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1. Introduction

Consider the boundary value problem

(1.1)

(1.2) /W=0,

and let xo(t) be an approximate solution of this problem, where x and X(x, t)

are real n-vectors, / is an operator from D a C[J~] into Rn which is continuously

Frέchet differentiable in D, and C\_Jlι is the space of all real n-vector functions

continuous on [α, i?].

Constructing an operator equation from (1.1), (1.2) and approximating the

Frechet derivative of .the operator in a neighborhood of x σ by a linear operator

independent of x, by means of an iterative method Urabe [7] proved the exist-

ence and local uniqueness of an exact solution and gave an a posteriori error esti-

mate of x0 in terms of x o(0 and its derivative.

The first object of this paper is to obtain the results similar to those in [7]

for continuous x o(0 without assuming its differentiability. This is achieved by

replacing (1.1) with an equivalent system of integral equations. Hence the results

can be applied to discrete numerical solutions by means of interpolation.

The second object of this paper is to treat the case where the linear operator

approximating the Frechet derivative depends on x. This enables us to construct

various iterative methods.

In Section 3 the results are applied to multipoint boundary value problems

[5, 6]. In Section 4 we consider boundary value problems of the least squares

type [1, 8] which arise often in system identification problems and propose some

iterative methods.

2. Convergence of iterative methods and error estimates

Let Rn denote a real n-space with any norm || || and let C[J~\ be the space
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of all real n-vector functions continuous on the interval J = [α, ft], which is made

into a Banach space with the norm || | |c defined by

= sup||x(0ll for x e C [ J ] .
teJ

For any fixed t0 e J let

Then B = C 0 [J] x Rn is a Banach space with the norm || \\b,

||β||) for y = (u,e)eB.

Let Ω' be a domain of the ίx-space intercepted by two hyperplanes t = a and

t = b such that the cross sections Ra and Rb at t = a and ί = ft make an open set in

each hyperplane, and put Ω = Ra U Ω' U # b . Let

D = {xe C[J] I (f, x(0)eΩ for all ί 67}.

Then D is an open set in C\J~\.

For two Banach spaces Bi and B2, we denote by L ^ u B2) the set of all

bounded linear operators from Bt into B2. For G: DaBι->L(Bi9 B2) let G(x)

be the element of UβuB2) associated with XGD. When F: DczBi-+B2 is

Frechet difFerentiable at x e Z), we denote by F'(x) the Frechet derivative of F

atx.

The identity operator and the unit matrix are denoted by the same symbol

I. The product FG and the sum F + G of two operators F and G are defined in

the usual manner.

Let us consider the system of differential equations

(2.1) 4*.= χ(χ9t)9 a£t£b,

with the boundary condition

(2.2) fix] = 0,

where x and ^(x, t) are n-vectors, X(x, t) is continuous in Ω and continuously

differentiable with respect to x in Ω, and the operator/: D-*Rn is continuously

Frechet differentiable in D. We assume that (2.1) has at least one solution in

D.

Let Q: D^>C0[J] be defined by

(2.3) Qx = x(ί) - x(t0) - (' X(x(s), s)ds for xeD.
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Then Qx = 0 if and only if x e D is a solution of (2.1). Hence the boundary value

problem (2.1), (2.2) is equivalent to finding a solution xeD of the equation

(2.4) Fx = 0,

where F: D-+B is defined by

(2.5) Fx = (Qχ9flx]) for xeD.

Let Xx(x9 t) be the Jacobian matrix of X(x, t) with respect to x. Then

F'{x)h (x e D) is given by

(2.6) F\x)h = (β'(x)ft, /'(x)ft) for λ e C[J],

where

(2.7) β'(χ)fc = Λ(ί) - h(t0) - [' Xx(x(s), s)h(s)ds.

In relation to F'(x) we introduce the bounded linear operator L(x) (x e D)

defined by

(2.8) L(x)h = (P(x)ft, l(x)h) for Λ e C[J] ,

where

(2.9) P(x)Λ - h(ί) - h(t0) - [ A(x(s), s)h(s)ds9

y4(x, ί) is an n x n matrix continuous in Ω, and /: D-*L(C[J\ Rn) is bounded and

continuous in D.

Let Φ(JC)(0 be the fundamental matrix of the system

& = A(x(t)9 t)y

satisfying Φ(x)(t0) = / and denote by

(2.10) G(x ( )

the matrix whose column vectors are /(x)Φf 0 = 1, 2,..., n), where Φf is the i-th

column vector of Φ(JC). Put

(2.11) S(x) = Φix)G(x)-\

if G(x) is nonsingular.

For any x e D let E(x) and H(x) be the elements of L{C\_J'\, C[J]) defined by
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(2.12) £(x)Λ

(2.13) H(x)h = (J - S(x)l(x))E(x)h for h e C[J],

and let T(x): D-*C[J] be the operator such that

(2.14) T(x)φ = X{φ{t\ t) - A(x)φ(ή for φeD,

where

(2.15) A(x)φ = A(x(t\ t)φ(t).

We have the following

LEMMA 1. For any xeD L(x) has an inverse operator L(x)"1 if and only

if

(2.16) detG(x)#0.

Suppose (2.16) is satisfied. Tlienfor any y = (u, e)eB

(2.17) L(x)-iy = Hι(x)u+H2(x)e,

so that

(2.18) Wχ)-Mle ύ l|ffi(χ)llc:+ II^WL.

where

(2.19) H^x) = / + H(x)A(x) - S(x)l(x),

(2.20) //2(x) = 5(x).

PROOF. By (2.8), for any y = (u, e)eB, the equation L{x)h = y is equivalent

to the system

(2.21) P(x)h = M,

(2.22) l(x)h = 6.

The general solution of (2.21) is given by

(2.23) h{t) = Φ(jc)(r)c + ιι(0 + Γ Φ(3t)(OΦΓχ)(*MW*λ s)u(s)ds9

where c is an arbitrary constant n-vector. By (2.10) and (2.12) the substitution

of (2.23) into (2.22) yields
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G(x)c + /(x)(J + E(x)A(x))u = e.

Hence L(x)"1 exists and is unique if and only if c is determined uniquely for any

(u, e)eB9 that is, detG(x)#0.

If (2.16) holds, then it follows that

Substituting this into (2.23), by (2.19), (2.20) and the definition of H we have (2.17)

and the inequality

\\L(xyiy\\c.£ | |#1(x)| |cN|c + ll^WUkll

which implies (2.18).

COROLLARY. Under the condition (2.16) let

(2.24) K(x) = I - L(x)~1F for x e D .

Then

(2.25) K(x)φ = {H(x)T(x) + S(x)(l(x)-f)}φ for φeD.

PROOF. Substituting u~Qφ and e = / [ φ ] into (2.17), we have from (2.20)

H2(x)e = S(x)/[φ]

and from (2.19) by the integration by parts

H^u = {/ - H(x)T(x) -

Hence

L(x)-iFφ = {I -H(x)T(x) -

which completes the proof.

If L(x) is independent of x, so also are K(x), Φ(x)9 G(x), etc.. In such a case

we write these operators and matrices simply as L, K, Φ, G, etc. respectively.

By Lemma 1, its corollary and the contraction mapping theorem [4, pp. 65-

66] we have the following

THEOREM 1. Let xoeD be an approximate solution of (2.4) and suppose

there exist a bounded linear operator L, an operator K, a positive number δ

and nonnegatίve constants η, K (κ<l) such that

( i ) d e t G ^ O ,
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(ii) Dδ = {xeCUl I ||x - xo | |c ̂  δ} c D,

(iii) \\Kx - Ky\\c g κ\\x - y\\c for all x,yeDit

(iv) \\L-iFxo\\c ί η,

(v) λ = η/(l - K) £ δ.

Then the sequence {xk} defined by

(2.26) xk+ι=Kxk (fe = 0, 1,...)

converges to xeDt as fc-+oo. x is the unique solution of (2.4) in Dδ, and

(2.27) P - x*ll, £ κ*λ (fc = 0, 1,...).

COROLLARY. Suppose there exists a positive constant M such that

\\XMf), t) - A(t)\\c £ K/M,

\\f'(x)-l\\^κlM for all xeDt,

\\H\\C + \\S\\C Z M.

Then the condition (Hi) is satisfied.

PROOF. For any x, y e Ds by Corollary to Lemma 1 we have

Kx - Ky = H[Tx - Ty-\ + S(/[x - y] - / [ x ] +/[>]).

Let h = x — y. Then by the mean value theorem we have

Kx - Ky = tf^Wxί) + θh(t), i) -

+ s{\l-f'(y + θh)}hdθ.
Jo

Since y + θh eDδ, from the assumption it follows that

\\Xx(y(t) + θh(t), t) - A(t)\\c £ K/M,

II / - f'(y + θh)]\ g KJM for all θ e [0, 1],

and so

\\Kx - Ky\\c g (||H||C + ||S||e)0c/M) ||Λ||c

ύκ\\x-y\\c.

Now we prove the following
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THEOREM 2. Let xoeD be an approximate solution of (2.4) and suppose
there exist a bounded linear operator L(x) (xeD), zoeDσ, positive numbers
δ, M and nonnegative constants η, μ, K ( K < 1 ) such that

( i ) D, = {x e CiJ-[ I ||x - x o | | e g δ} <=D,

( ii ) detG(x)#0 for all xeDδ,

(iii) \\XMt\ t) - A(xo(t), 0lle ύ KIM,

||/'(x) - /(xo)|| ^ KJM for all xsDt,

(iv) ||fl(x)||c + ||S(x)||c g M /or αZ/ xeD,,

( v ) ||L(20)-'Fx0 | |c S η,

( v i ) \\A(x(t), t) - A(y(t), t)\\e ί μ\\x - y\\c,

\\l(x) - Ky)\\ ί μ\\x - y\\c for all x,yeDt,

(vii) β = Mμλj{\ - K) g 1/4,

(viii) σ = f//(l — α) ^ <5,

where

(2.28) α

(2.29) λ

i>ff = { x 6 C [ y ] | | | x - x 0 | | c < σ } .

Then for any sequence {zk} (zk G Dσ) the sequence {xk} defined by

(2.30) xk+ι=K(zk)xk (fe = 0, 1,...)

remains in Dσ and converges to %eDσ as k-+oo. % is the unique solution of

(2.4) in Dδ, and

(2.31) | | * - x j c ^ α f c σ (fc = 0, l,...)

PROOF. Since 0 ^ κ < 1, by (vii) we have

(2.32) K ̂  α < 1,

(2.33) α = K + Mμσ.

By (ii) and Lemma 1, L(z) (zeDσ) has an inverse operator L(z)~K Hence K(z)
is defined for any zeDσ and, if zkeDσ and xkeD, then we have
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(2.34) K(zk)xk = xk- L(zk)-ιFxk.

We show first that, if xk, xk+1e Da, then

(2.35) | |x f c + 2 - x f c +i | | c ύ αll^k+i - x*llc

Let h t = x ι + ! - x , (I = k , k +1). T h e n

(2.36) A H 1 = - L ( 2 H 1

because by (2.34)

(2.37) Fxk = - L(zk)hk.

By the mean value theorem we have

(2.38) Fxk+, - Fxk - Uzk)hk = ( - (' {X(xk+ι(s), s) - X(xk(s), s)

where

(2.39) rft(s) = Γ{X^*(s) + Θhk(s), s) -
Jo

(2.40) ek = Γ{Z(zt) - f'(xk + θhk)}hkdθ.
Jo

From (iii) and (vί) it follows that

1 X ^ ( 0 + θhk(t), t) - A(xo(t), 0l|e ^ κ/M for all 0 e [0, 1],

\\A(xo(t), t) - A(zk(t), t)\\c £ μ||*0 - z j c ,

which yield from (2.39)

(2.41) |k| | c g (κ/M + μ\\x0 - zk\\c) \\hk\\c.

Similarly from (2.40) we have

(2.42) Kll g (κ/M + μ\\x0 - zk\\c) \\hk\\c.
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By (2.36), (2.38) and Lemma 1

(2.43) h^^Hάz^+.Sizfa

and by the integration by parts we have

Hx{zk)uk = H(zk)vk.

Hence (2.43) is expressed as

(2.44) hk+ί=H(zk)vk + S(zk)ek.

By (2.44), (2.41), (2.42) and (iv) we have

(2.45) ||Λk+1 | |c ^ (K + Mμ||x 0 - zk | |e) \\hk\\c.

Since | | x o - z j c ^ σ , by (2.33)

K + Mμ\\x0 - zk\\c ^ K + Mμσ = α,

and (2.35) follows from this and (2.45).

By (v) and (viii)

ll*i - *oL,= \\L(zor
ιFxo\\e ^ η = (l - α)σ ̂  σ,

so xί eDσ and it follows from (2.35) that

11*2 - X i L ^ o a / .

It can be shown by induction that

\\xk - xo\\c ^ (1 - α k)σ

so that for any integer p^Owe have

(2.46) | | x f c + p - xk\\c ^ θikη(l -

Hence {xk} is a Cauchy sequence in Dσ and its limit x exists in Dσ, because Dσ

is a closed set. Since by (2.37) and (vi)

g (\\L(zk) - L(zo)\\b + ||L(zo)L) ||x fc+1 - xk\\c,

\\L(zk) - L(zo)\\b g 2μσmax(b -a, I),

it follows that || Fxtl|j-»0 as fe->oo and Fx=0 by the continuity of F. Hence

x is a solution of (2.4), and the estimate (2.31) follows from (2.46).
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Now we consider the iterative method

xk+i =K(zo)xk (fc = 0, 1,...).

Since by (iii), (vi), (iv) and (2.33)

\\Xx(x(tl 0 - A(zo(ή, OIL ^ α/M,

||/'(x) - /(zo)|| ^ α/Λf for all xeDa,

\\H(zo)\\e+\\S(zo)\\e£M,

by Corollary to Theorem 1 we have

||K(zo)x - K(zo)y\\c ^ α||x - y\\c for all x,yeDa

and by Theorem 1 (2.4) has a unique solution in D .̂ Hence St is the unique solu-

tion of (2.4) in Dδ. This completes the proof.

We note that the choice zk = x0 (fc = 0, 1,...) yields the estimate

(2.47) ||S-xo||c:gΛ

and that the choice zk = xk (k — 0, 1,...) is also possible.

COROLLARY 1. Let ck = xk(t0) (fc = 0, 1,...)•' Then under the assumptions

of the theorem xk+1 and ck+ι can be written as

(2.48) xk+ i = H(zk)T(zk)xk + S(zk)(l(zk)xk - / [ x J ) ,

(2.49) cfc+1 = G(zky\l{zk) [xk - MJ - /[x j) ,

wfc = E(zk)T(zk)xk.

PROOF. The formula (2.48) follows from Corollary to Lemma 1. Setting

t = t0 in (2.48), we have (2.49) because

H(zk)T(zk)xk = uk - S(zk)l(zk)uk9 iι4(ίo) = 0.

COROLLARY 2. Lei £ = £(ί0). T/ϊ̂ n under the assumptions of the theorem

with zo = xo

(2.50) \\t - Coll ^ minα, M^/c/M + ηx)9

where ηt and Mx are nonnegative numbers such that

(2.51) • ||Λx0 - coll ^ if,,
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(2.52)

and

(2.53) R = G(xoy*{l(xo) - f - l(xo)E(xo)T(xo)}.

PROOF. Set zk = xo(k = 09 1,...) in (2.49). Then

(2.54) ck+1=Rxk (fc = 0, 1,...).

Since cfc->£ as /c->oo, by the continuity off and X(x, t\ from (2.54) it follows that

c = Rx. Since x, xoeDδ9 by (iii) and the mean value theorem we have

- xo | |c.

Hence

and by (2.51) and (2.52)

(2.55) ||£ - co | | ̂  ||Λ* - Xxo|| + ||Λx0 - co | |

SMί(κlM)\\x-x0\\c + ηί.

Since by (2.47)

(2.56) ||c - coll g | |* - x o | | c ^ λ,

(2.50) follows from (2.55) and (2.56). This completes the proof.

A solution x e D of (2.4) is said to be isolated if the Frechet derivative F'(x)

of F at x has an inverse operator. With this terminology we have the following

THEOREM 3. The solution x = x obtained in Theorem 1 is an isolated

solution.

PROOF. Let Φ(t) be a fundamental matrix of the system

- ^ - = * , ( * ( / ) , t)y.

Then by Lemma 1 F'{x) has an inverse operator if and only if det/'(£) [Φ] ^ 0 .

Suppose * is not an isolated solution. Then there exists a nonzero $eRn

such that

(2.57)

Put ΐi = Φ£. Then by the definition of Φ we have
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Q'(*)ί = ί(0 - «(f0) -

= |φ(ί) - Φ(ί0) - \\XMS), s)Φ(s)ds}t = 0,

and by (2.57)

/ ' ( * ) [ * ] * - 0 . .

Hence F'(ί)fi = 0 and we have h = {I-L-ιF'(5t))h.

On the other hand, by (2.24)

Since | |K'(£)| | c^κ; by (iii) in Theorem 1, we have | | ί | | c ^.ιc | | ί | | c , which implies

% ) = 0 because 0^/c<l . Since detΦ(ί)#0 ( ίe J), it follows that £ = 0, which is

a contradiction and the proof is complete.

It is well known [7] that an isolated solution SteD of the problem (2.1),

(2.2) is locally unique; that is, no other solution exists in a sufficiently small

neighborhood of St.

In the following two sections the results in this section are applied to special

boundary value problems.

3. Multipoint boundary value problems

In this section we are concerned with the multipoint boundary condition of

the form:

(3.1) fix] = g(x(t0), x(ίi),..., * ) ) = 0,

where

(3.2) a = t0 < tx <•••<**_! < tN = b.

3.1. Case of nonlinear conditions

Let

(3.3) Dt = {x(td I X G D J C Rf (i = 0, 1,..., N)

and let g: DoxDίx xDN-+Rn be continuously Frechet differentiable. Then

(3.4) f\x)h = ΣΪLo Bfr)Ktd for h e C[J],

where
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(3.5) Bt(x) = - | j ^ ( * ( Ό ) . * ( Ί ) . ... X(*N)) (f = 0, 1,..., N)

and ut is the space variable in Rf.

Let us choose /(x)=/'(χ) in (2.8). Then

(3.6) G(x)=ΣUBi(x)Φix)(h),

and we have the following

LEMMA 2. Lei J(x)=/'(x). Then

(3.7) H(x)fc = Γff ( x )(ί, s)h(s)ds for h e C [ J ] ,

where for tk_ί<^s<tk (/c = l, 2,..., JV)

(3.8) H(x){t, s) = _

(3.9) Mfc(x) = G(x)-^ΣίL* B{x)Φix)(td.

PROOF. By (3.4) and (2.13) H(x)h can be written as

H(x)h = Γ Φ(x)(0ΦMs - Φix)

where φ ) = Φ^?)(s)/7(s). Since

we obtain (3.7).

By Lemma 1 we have the following

COROLLARY. 7/detG(x)#0, then L(x) has an inverse operator L(x)"1 and

for any y = (u, e)eB

(3.10) L(x)-'y = i4(0 + [H(x)(t, s)A(x(s\ s)u(s)ds+ S(x)(t)(e -
J a

From this and Corollary to Lemma 1, it follows that for ψeD

(3.11) K(x)φ = H(x)T(x)φ + S(x)(/(x)φ -

and Theorem 2 can be applied to the iterative method xk+ί = K(xk)xk (fc=0, 1,...)

to assure its convergence and to give the error estimate for xk.
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3.2. Case of linear conditions

Let us consider the case

(3.12) / M s J[χ] - d = 0,

where

(3.13) lLx} = ΣUBtx(td,

d is a constant n-vector and 1^(1 = 0, 1,..., N) are constant nxn matrices. Then

(3.14) G ( x ) = Z ? = o ^ ( * ) ( ' i > ,

and by (3.11)

(3.15) K(x)φ = H{x)T(x)φ + S(x)d for φeD.

Now we are interested in the case A(x, t) = A(t). The operator K is then de-

fined by

(3.16) Kφ = HTφ + Sd for φeD,

where

(3.17) G=ΣίLoB|*(ίA S = ΦG-K

(3.18) Hh = [bH(t,s)h(s)ds for Λ

and for ί t _ 1 g s < f k ( fc=l, 2,..., JV)

(3.19) ()
[ - Φ(t)Mkφ-\s) if s ^ ί,

(3.20) Mk = G-iΣiί.*.Bι*ω.

In this case Theorem 1 yields the following

THEOREM 4. Lei x o e D be an approximate solution of the problem (2.1),

(3.12) and suppose there exist a matrix A(t) continuous on J, positive numbers

δ, M and nonnegative constants η9 K (K:<1) such that

( i ) Ds={xeCir\\\\x-x0\\c£δ}c:D,

(ii) detG φ 0,

(iϋ) \\H\\C^M, \\Xx(x(t),t)-A(t)\\c£κlM for all xeDδ,
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(iv) IIr + HAr + S(/[x0 - r] - d)\\c g η,

(v) λ = ,7/(1 - K) ί δ,

where r = Qx0. Then the sequence {xk} defined by

(3.21) xk+i=Kxk (k = 0, 1,...)

remains in Dδ and converges to xeDδ as fc-xx). x is the unique solution of the

problem (2.1), (3.12) in Dδ, and

(3.22) \\x-xk\\c^κkλ (/c = 0, 1,...).

PROOF. For any x, yeDδ by (3.16) and the mean value theorem we have

Kx - Ky = H\Tx - Ty~] = //Γ(V(); + Θh)hdθ\
LJo J

where h = x — y and

V(y + θh) = XX(KO + flΛ(0, 0 - A(t).

Since

II T'(y + flΛ)||c ^ ic/M for all θ e [0, 1],

it follows that

| |Kx - Ky\\c S \\H\\c(κlM) \\x - y\\c ^ κ\\x - >^||c.

By Corollary to Lemma 2 we have

LrxFx0 = r + HAr + S(l[x0 - r] - d)

and the conclusion of the theorem follows from Theorem 1.

In particular we study the cases N = 0 and N= 1.

In the case N = 0, (3.12) is the initial condition x(a) = d, and the condition

(iv) is expressed as follows:

(3.23) ||r 4- HAr + Φ(xo(a) - d)\\c g η,

w h e r e G = 7,

ί Φ ( 0 Φ " J ( 5 ) if a ^ s < t ^ b ,
(3.24) H(ί, 5) =

[θ iί a^t^s^b.

The error estimate was obtained first by Fujii [2],

In the case JV = 1, (3.12) is the two point boundary condition

= d, and the condition (iv) becomes
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(3.25) || r + HAr + S{Boxo(a) + Bγx0{b) - d - Bxr(b)}\\c ^ η,

where G = BQ + BxΦ{b\ Mx = G~lB^(b\

JΦ-^S) if agfS<t£b,

-l(s) if . a£t£s£b.

For the periodic boundary condition

(3.27) x(a) = x(b),

the condition (iv) can be written as

(3.28)

where G = I — Φ(b),

r + HAr -

(3.29) H(t9s)=
ί S(t)Φ'ι{s)
\

\ s)ds

if a S s < t ^ b,

if a^t^s^b.

In the case where X(x, t) and A(t) are periodic in t of period ω, suppose the

problem (2.1), (3.27) has an approximate solution xoeD which satisfies the con-

ditions of Theorem 4 with a = 0 and b = ω. Then £ is the unique periodic solu-

tion of (2.1) with period ω in Dδ.

4. Boundary value problems of the least squares type

In this section let us assume that X(x, i) is continuous in Ω and twice con-

tinuously differentiable with respect to x in Ω, and let g: D-+Rm be twice con-

tinuously Frechet differentiable in D. We consider the problem of finding a solu-

tion x(t) of (2.1) which minimizes (# [*])*# M locally, where the symbol * denotes

the transpose of a matrix. Throughout this section we call this the problem

(S) for simplicity.

4.1. Conditions for a local minimum

Let x(t9 c) be the solution of (2.1) on J such that x(t0, c) = c, and let

(4.1) A = {ceRn I x(t,.c)eD}.

Then A is an open set in R".

Let q: A-*Rm and s: A-+R1 be defined by

(4.2) qίc]=9ίx{Ucy]y

(4.3) s[c] = («[c]) β[c]/2
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respectively and let AoaA be a convex domain. Then we have the following

LEMMA 3. For any c, c + eeAOy

(4.4) sic + e] = sic] + s\c)e + s"{c)eeβ + U,

where

(4.5) S'(c)e = (qlc])*qXc)e9

(4.6) s\c)ee = (q\c)e)*q'(c)e + (qlc])*q"(c)ee,

(4.7) M = o(\\e\\2).

PROOF. It is easily verified that (4.5) and (4.6) hold. Since

(4.8) U = Γ( l - θ) {s"(c + θe) - s"(c)}eedθ9

Jo

it follows that

(4.9) | | | |
Jo

and by the continuity of q, q' and q" we obtain (4.7).

From this lemma we have

THEOREM 5. Let ceA0 be a solution of s'(c) = 0 and suppose there exists

a positive constant cc such that

(4.10) s"(t)ee ^ φ\\2 for all eeR\

Then sic] attains a local minimum at c = t.

COROLLARY. Let CGA0 be a solution of s'(c) = 0 and suppose

(4.11) min \\q'(c)e\\2

2 > max \{qlt~])*q"(t)ee\
e e

for all eeRn with | |e | | 2 = l, where || | | 2 denotes the Euclidean norm. Then

sit] is a local minimum of sic].

Since by Schwarz's inequality

(4.12)

(4.11) is satisfied if

(4.13)
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for all e e Rn with \\e\\2 = 1. It seems that (4.13) is not an unreasonable condition

if Il<?[c]ll2 is small enough. We note that mnkq'(c) = n if (4.13) is valid.

By Theorem 5 the problem (S) is reduced to finding a solution x(t, c) of (2.1)

which satisfies s'(c) = 0 and (4.10).

For all e e Rn we have

(4.14) q\c)e = g'(x(t, c))ιι,

(4.15) q"(c)ee = g"(x(t, c))uu + g'(x(t, c)) \xjt9 c)ee],

where u = xc(t, c)e, and xc and xc c are the first and the second Frechet derivatives

of x(t9 c) with respect to c respectively. From the assumption on X(x, t) it fol-

lows that xc(t9 c) is the fundamental matrix of the system

& = Xx(x(t, c), t)y

satisfying xc(t0, c) = / and that xcc(t, c) is the solution of the system

^~ee = Xx(x(t, c), t)zee + Xxx(x(t, c), t)uu

satisfying xcc(t0, c) = 0, where u = xc(t, c)e and Xxx(x, t) is the second Frechet

derivative of X(x, t) with respect to x.

Substituting (4.14) into (4.5), we have

(4.16) s'(c)e = (gtx(t9 c)])V(x(ί, <0) X*JLU c)]e.

Since s'(c) = 0 is equivalent to (s'(c))* = 0, c is a solution of the equation

(4.17) (g'(χ(t, c)) [xc(ί, c)]) ^[x(ί, c)] = 0.

Hence let

(4.18) fίxl = (g\x)ίθixj)*glx] for xeD.

Then the solution x = x(t, t) of (2.1) and (4.17) satisfies also the equation/[x]=0,

where Θix)(t) is the fundamental matrix of the system

& = Xx(x(t)9 t)y

with Θix)(t0) = I.

Conversely a solution j^ of (2.1) satisfying the condition

(4.19)

is a solution of the problem (S) if it satisfies the condition of Theorem 5. Thus
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we are led to consider the problem of finding a solution xeD of (2.1) satisfying the

condition (4.19), which we call the problem (P) for simplicity.

4.2. Iterative methods for solving problem (P)

We propose some iterative methods for solving the problem (P).

Let / be the operator given by (4.18). Then for x, φ e D and h e C[J~\

(4.20) f'(x)h = (g'(x) [e ( 3 0])V(x)ft + {<?"(*) [£>(*>, h] + g'(x) [!P(x)Λ]} flf[x],

(4.21) K(x)φ = uiXt9) + S(x)piXtψ)9

where

(4.22) lΨix)h] (0 = Γ Θix)(t)Θ(X\(s)Xxx(x(s), s)h(s)Θ(x)(s)ds,

(4.23) G(x) = /(x) [Φ w ] , S(x) = Φ(x)G(x)-\

(4.24) u(XiV) = £(x)Γ(x)φ,

(4.25) p(x<φ) = /(x) [ς» - w(x>?>)] - / [ φ ] ,

g"{x)\Θ(x), K] denotes the matrix whose column vectors are g"(x)[Θh ft] (/ = 1,

2,..., n), 0 j being the i-th column vector of 6>(x). It has been shown in [1, 8]

that (j£-ΘMy = Ψ(x)h is given by (4.22).

We consider the iterative method

(4.26) xk + i=K(xk)xk (fc = 0, 1,...).

Various methods are obtained by the choice of A{x, t) and l(x). Some typical

examples are given below.

Casel. A(x,t) = XJx,f), l(x)=f'(x).

The method (4.26) is nothing but the Newton method.

Case 2. A(x, t) = Xx(x, t), l(x) = (g'(x) [Φ ( x )])*^'(x).

The method in this case is the so-called Gauss-Newton method.

Case 3. A(x, t) = A(i), /(x) = (ff'(x) [ Φ ] ) V W •

When g is a linear operator, S is computed once for all.

Case 4. A(x, t) = A{t), Z(x) = (flfo[Φ])*flfo,

where ^ 0 is an operator approximating gr'(x). In practical applications it will
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be convenient usually to choose A(t) = Xx(x0(t), t) and go = g'(xo). The advan-

tage of the method in this case lies in computing S only once.

Theorem 2 can be applied to the methods in Cases 1, 2 and 3 to assure their

convergence and to give the error estimates; Theorem 1 can also be applied to that

in Case 4.

In particular we are concerned with the case

(4.27) g[x\ = g(x(t0), xfo),..., x(tN))9

where g: DoxDίx -xDN->Rm is twice continuously Frechet differentiable,

and ti and Dt (Ϊ = 0, 1,..., N) are given by (3.2) and (3.3) respectively. All sum-

mations are assumed to be taken from 0 to N. Let

(4.28) CtJ(x) = ggL(*( ί 0 ) , x^),..., x(tN)) (/, y=0, 1,..., N),

(td, V{x) = ΣiBfc)θix)(td,

where B^x) (i = 0, 1,..., N) are given by (3.5). Then for xeD and /ieC[J] we

have

(4.29) / M = n*)*ff[*L

(4.30) /'(x)Λ=

In Case 2 we have

(4.31) G(x) = R(x)*R(x),

(4.32) p ( x § φ ) = R(x)*Σt Bi i ψ )

In Case 3 G(x), w^^) and p(x,φ) are obtained from (4.31), (4.24) and (4.32) respec-

tively with Φ(x) replaced by Φ.

Finally let us consider the case

(4.33) . 0M = Σι*ι*tt)-4-.

where d is a constant m-vector and Bt (i=.O, 1,...,JV) are constant m x n matrices.

Then for x e D and h e C[J] we have

(4.34) /[*] = (Σι

(4.35) /'(x)Λ = (Σ, Btθix)m*Σi BtKtd + (Σi

The iterative method in Case 2 has been given by Banks and Groome [1] and those

in Case 1 and Case 3 have been obtained by Urabe [8].
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