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1. Introduction

The equation to be studied in this paper is

(A) χ(»)(ί) + <r/(ί,

where the following conditions are always assumed to hold:
(a) n £ 2 , σ = ± l ;
(b) #(0 is continuous on la, oo) and limg(ί) = oo;

t-*oo

(c) /(ί, x) is continuous on [a, 00) x ( - 00, 00) and x/(ί, x) ^ 0.
It is to be noted that g(t) is a general deviating argument, that is, it is allowed to be
retarded (g(t)St) or advanced (g(t)^t) or otherwise.

Equation (A) is called superlinear if, for each t,

\f(t, Xι)\l\xi\ ^ \f(U x2)\l\xi\ for |xχ| > |x 2 | , xλx2 > 0 ,

and strongly superlinear if there is a number α> 1 such that, for each t,

|/(ί,x1)|/|x1 |β^|/(ί,x2)|/|x2 |« for |x,| > |x2|, xxx2 > 0.

Dually, equation (A) is called sublinear if, for each t9

|/(ί, xOI/lxJ ^ \KU x2)|/|x2| for |xj > |x2|, χ t χ 2 > 0,

and strongly sublinear if there is a positive number β< 1 such that, for each ί,

for |xx| > |x2|, xxx2 > 0.

In this paper we are primarily interested in the nonoscillatory solutions of
equation (A) which is either strongly superlinear or strongly sublinear. Of par-
ticular interest is the effect that g(t) can have on the nonoscillation properties of
(A). Hereafter, the term "solution" will be used to mean a solution x(t) of (A)
which is defined on some half-line [Tx, 00) and is nontrivial on any infinite sub-
interval of [Tx, 00). Such a solution is said to be oscillatory if it has arbitrarily
large zeros; otherwise it is said to be nonoscillatory.
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Following Kiguradze [1] and Lovelady [9], we classify the nonoscillatory

solutions of (A) into (n 4-1) classes (some or all of which may be empty) in such

a way that all solutions x(t) with all of x(t), x'(ί),..., x(M)(0 of the same eventual

sign fall into the same classes. We then give, for some of these classes, necessary

and/or sufficient conditions for them to be nonempty. As a consequence we

are able to indicate certain classes of equations of the form (A) for which necessary

and sufficient conditions for oscillation of all solutions are established. Our

results extend considerably some of the fundamental results of Kiguradze [1, 2],

Lovelady [9] and Onose [11].

2. Classification of nonoscillatory solutions

A classification of nonoscillatory solutions of (A) will be given according to

the following lemma.

LEMMA 1. If x(t) is a nonoscillatory solution of (A), then either

(1) x(0* ( i ) (0 > 0 ( O ^ i g π - 1), sup[x(s)x<">(s)] > 0
s*t

for all sufficiently large t, or there exists an integer k, O^fe^n —1, such that

(2) x(r)x ( ί )(0 > 0 (0 ^ i ^ k), x<'>(0x(<+1)(0 ^ 0 (fc ^ i ^ n - 1)

for all sufficiently large t.

PROOF. Let x(i) be a nonoscillatory solution of (A). From (A),

sgn[x(0x ( π )(0] = - s g n σ for all large ί, so that there is a Tx^a such that each

of x'(ί)> x"(0> > x ( π ~ υ (0 is either nonnegative or nonpositive on [Tx, oo).

Let k be the largest integer such that x(ί)x ( i ) (0>0 on [Γx, oo) if Ogΐ^A;. When

σ= — 1, it may happen that k — n. Suppose that k = n — 1. We cannot exclude

the possibility that sup[x(s)x ( π )(s)]>0, t^.Tx, which takes place only when

σ = - l . Otherwise, we have x(ί)x ( π ) (0^0 or x^'^ήx^ή^O on [Tx, oo).

Suppose next that 0^/c^n —2. The claim is that, for every / with k^i^n — 2,

x<' >(0x ( i + 1 ) (0^0, t^Tx, implies χ( i + 1 )( ί)x ( ί + 2 ) (0g0, t^Tx. Assume to the

contrary that χ( i + 1 >(0x ( i + 2 ) (0^0, t^Tχ9 and there is a τ^Tx such that

χ(ί+1>(τ)x<ί+2>(τ)>0. Then, in view of the monotonicity of x< ί+1)(ί) we see that

= |χ(O(τ)| -

|(ί - τ), ί ^ τ ,

which implies that \x^\t)\-^-oo as ί->oo, a contradiction. Hence (2) holds
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DEFINITION. A nonoscillatory solution of (A) which satisfies (1) is called

a solution of class Jfn. A nonoscillatory solution of (A) which satisfies (2) for

some fe, Og/c^n — 1 , is called a solution of class Jίk.

REMARK 1. Every solution of class ^T o is bounded. If x(ί) is a solution

of class Jίn, then there is a constant c > 0 such that \x(i)\^ctn~x for all large t.

If x(t) is a solution of class Jίk with l^k^n — l, then there are constants cx >0,

c 2 > 0 such that cιt
k~ί^\x(t)\<Ξc2t

k for all large t.

LEMMA 2. Let x(t) be a solution of (A) of class Nk for some fe, O^fcrg

n - 1 . Then the limit x<fc)(oo) = limx ( k )(0 is finite and there is a Tx such that
t-

(3)

PROOF. If k = n-\, then an integration of (A) yields (3). Let fe^n-

and k + l ^ ί ^ n - 1 . If we suppose lim|x(i)(Y)l>0, then from the inequality
o

where Tx^.a is chosen sufficiently large, we have that |x ( ί~ υ(OI -* — °° as ί-^oo,

which is impossible. Therefore, we must have x(i\t)-+O as t->oo. Taking this

fact into account and integratig (A) repeatedly form t to oo, we find

(4)

if k+l^i^n — 1. Integrating (4) with i = /c+l once more and noting that

χ(*)(oo) exists and is finite, we arrive at the desired inequality (3).

3. Necessary conditions

In this section we wish to find, for each / c = l , . . . , n — l , a necessary condition

for (A) to have a solution of class JΓk. A discussion of the extreme classes JV0

and Jfn seems to be difficult. We begin with a preliminary observation.

PROPOSITION. Let (A) be either superlinear or sublinear. Suppose that

(A) has a solution x(t) of class JΓkfor some k with O ^ f c ^ n - 1 .

// either σ = l and k = n (mod2) or σ=— 1 and kψn (mod2), then x{t) is

eventually a polynomial of degree k and there are numbers T^a and cφO such
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that f{t, cgk(t)) = Ofort^ T.

PROOF. By Lemma 2 there is a Tx such that (3) holds for t^Tx. Hence,

using the hypotheses, we have

(5) j " (s - t)»-k-if(s9 x(g(s)))ds = (n - k - l)!{x<fc)(αo) ~ x(*>(0}

for t^Tx. Suppose that x(t) is positive. Then, the left member of (5) is non-

negative, while the right member is nonpositive for t^.Tx. It follows therefore

that x<k\t) = χik\oo) and fit, χ(g(ή)) = 0 for t^Tx. Thus x(t) is a polynomial

of degree k on [Tx, oo), and so there are positive numbers cί9 c2 such that

(6) C ί g k ( t ) ^ x(g(t)) ^ c 2 g \ t ) f o r t^T,

where Tis taken so large that g(t)^Tx for t^T. Combining (6) with/(ί, x(g(ή))

= 0, we conclude that/(ί, cig
k(t)) = ΰ for t^T, where i = ί or 2 according as (A)

is superlinear or sublinear. A similar argument holds if we suppose that x(t)

is negative.

REMARK 2. Suppose that

(7) sup \f(t, c)\ > 0 for all T ^ a and c Φ 0

if (A) is superlinear, and

(8) sup |/(f, ^""KO)! > 0 for all T ^ a and c # 0

if (A) is sublinear. Then, from the above proposition we see that equation (A)

with σ=l [resp. with σ= — 1] cannot possess solutions of class tA
r

k for k with

fc = n (mod2) [resp. with kφn (mod 2)].

Motivated by this observation, we shall assume without further mention that

condition (7) or (8) holds throughout the sequel. The following notation will

be used: g*{t) = min{g(t\ t}.

We state and prove the main result of this section.

THEOREM 1. Let (A) be strongly superlinear. Suppose that (A) has a

solution of class Jfk, where k is such thatl^k^n — 1 and kφn (mod 2) if σ=l

and k = n (mod2) if σ= — 1.

Then, for every differentiate function h*(t) satisfying

(9) K(t) g g*it\ Λ O) ^ 0, and lim A*(i) = oo ,

we have
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(10) Γ / * 3 Γ H 0 l / ( Λ c g k ~ \ t ) ) \ d t < oo f o r some c φ O .

THEOREM 2. Let (A) be strongly sublinear. Suppose that (A) has a
solution of class J^k, where k is such that 1^/c^n —1 and kφn (mod2) if σ=\
and k = n (mod2) if a— — 1.

Then we have

(11) J(^^-y%w- f c-Ί/(Λ^W)|Λ<α) for some

where β<l is the sublinearity constant for (A).

In proving these theorems we use an integral inequality which is stated below
without proof.

LEMMA 3. //p<q^r and μ, v§:0, then

(q - tY(r - t γ > μ + l + ι (q ~ P)μ+ί(r - pY:

PROOF OF THEOREM 1. Let x{t) be a solution of class Jίk as stated above.
Without loss of generality we may suppose that x(t) is positive. Noting that
x ( k - 1 ) (0 is positive and increasing, we have

- t)1

 χ(i)(t\ , [s (s - u) k~2

χ(s = y χ(t [

(12)

^ f o r s^t^

where Tx^a is sufficiently large. Take an /ί*(0 satisfying (9) and let
be so large that h*(t)^Tx for t^T. From (12) we have

(13) x(g(s)) ^ ^ ^ j ^

On the other hand, there is a constant c>0 such that

(14) x(g(s)) ^ cgk-\s) for 5 ^ T

Using (3), (13) and (14) we have

M0) ^ Γ C V
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- 1 ) ! ] • ( » - * - 1 ) !

where α > l is the superlinearity constant for (A). Setting M = [c(fc-l) !] ϊ

(n — k—1)!, we compute as follows:

dsdt

Since by Lemma 3

n - k + a(& - 1)

we conclude that

oo ,

from which (10) follows immediately. This completes the proof.

PROOF OF THEOREM 2. Let x(t) be a solution of class c/Γk as stated in Theo-

rem 2. We may suppose that x(t) is positive. For a sufficiently large T we have

(15)

= ΓΓ V O V χ(k)(s)ds for /-Γ

From the proof of Lemma 2 we easily see that
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S i f,, _ cV-fc-1

for each ί with k^i^n—1 and for t^s^.T. Here the nonincreasing nature of

|x(i)(OI has been used. Let T0^T be such that g*(t)^T for t^T0. Com-

bining (15) with (16) and then applying Lemma 3, we find

x{g{t)) >

(IT) >
(17) ^ _ _ _ _ _ _ _ _ _

for /c^ί^n-1 and t^T0.

Let us define

n-l

(18) w(/) = _
i
i=k \l K) .

It is clear that w(ί)_0 on [T, 00) and

(19) W'(O = - (

( ^ l P Γ

Moreover, from (17) and (18) it follows that

(20) x(g(t)) ^ ίg*(t)^ Γ ] f c w(t), /_tΓ0,

where iV = (/c- l) !Σ ί Noting that x{g(f))<Lcgk(t) on [Γo, 00) for some c>0
i=k

and using (19) and (20), we get for ί^ To
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From the above relation we readily deduce that

~τ TT{t~ T)
n~k~ί

where L = (cN)β(n — k — 1)!. This clearly is equivalent to (11), and the proof is

complete.

4. Sufficient conditions

The purpose of this section is to obtain a condition under which equation

(A) possesses a solution of class Jιfk for each /c = l,...,n — 1 . Our discussion is

based on the following existence theorem.

THEOREM 3. Let 0 ̂  k ̂  n — 1 and suppose that

(21) ί°° ί"-*"1!/^ c#H0)|d' < °° for some c φ 0.

( I ) //(A) is superlinear, then (A) /iαs α solution x(t) such that

ill) lim^I-f.

(II) //(A) is sublinear, then (A) /iαs a solution x{t) such that

(23) lim ?ψ- = 2c .

PROOF. Without loss of generality we may suppose that the constant c

appearing in (21) is positive.

(I) Let (A) be superlinear. Choose Tso large that T0 = 'mϊg*(f)>a and

[°°tn-k~ι fit, cgk(t))dt ^ t ί ( n - i t - l ) ! .

Let C denote the vector space of all continuous functions on [To, oo) with the

topology of uniform convergence on compact subintervals of [Γo, oo). Set

I = { j c e C : 0 ^ x(t) g ctk for t ^ Γo}.

Clearly, X is a convex and closed subset of C. We define the operator Φ acting

on X by the following formulas:
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(Φx)(t) =

if fc = 0, and

T + σ \"-(~[J

%

(Φx)(t) =

c
\ 2'

<,t^ T,

i) Φ maps X into X. Using the superlinearity, we have

(t — T^ f c C°° (11 — T ^ " ^ " 1

-yίfc for and 0 ^ Λ ^/ι - 1 .

Thus 0^(Φx)(0^cί f c on [Γ, 00). The validity of these inequalities on [Γo, T]

is trivial.

ii) Φ is continuous on X. Let {xm} be a sequence in X converging to an

xeX as m->oo in the topology of C. This means that xm(t)->x(i) as m->oo

uniformly on any compact subinterval of [Γo, 00). By the definition of Φ we

have

I (Φxm)(t) - (Φx)(t) I ^

if /c = 0, and

, t ^ Γo,

\(Φxm)(t) - (Φx)(t)\

= 0,

if l g f c ^ ι i - 1 , where Gm(s) = |/(s, xjg(.s)))-f(s, x(g(s)))\. Since Gm(s)g

2/(s, cgr*(s)) and Gm(s)->0 as m->oo for s^T, applying the Lebesgue dominated

convergence theorem, we conclude that (Φxm)(t)^(Φx)(t) as m ^ oo uniformly

on any compact subinterval of [To, oo), that is, Φxm-*Φx as m->oo in the

topology of C.
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iii) ΦX is precompact. Differentiating (Φx)(t), we find that

\{Φx)'(t)\ ̂  _ J _ j ^ " 2 ^ , C)ds, t ^ T,

if/c = 0, and

( rk ,
fk~~ 1

~2~

I (**)'(') I ύ ^ Γ,

if l ^ f c g n —1. It follows that the family {(Φx)(t)} is uniformly bounded and

equicontinuous at every point of [To, oo). This shows that ΦX is precompact.

From the foregoing observations we are able to apply the strong version of

Tychonoff 's fixed-point theorem (see e. g. Morris and Noussair [10]) to the

operator Φ and conclude that Φ has a fixed point x i n l . It is a simple matter

to check that this fixed point x = x(t) is a solution of equation (A) having the

asymptotic property (22).

(II) Let (A) be sublinear. Take Tso large that T0 = infg#(t)>a and

tn-k~ιf{t, cgk{t))dt ύ^k\ (/ i- k - 1) ! .

Put Y = {xeC: ctk^x(t)^3ctk for t^T0}. We denote by Ψ the operator Ψ

which has the same expressions as Φ studied above except that the constant c/2

is replaced by 2c wherever it appears. Then it can be shown as in the proof of

the first part that Ψ is a continuous operator which maps Y into a compact subset

of y. A solution of (A) with the property (23) is provided by a fixed point of Ψ

in 7.

This completes the proof of Theorem 3.

A sufficient condition for a class Jίk, l^k^n — 1, to have a member is given

in the following theorems.

THEOREM 4. Let k be an integer such that 1^/c^n—1, and kφn (mod2)

if σ=l and k = n (mod2) if σ= — 1. Equation (A) which is superlinear has a

solution of class ^ k if

(24) ί°V~*l/(f, cgk~\t))\dt < oo for some cφO.

THEOREM 5. Let k be as in Theorem 4. Equation (A) which is sublinear
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has a solution of class J^k if (21) holds for some

PROOF OF THEOREM 4. On account of Theorem 3 equation (A) has a solu-

tion x(ή with the property \imx(t)ltk~1 = c/2. By Lemma 1, x(t) is of class J^.
t-*ao

for some j , O^j^n, and from Remark 2 it follows that j = k (mod2). If j = 0,

then x(t) is bounded, and so fc=l, which is a contradiction. If j = n, then

liminf |x(ί)l/ίΛ~1>0. But this is not consistent with the property limxίO/ί*"1

f-*oo ί-*oo

= c/2, since k^n — 1. Consequently, we must have lrgy'^n —1, and there are

positive constants cu c2 such that cίt
J~1^\x(t)\^c2t

J for all sufficiently large t.

It follows that j^k^j+i, which implies j = k.

Theorem 5 can be proved similarly.

Now, we suppose that there is a difFerentiable function /?*(ί) which satisfies

condition (9) and

(25) limin
t-*oo t

Then, obviously, condition (10) is equivalent to (24), so that by combining Theo-

rem 1 with Theorem 4 we obtain the following result.

THEOREM 6. Let k be an integer as described in Theorem 4. // there

exists a function h*(t) satisfying (9) and (25), then (24) is a necessary and suffi-

cient condition for (A) which is strongly superlinear to have a solution of class

JΓk.

Likewise, from Theorem 2 and Theorem 5 we have the following

THEOREM 7. Let k be as above. Assume that

(26) lim inf ψv > °gyt)

Then, (21) is a necessary and sufficient condition for (A) which is strongly sub-

linear to have a solution of class Λ~k.

REMARK 3. It is easy to see that (25) holds if g(t) is advanced

and (26) holds if g(t) is retarded

REMARK 4. Theorem 7 includes a recent result of Lovelady [9] as a special

case.

5. Oscillation criteria

Finally we shall show that the above results are used to obtain necessary
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and sufficient conditions for equation (A) to be "almost oscillatory" in the

sense defined below.

DEFINITION. Equation (A) is said to be almost oscillatory if one of the

following cases holds:

( i ) σ= 1, n is even, and every solution of (A) is oscillatory;

(ii) σ = l , n is odd, and every solution of (A) is oscillatory or tends mono-

tonically to zero as ί->oo together with x'(0» > * ( π ~ 1 ) (0 ;

(iii) σ = — 1, n is even, and every solution of (A) is oscillatory or tends

monotonically to zero or infinity as ί->oo together with x'(t),...,

(iv) σ = — 1, n is odd, and every solution of (A) is oscillatory or tends

monotonically to infinity as ί->oo together with x'(t),..., x^1"

THEOREM 8. Let (A) be strongly superlinear. Suppose that there exists

a function h*(t) satisfying (9) and (25). Then, (A) is almost oscillatory if and

only if

(27) Γ V - M / O , c ) | Λ = o o for all cφO.

THEOREM 9. Let (A) be strongly sublinear. Suppose that g*(t) satisfies

(26). Then, (A) is almost oscillatory if and only if

(28) J \f(t, cg»-\i))\dt = oo for all c Φ 0.

PROOF OF THEOREM 8. The "only if" part is immediate. In fact, if (27)

were false, then (A) would have a solution x(t) such that limx(ί) = const. ΦO
r->oo

by Theorem 3, contradicting the hypothesis that (A) is almost oscillatory. We

shall prove the "if" part. Because of (25) and the superlinearity, (27) implies

that

\°° tn~k\f(t, cgk-\t))\dt = o o for all c Φ 0,

if 1^/c^n —1, and so from Theorem 6 it follows that the classes Jr

1,...,j[
r

n^1

are all empty. Hence, a nonoscillatory solution of (A), if any, is of class Jί0 or

Case (i): σ=l and n is even. If x(t) is a nonoscillatory solution of (A),

then x(t)χ(tt)(t)^09 so that x(t) must be of class Λ~o. From the proof of Lemma

2 we see that

j ^ J j i g i 9 x(g{s)))ds
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for all sufficiently large t. But this shows that x(t)x'(t)>09 a contradiction.

Case (ii): σ=\ and n is odd. If x(t) is a nonoscillatory solution of (A),

then as in Case (i) x(t) is of class JΓ^ and from Lemma 2 it follows that

= Ofor 1 ^ / ^ n - l and

(29) x(T) =x(oo) + ( - I ) " " 1

JT

for a suitably large T. We claim that x(oo) = 0. Suppose the contrary: x(oo)

= cΦθ. If o O , then by (29) and (27) we obtain

, c)ds = oo ,

which is a contradiction. Similarly, a contradiction is obtained if we suppose

c<0. Therefore, we have x(oo) = 0.

Case(iii): σ = — 1 and n is even. If x(ί) is of class JV*0, then the same

argument as above shows that x( i)(oo) = 0 for O^ί^n — 1. Let x(t) be of class

Jίn. We may suppose that x(0>0, since a paralle argument holds if x(ί)<0.

There are positive constants c and T such that x(g(t))^cgn~ι(t) for ί^T. In-

tegrating (A) from T to t9 we get

χ(n-i)(ty = χ(Λ~1)(T) + \ /(s, x(g(s)))ds

(30)

^ Γ /(s, cg^isfids for ί ^ T.

In view of (27), (25) and the superlinearity, it is easy to see that the last integral

in (30) tends to infinity as ί->oo. Consequently, we have x ( M~1 )(oo)=oo. Since

by ΓHospitaΓs rule limx ( i )(0/iM" i" 1=Hmx ( / J- 1)(0 = oo for O ^ i ^ π - 2 , we
ί->00 t-*OD

conclude that x(ί)(oo) = oo for 0^/^n —2.

Case (iv): σ= — 1 and n is odd. If x(t) is of class Jίn, then as in Case (iii)

) = oo for Ogz^tt — 1. In this case the class J^o is empty by Remark 2.

Thus the proof is complete.

Theorem 9 is proved in a similar fashion.

REMARK 5. Theorems 8 and 9 extend some of the main results of Kiguradze

[1, Theorems 3 and 4], Licko and Svec [8, Theorems 1 and 2] and Onose

[11, Theorems 3.1-3.5]. Theorem 9 might be regarded as a generalization of

Theorems 1 and 2 of Kiguradze [2], For other related results the reader is re-

ferred to the articles [3, 4, 5, 6, 7].
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