Fine Differentiability of Riesz Potentials

Yoshihiro MIZUTA

(Received May 20, 1978)

1. Introduction

In the *n*-dimensional Euclidean space R^n , we are concerned with the differentiability properties of Riesz potential U^{μ}_{α} of order α , $0 < \alpha < n$, of a non-negative measure μ . The potential U^{μ}_{α} may fail to be differentiable at any point of R^n , since U^{μ}_{α} may take the value ∞ on a countable dense subset of R^n . We are therefore motivated to relax the requirement in the definition of differentiability; in fact, if we restrict the set of approach to x^0 , then we may be able to conclude

$$\lim_{x \to x^0, x \notin E} \frac{|U^{\mu}_{\alpha}(x) - U^{\mu}_{\alpha}(x^0) - L(x - x^0)|}{|x - x^0|} = 0,$$

where $L = L_{x^0}$ is a linear function. The following problems are proposed here:

(i) Characterize the excluded set E in an appropriate manner.

(ii) Evaluate the size of the set of all x^0 at which U^{μ}_{α} is not differentiable in such a sense.

Before finding answers to these problems, we fix some notation which will be used in this note. For a point $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and a multi-index $\gamma = (\gamma_1, ..., \gamma_n)$, we define

$$\begin{aligned} x^{\gamma} &= x_1^{\gamma_1} \cdots x_n^{\gamma_n}, \quad (\partial/\partial x)^{\gamma} &= (\partial/\partial x_1)^{\gamma_1} \cdots (\partial/\partial x_n)^{\gamma_n}, \\ \gamma! &= \gamma_1! \cdots \gamma_n!, \quad |\gamma| &= \gamma_1 + \cdots + \gamma_n. \end{aligned}$$

We denote by R_{α} the Riesz kernel of order α . Fix a point $x^0 \in \mathbb{R}^n$ and set

$$K_m(x, y) = R_{\alpha}(x-y) - \sum_{|\gamma| \le m} \frac{1}{\gamma!} (x-x^0)^{\gamma} \frac{\partial^{\gamma} R_{\alpha}}{\partial x^{\gamma}} (x^0-y)$$

for a positive integer m.

A set E is said to be α -thin at x^0 either if $x^0 \notin \overline{E \setminus \{x^0\}}$ (the closure of $E \setminus \{x^0\}$) or if $x^0 \in \overline{E \setminus \{x^0\}}$ and there is a non-negative measure μ satisfying

$$\liminf_{x\to x^0, x\in E\setminus\{x^0\}} U^{\mu}_{\alpha}(x) > U^{\mu}_{\alpha}(x^0).$$

Our first aim is to prove the following theorem.

Yoshihiro MIZUTA

THEOREM 1. Let μ be a non-negative measure such that

(1)
$$\int |x^0 - y|^{\alpha - m - n} d\mu(y) < \infty.$$

Then there exists a Borel set $E \subset \mathbb{R}^n$ which is α -thin at x^0 and satisfies

$$\lim_{x \to x^0, x \notin E} |x - x^0|^{-m} \int K_m(x, y) d\mu(y) = 0.$$

Next we consider the case when μ has a density in $L^p(\mathbb{R}^n)$, $1 . Letting G be an open set in <math>\mathbb{R}^n$, we define the capacity

$$C_{\alpha,p}(E; G) = \inf \|g\|_p^p, \qquad E \subset \mathbb{R}^n,$$

where the infimum is taken over all non-negative measurable functions g such that g vanishes outside G and $U_{\alpha}^{g}(x) \ge 1$ for all $x \in E$. A set $E \subset \mathbb{R}^{n}$ is said to be (α, p) -thin at x^{0} if

$$\sum_{k=1}^{\infty} [2^{k(n-\alpha p)} C_{\alpha,p}(E_k; B(x^0, 2))]^{1/(p-1)} < \infty, \quad \text{in case} \quad \alpha p \le n,$$
$$x^0 \notin \overline{E \setminus \{x^0\}}, \quad \text{in case} \quad \alpha p > n,$$

where $E_k = E \cap B(x^0, 2^{-k+1}) \setminus B(x^0, 2^{-k})$, $B(x^0, r)$ being the open ball with center at x^0 and radius r.

REMARK. In case $\alpha p < n$, E is (α, p) -thin at x^0 if and only if

$$\int_0^1 [r^{\alpha p-n}C_{\alpha,p}(E \cap B(x^0, r); B(x^0, 2))]^{1/(p-1)} \frac{dr}{r} < \infty.$$

Thus our thinness in this case coincides with the thinness defined by Meyers [4]. For a proof, see the Appendix. We also refer to Adams and Meyers [1].

THEOREM 2. Let f be a non-negative function in $L^p(\mathbb{R}^n)$ such that $\int |x^0 - y|^{\alpha - m - n} f(y) dy < \infty$ and

$$\int_0^1 \left[r^{(\alpha-m)p-n} \int_{B(x^0,r)} f(y)^p dy \right]^{1/(p-1)} \frac{dr}{r} < \infty.$$

Then there exists a set $E \subset \mathbb{R}^n$ which is (α, p) -thin at x^0 and satisfies

$$\lim_{x \to x^0, x \notin E} |x - x^0|^{-m} \int K_m(x, y) f(y) dy = 0.$$

Our theorem corresponding to the case m=0 has been proved by Meyers [4; Theorem 3.1].

2. Proof of Theorem 1

To prove Theorem 1, we use the following elementary lemmas.

LEMMA 1 ([2; Theorem 5.2]). A set $E \subset \mathbb{R}^n$ is α -thin at x^0 if and only if

$$\sum_{k=1}^{\infty} 2^{k(n-\alpha)} C_{\alpha}(E_k) < \infty,$$

where $E_k = E \cap B(x^0, 2^{-k+1}) \setminus B(x^0, 2^{-k})$ and C_{α} denotes the Riesz capacity of order α . This is equivalent to

$$\int_0^1 r^{\alpha-n} C_{\alpha}(E \cap B(x^0, r)) \frac{dr}{r} < \infty.$$

LEMMA 2. Let λ be a non-negative measure and set $A = \{x \in \mathbb{R}^n; U_{\alpha}^{\lambda}(x) \ge 1\}$. Then $C_{\alpha}(A) \le 2^{n-\alpha}\lambda(\mathbb{R}^n)$.

Lemma 2 follows readily from a maximum principle (cf. [2; Theorem 1.10]).

LEMMA 3. There exists a constant C > 0 such that

$$|K_m(x, y)| \leq C|x - x^0|^m|y - x^0|^{\alpha - m - n}$$

whenever $|x-y| \ge |x-x^0|/2$.

PROOF. In the case where $|x-y| \ge |x-x^0|/2$ and $|x^0-y| \le 2|x-x^0|$, it suffices to evaluate each term of K_m separately. In the case where $|x^0-y| > 2|x-x^0|$, we apply the mean value theorem for the function

$$f(t) = |x^0 - y + t(x - x^0)|, \qquad t > 0,$$

and obtain the desired result.

PROOF OF THEOREM 1. By Lemma 3, we can apply Lebesgue's dominated convergence theorem to obtain

$$\lim_{x \to x^{0}} |x - x^{0}|^{-m} \int_{|x - y| \ge |x - x^{0}|/2} K_{m}(x, y) d\mu(y) = 0.$$

For each integer k, we set

$$a_{k} = \int_{2^{-k-1} \leq |y-x^{0}| < 2^{-k-2}} |y - x^{0}|^{\alpha - m - n} d\mu(y).$$

Then $\sum_{k=1}^{\infty} a_k < \infty$ by our assumption, and hence we can find a sequence $\{b_k\}$ of positive numbers such that $\lim_{k\to\infty} b_k = \infty$ and $\sum_{k=1}^{\infty} a_k b_k < \infty$. Consider the set

Yoshihiro MIZUTA

$$E^{(k)} = \left\{ x \in \mathbb{R}^{n}; \, 2^{-k} \leq |x - x^{0}| < 2^{-k+1}, \\ \int_{|x - y| < |x - x^{0}|/2} |x - y|^{\alpha - n} d\mu(y) \geq 2^{-km} b_{k}^{-1} \right\}.$$

Then from Lemma 2 it follows that

$$C_{\alpha}(E^{(k)}) \leq 2^{n-\alpha} 2^{km} b_k \int_{2^{-k-1} \leq |y-x^0| < 2^{-k+2}} d\mu(y)$$
$$\leq 2^{2m+3(n-\alpha)} 2^{-k(n-\alpha)} a_k b_k,$$

so that $\sum_{k=1}^{\infty} 2^{k(n-\alpha)} C_{\alpha}(E^{(k)}) < \infty$. If we set $E = \bigcup_{k=1}^{\infty} E^{(k)}$, then we see from Lemma 1 that E is α -thin at x^0 . Moreover,

$$\lim_{x \to x^0, x \notin E} |x - x^0|^{-m} \int_{|x - y| < |x - x^0|/2} |x - y|^{\alpha - n} d\mu(y) = 0,$$

which yields

$$\lim_{x \to x^0, x \notin E} |x - x^0|^{-m} \int_{|x - y| < |x - x^0|/2} K_m(x, y) d\mu(y) = 0.$$

Thus we obtain $\lim_{x\to x^0, x\notin E} |x-x^0|^{-m} \int K_m(x, y) d\mu(y) = 0.$

COROLLARY. Let $1 < \alpha < n$ and let μ be a non-negative measure such that $U^{\mu}_{\alpha}(x^0) < \infty$ and $U^{\mu}_{\alpha-1}(x^0) < \infty$. Then there is a Borel set $E \subset \partial B(O, 1)$ such that $C_{\alpha}(E) = 0$ and

$$\lim_{r \to 0} \frac{U^{\mu}_{\alpha}(x^0 + r\xi) - U^{\mu}_{\alpha}(x^0)}{r} = (n - \alpha) \int (y - x^0, \xi) |y - x^0|^{\alpha - 2 - n} d\mu(y)$$

for every $\xi \in \partial B(O, 1) \setminus E$, where (\cdot, \cdot) denotes the usual inner product in \mathbb{R}^n .

For this, we have only to note the following lemma which can be proved by Lemma 1.

LEMMA 4. For a set $A \subset \mathbb{R}^n$, denote by A^\sim the set of all points $z \in \partial B(x^0, 1)$ such that $x^0 + r(z - x^0) \in E$ for some r > 0. If E is α -thin at x^0 , then $C_{\alpha}(\bigcap_{k=1}^{\infty} (E \cap B(x^0, k^{-1}))^{\sim}) = 0$.

REMARK 1. We say that U^{μ}_{α} is α -finely *m* times differentiable at x^{0} if the conclusion of Theorem 1 holds. If $0 < m < \alpha$ and $U^{\mu}_{\alpha} \neq \infty$, then U^{μ}_{α} is α -finely *m* times differentiable on R^{n} except possibly for a set *A* with $C_{\alpha-m}(A)=0$; in fact, $A = \{x \in R^{n}; U^{\mu}_{\alpha-m}(x) = \infty\}.$

REMARK 2. In Theorem 1, Condition (1) is needed. For example, we can

find a non-negative measure μ such that $U^{\mu}_{\alpha}(O) < \infty$ and $\lim_{x \to O, x \in E} |x|^{-1} [U^{\mu}_{\alpha}(x) - U^{\mu}_{\alpha}(O)] = -\infty$ for some *E* which is not α -thin at *O*. It is easy to see that this U^{μ}_{α} is not α -finely differentiable at *O*.

To construct such μ , let

$$A = \{ y = (y', y_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; |y'| < y_n/2, |y| < 1 \},\$$

$$B = \{ y = (y', y_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; (y', -y_n) \in A \},\$$

and consider the potential

$$u(x) = \int_{B} |x - y|^{\alpha - n} |y|^{-\alpha + 1/2} dy.$$

Then $u(x) < \infty$ for all $x \in \mathbb{R}^n$. We shall prove $\lim_{x \to 0, x \in A} |x|^{-1} [u(0) - u(x)] = \infty$. There is a constant C > 0 such that

$$|y|^{\alpha-n} - |x - y|^{\alpha-n} \ge C|x| \cdot |y|^{\alpha-1-n}$$

whenever $x \in A$, $y \in B$ and |y| > 2|x|. Noting that |x-y| > |y| whenever $x \in A$ and $y \in B$, we obtain

$$|x|^{-1}[u(0) - u(x)] \ge C \int_{\{y \in B; |y| > 2|x|\}} |y|^{\alpha - 1 - n} |y|^{-\alpha + 1/2} dy$$
$$\longrightarrow \infty \quad \text{as} \quad x \longrightarrow 0, \ x \in A.$$

With the aid of Lemma 1, one sees easily that A is not α -thin at O.

REMARK 3. Let E be a set which is α -thin at x^0 . Then there exists a non-negative measure μ such that $\int |x^0 - y|^{\alpha - m - n} d\mu(y) < \infty$ and $\lim_{x \to x^0, x \in E} |x - x^0|^{-m} \int K_m(x, y) d\mu(y) = \infty$.

To prove this fact, take sequences $\{a_k\}$, $\{b_k\}$ of positive numbers such that $\lim_{k\to\infty} a_k = \infty$ and

$$\sum_{k=1}^{\infty} 2^{k(n-\alpha)} a_k [C_{\alpha}(E_k) + b_k] < \infty, \quad E_k = E \cap B(x^0, 2^{-k+1}) \setminus B(x^0, 2^{-k}).$$

For each k we can find a non-negative measure μ_k with support in $B(x^0, 2^{-k+2}) \setminus B(x^0, 2^{-k-1})$ such that $\mu_k(R^n) \leq C_{\alpha}(E_k) + b_k$ and $U^{\mu_k}_{\alpha}(x) \geq 1$ for all $x \in E_k$. Set $\mu = \sum_{k=1}^{\infty} 2^{-km} a_k \mu_k$. Then $\int |x^0 - y|^{\alpha - m - n} d\mu(y) < \infty$. This gives:

(2)
$$\lim_{x \to x^0} |x - x^0|^{i-m} \int_{|x-y| < |x-x^0|/2} |x^0 - y|^{\alpha - i - n} d\mu(y) = 0$$

for i = 0, 1, ..., m;

(3)
$$\lim_{x \to x^{0}} |x - x^{0}|^{-m} \int_{|x - x^{0}|/2 \le |x - y| < 5|x - x^{0}|} |x - y|^{\alpha - n} d\mu(y) = 0;$$

(4)
$$\lim_{x \to x^0} |x - x^0|^{-m} \int_{|x - y| \ge |x - x^0|/2} K_m(x, y) d\mu(y) = 0.$$

.

On the other hand we have

$$\liminf_{x \to x^0, x \in E} |x - x^0|^{-m} \int_{|x - y| < 5||x - x^0|} |x - y|^{\alpha - n} d\mu(y) \ge \lim_{k \to \infty} \inf_{x \in E_k} 2^{-m} a_k U_{\alpha}^{\mu}(x) = \infty,$$

which together with (3) implies

(5)
$$\lim_{x \to x^0, x \in E} |x - x^0|^{-m} \int_{|x - y| < |x - x^0|/2} |x - y|^{\alpha - n} d\mu(y) = \infty.$$

By (2), (4) and (5), we obtain

$$\lim_{x\to x^0, x\in E} |x-x^0|^{-m} \int K_m(x, y) d\mu(y) = \infty.$$

REMARK 4. Let m and μ be as in Theorem 1. If, in addition, there are constants C>0 and $r_0>0$ such that $\mu(B(x, r)) \leq Cr^{n+m-\alpha}$ for all $x \in B(x^0, r_0)$ and all r>0 with $r<r_0$, then

$$\lim_{x \to x^0} |x - x^0|^{-m} \int K_m(x, y) d\mu(y) = 0,$$

i.e., U^{μ}_{α} is *m* times differentiable at x^{0} .

For this it suffices to prove

(6)
$$\lim_{x \to x^0} |x - x^0|^{-m} \int_{|x - y| < |x - x^0|/2} |x - y|^{\alpha - n} d\mu(y) = 0.$$

Set
$$a(r) = \int_{|y-x^0| < r} |y-x^0|^{\alpha-m-n} d\mu(y)$$
 for $r > 0$. Then $a(r) \to 0$ as $r \downarrow 0$ and

$$\mu(B(x^0, r)) \leq a(r)r^{n+m-\alpha} \quad \text{for} \quad r > 0.$$

Hence for b > 0 and $r = |x - x^0|$,

$$\int_{br \leq |x-y| < r/2} |x-y|^{\alpha-n} d\mu(y) \leq (br)^{\alpha-n} \mu(B(x^0, 2r))$$
$$\leq 2^{n+m-\alpha} a(2r) b^{\alpha-n} r^m.$$

On the other hand,

Fine Differentiability of Riesz Potentials

$$\int_{|x-y| < br} |x-y|^{\alpha-n} d\mu(y) = \int_0^{br} \mu(B(x, t)) d(-t^{\alpha-n})$$
$$\leq (n-\alpha) Cm^{-1} b^m r^m$$

if $|x-x^0| < r_0$ and $br < r_0$. Taking $b = a(2r)^{1/2(n-\alpha)}$, we obtain (6).

3. Proof of Theorem 2

First we shall be concerned with the case $\alpha p \leq n$. In the proof of Theorem 1, we have shown that

$$\lim_{x \to x^0} |x - x^0|^{-m} \int_{|x - y| \ge |x - x^0|/2} K_m(x, y) f(y) dy = 0.$$

Let a(r) be a non-increasing positive function of r > 0 such that $\lim_{r \downarrow 0} a(r) = \infty$, $a(r) \le 2a(2r)$ and

$$\int_0^1 \left[r^{(\alpha-m)p-n}a(r) \int_{B(x^0,r)} f(y)^p dy \right]^{1/(p-1)} \frac{dr}{r} < \infty.$$

Consider the set

$$E^{(k)} = \left\{ x \in \mathbb{R}^{n}; \ 2^{-k} \leq |x - x^{0}| < 2^{-k+1}, \right.$$
$$\int_{|x-y| < |x-x^{0}|/2} |x - y|^{\alpha - n} f(y) dy \geq 2^{-km} a (2^{-k})^{-1/p} \right\}$$

for each positive integer k. By definition,

$$C_{a,p}(E^{(k)}; B(x^0, 2)) \leq 2^{kmp} a(2^{-k}) \int_{2^{-k-1} < |y-x^0| < 2^{-k+2}} f(y)^p dy.$$

Setting $E = \bigcup_{k=1}^{\infty} E^{(k)}$, we have

$$\sum_{k=1}^{\infty} \left[2^{k(n-\alpha_p)} C_{\alpha,p}(E \cap B(x^0, 2^{-k+1}) \setminus B(x^0, 2^{-k}); B(x^0, 2)) \right]^{1/(p-1)} \\ \leq \sum_{k=1}^{\infty} \left[2^{k(n-\alpha_p+m_p)} a(2^{-k}) \int_{|y-x^0| < 2^{-k+2}} f(y)^p dy \right]^{1/(p-1)} < \infty,$$

which implies that E is (α, p) -thin at x^0 . We also derive

$$\lim_{x \to x^0, x \notin E} |x - x^0|^{-m} \int_{|x - y| < |x - x^0|/2} K_m(x, y) f(y) dy = 0$$

and thus obtain our theorem for $\alpha p \leq n$.

Next we treat the case $\alpha p > n$. For this purpose it suffices to prove

$$\lim_{x \to x^0} |x - x^0|^{-m} \int_{|x - y| < |x - x^0|/2} |x - y|^{\alpha - n} f(y) dy = 0.$$

Let $b(r) = \int_0^{2r} \left[s^{(\alpha-m)p-n} \int_{B(x^0,s)} f(y)^p dy \right]^{1/(p-1)} s^{-1} ds, r > 0.$ Then $\int_{B(x^0,r)} f(y)^p dy \le 1$

const. $b(r)^{p-1}r^{n-(\alpha-m)p}$. Consequently, using Hölder's inequality, we obtain for p'=p/(p-1)

$$|x - x^{0}|^{-m} \int_{|x-y| < |x-x^{0}|/2} |x - y|^{\alpha - n} f(y) dy$$

$$\leq |x - x^{0}|^{-m} \left\{ \int_{|x-y| < |x-x^{0}|/2} |x - y|^{p'(\alpha - n)} dy \right\}^{1/p'} \left\{ \int_{|x-y| < |x-x^{0}|/2} f(y)^{p} dy \right\}^{1/p}$$

$$\leq \text{const.} \ b(2|x - x^{0}|)^{1/p'} \longrightarrow 0 \quad \text{as} \quad x \longrightarrow x^{0}.$$

The proof is now complete.

REMARK 1. Let f be a non-negative function in $L^{p}(\mathbb{R}^{n})$ and set

$$E_{1} = \left\{ x \in \mathbb{R}^{n}; \ \int |x - y|^{\alpha - m - n} f(y) dy = \infty \right\},$$
$$E_{2} = \left\{ x \in \mathbb{R}^{n}; \ \int_{0}^{1} \left[r^{(\alpha - m)p - n} \int_{B(x, r)} f(y)^{p} dy \right]^{1/(p - 1)} \frac{dr}{r} = \infty \right\}.$$

If $0 < m < \alpha$ and $U_{\alpha-m}^{f} \neq \infty$, then $C_{\alpha-m,p}(E_1 \cap B(O, a); B(O, 2a)) = 0$ for every a > 0, which is equivalent to $B_{\alpha-m,p}(E_1) = 0$. Here $B_{\alpha-m,p}$ denotes the Bessel capacity of index $(\alpha-m, p)$ (cf. [3]). We also have $B_{\alpha-m,p}(E_2) = 0$ on account of [4; Theorem 2.1]. By these facts and Theorem 2, we may state that the potential U_{α}^{f} is (α, p) -finely m times differentiable $B_{\alpha-m,p}$ -q.e. on R^{n} if $U_{\alpha}^{f} \neq \infty$.

REMARK 2. Let $\alpha p \leq n$ and let *E* be a set satisfying

$$\sum_{k=1}^{\infty} [2^{k(n-\alpha p)} C_{\alpha,p}(E_k; G_k)]^{1/p} < \infty,$$

where $E_k = E \cap B(x^0, 2^{-k+1}) \setminus B(x^0, 2^{-k})$ and $G_k = B(x^0, 2^{-k+2}) \setminus \overline{B(x^0, 2^{-k-1})}$. (This is stronger than the condition that E is (α, p) -thin at x^0 .) Then there is a non-negative function $f \in L^p(\mathbb{R}^n)$ with the following properties:

(7)
$$\int |x^0 - y|^{\alpha - m - n} f(y) dy < \infty;$$

(8)
$$\int_0^\infty \left[r^{(\alpha-m)p-n} \int_{B(x^0,r)} f(y)^p dy \right]^{1/p} \frac{dr}{r} < \infty;$$

(9)
$$\lim_{x \to x^0, x \in E} |x - x^0|^{-m} \int K_m(x, y) f(y) dy = \infty$$

To construct such f, take sequences $\{a_k\}$, $\{b_k\}$ of positive numbers such that $\lim_{k\to\infty} a_k = \infty$ and

$$\sum_{k=1}^{\infty} [2^{k(n-\alpha_p)} a_k^p \{ C_{\alpha,p}(E_k; G_k) + b_k \}]^{1/p} < \infty.$$

Then for each k, there exists a non-negative function f_k such that $f_k=0$ outside G_k , $||f_k||_p^p < C_{\alpha,p}(E_k; G_k) + b_k$ and $U_{\alpha}^{f_k} \ge 1$ on E_k . Consider the function $f = \sum_{k=1}^{\infty} 2^{-mk} a_k f_k$. Then (7) is fulfilled and

$$\sum_{k=1}^{\infty} \left[2^{k(n-\alpha p+mp)} \int_{B(x^0,2^{-k})} f(y)^p dy \right]^{1/p} < \infty,$$

which yields (8). As in the proof of Remark 3 in $\S2$, f is seen to satisfy (9).

4. Appendix

We shall show below that in case $\alpha p < n$, a set $E \subset \mathbb{R}^n$ is (α, p) -thin at x^0 if and only if

$$\int_0^1 [r^{\alpha p-n} C_{\alpha,p}(E \cap B(x^0, r); B(x^0, 2))]^{1/(p-1)} \frac{dr}{r} < \infty,$$

which is equivalent to

$$\int_0^1 [r^{\alpha p-n}B_{\alpha,p}(E \cap B(x^0,r))]^{1/(p-1)} \frac{dr}{r} < \infty.$$

If p > 2, then 1/(p-1) < 1 and

$$\sum_{j=1}^{\infty} \left[2^{j(n-\alpha p)} C_{\alpha,p}(E \cap B(2^{-j+1}); B(x^0, 2)) \right]^{1/(p-1)}$$

$$\leq \sum_{j=1}^{\infty} 2^{j(n-\alpha p)/(p-1)} \sum_{k=j}^{\infty} \left[C_{\alpha,p}(E_k; B(x^0, 2)) \right]^{1/(p-1)}$$

$$\leq \text{const.} \sum_{k=1}^{\infty} \left[2^{k(n-\alpha p)} C_{\alpha,p}(E_k; B(x^0, 2)) \right]^{1/(p-1)},$$

where $E_k = E \cap B(x^0, 2^{-k+1}) \setminus B(x^0, 2^{-k})$. If $p \leq 2$, then we have

$$C_{\alpha,p}(E \cap B(x^0, r); B(x^0, 2)) \leq \int_0^r C_{\alpha,p}(E \cap B(x^0, 2s) \setminus B(x^0, s/2); B(x^0, 2)) \frac{ds}{s},$$

so that the inequality of Hardy (cf. [5; Appendices, A.4]) gives

Yoshihiro MIZUTA

$$\int_{0}^{1} [r^{\alpha p-n} C_{\alpha,p}(E \cap B(x^{0}, r); B(x^{0}, 2))]^{1/(p-1)} \frac{dr}{r}$$

$$\leq \text{const.} \int_{0}^{1} [s^{\alpha p-n} C_{\alpha,p}(E \cap B(x^{0}, 2s) \setminus B(x^{0}, s/2); B(x^{0}, 2))]^{1/(p-1)} \frac{ds}{s}$$

These arguments readily yield the required assertion.

References

- [1] D. R. Adams and N. G. Meyers, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J. 22 (1972), 169–197.
- [2] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin, 1972.
- [3] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
- [4] N.G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
- [5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

Department of Mathematics, Faculty of Science, Hiroshima University