can choose complex numbers x;, y;, x;=y;=0 mod LJ, Jj €Jp so that

A=A - Z (xij, + .ijB_,)
Jjedm

has vanishing A4;- and Bj-periods, jeJ,. Without loss of generality, we may
assume that X, (x;0,,+y;0p)=2%,, on R—R,, where 1,,€ AL (cf. Prop-
osition 5). Then A” is a harmonic semiexact differential on R such that 1”=217,
outside R,, A%,eAY. It follows that A” is identically zero on R. Since
X0, y;00p € Ay, we now conclude that A=2'+;=3 ., (x;04,+y;05)+X
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belongs to Aj. g.e.d.

COROLLARY 1. There is a one-to-one correspondence between %, and
2|7 .

COROLLARY 2. Let Age & and Te T . Then for every 1€ TA, there exist
Ao€ Ay and x;, y; € C such that

(i) x;=y; =0 for all but a finite number of jeJ,
(ii) ).=}.0_ Z(xijj+ijBj).
Jjed

Proor. Since TA, is equivalent to A,, there is a transformation T'e I
such that A;=T'(TA,). Therefore every element A of TA, can be written as

A=y — E’J(ij"f + y;0p)

with 4,e 4, and xj, y;€C, where x;=y;=0 except for a finite number of jeJ.
q.e.d.

8. A similar argument as above shows the following

ProposITION 7. Suppose that Ay, Age # are dual to each other with
respect to a line Lin C and T=T%.e 7. Let T’ be another transformation de-
termined by J* and £*' ={L¥|L}" is a line in C such that L¥-L¥=L, jeJ}.
Then TA, and T' Ay are dual to each other with respect to the line L.

For an open set DcR, let «/(D) be the family of analytic differentials on D.
Let P be a regular partition of the ideal boundary of R and set (P)/ o ,={¢p

eZ(R—R)|¢ is (P)semiexact and S ('DES ¢=0 modL;, jeJ—J,}. We
Aj B;j

identify two elements ¢, ¢, in \Uj-,(P)«/ », When the difference ¢, —¢, has
Ao-behavior. Each equivalence class is called a (P)A,-singularity (see [12]).

As an easy consequence of Definition 4 we have

PrOPOSITION 8. Let P be a regular partition of the ideal boundary of R
and let Ay, Age B, Ag~A,. Then a (P)Ay-singularity is a (P)A,-singularity
and vice versa.

Theorem 3, Propositions 7 and 8 allow us to choose a most suitable behav-
ior space among the equivalence class when we deal with a concrete problem con-
cerning boundary behavior (of differentials). Replacing the given behavior
space by a new one which is equivalent to the original, formulation of the problem
may be sometimes considerably simplified. (One of such examples will be found
in another paper.) '
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9. Finally we shall mention the case of semiexact canonical differentials.
Let Ag=Ag(R)=T},,+il},, T being the space of square integrable real har-
monic semiexact differentials on R. We know that Ay is a behavior space which
is (R-) dual to itself ([11]). A semiexact canonical differential is a meromorphic
differential on R which has Ag-behavior ([3-5], [9] etc.).

Theorem 1 implies the following theorem due to Kusunoki:

THEOREM 4. ([4,5]) Let ¢=du + idu* be a meromorphic semiexact
differential on R. Suppose that for some R, # du is exact on V=R—R, and
||dully, <oo. Then the following two assertions are equivalent:

(I') @ is a semiexact canonical differential.
(I') For any square integrable (real) harmonic semiexact differential T,

onV, <du, t§>,=—\ ur,.
ov

For the proof we only need to show the equivalence of (IT') and (IT) in The-
orem 1 under the assumption Ay=Ay.
In the first place, let w=0+ite Ax. Then we have <¢, iv*>,=— <du,
™>,+ <du, 6>, and ImS ¢5=S u*a—S ut. (Note that du* is semi-
ov ov av

exact.) Thus condition (II) is equivalent to

(*) <du, *>, = — g ut for every 1€l
v

(%) <du,0>, = — S u*o for every oel,.
oV

Assume (II). Let 7, be a (real) harmonic semiexact differential on ¥ such
that ||zy|ly <oo. Then there is a closed C!-differential 7z on R whose restriction
to V is equal to 7, (cf. [10], [13]; see also the proof of Theorem 1). By the
Dirichlet principle ([2], [5], [11] etc.) there are T4, € Iiger Thm € I and 7,0 € T'Y
such that tg=1y, + 1%, + 7.0, Where ') ={1le AW|A is real}. Since tg|lp=1,
is semiexact (on V), 1}, € 'k, n I, ={0} and hence 7, =0.

Now let # be a (real valued) C!-function on R such that 4|, =u. Clearly
|ldfi]| <co. For any >0 we can find a (real valued) function fe C3(R) such that

|<di, td — df*>g| < |d] - |t — dfll <e

holds for every k. One can choose k so large that <dfl, df*>pg, = —S adf
ORx

=0, for the function f has compact support. Then we have

- ,S “Teol = | <dfl, %> g, |
ORk

<du, 1 >yng, t+ S‘wu‘teo
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= |<di, 15 —df*>p, | <e.

It follows that <du, t¥,>,= —S ut,o. Consequently we have <du, t§>,
ov
= ——S ut,. We have shown that (II) implies (II").
ov

Conversely assume (II'). Then every 7eTl',,, satisfies (x), for 7 is certainly
square integrable and harmonic semiexact on V. Next let 6=dserl,,. Then
by the definition of I',,, there are o, =ds, €I,,(R,) such that |6, —alg, —0 as
m—o0. We note that under appropriate normalization {s,} is uniformly con-
vergent to the function s on oV (cf. [2], p. 147). Also we have |<du,6—06,> yng,|
<|ldully -6 —0,lg,—0, m—oo. Since du* is semiexact, it follows that

<du, 6>, = lim <du, 6,,>ynpg,,

m—®

= limg S,du* = S sdu*.
m—owJ)aov v

The last term (Stieltjes integral) can be integrated by parts (cf. [6]) and thus (x%)

follows. This completes the proof of Theorem 4.
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