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Introduction

It is well known that a cocommutative coalgebra is decomposed into the

direct sum of its irreducible components ([3], Theorem 8. 0. 5). This theorem

is based on the fact that a commutative artinian ring is uniquely decomposed into

a direct product of local rings (.[4], p.205). As for the non-commutative case,

we know that an artinian ring is the direct sum of its blocks which are uniquely

determined and indecomposable as two-sided ideals. A block is the sum of prin-

cipal indecomposable modules which are linked to each other (e.g., [1], p.171).

The purpose of this paper is to give a criterion for a coalgebra to be

indecomposable. Here, a coalgebra is indecomposable provided it cannot be

decomposed into a direct sum of two non-zero subcoalgebras.

Since the Brauer's theory stated above is constructed by using one-sided

ideals, it seems not to be useful for a theory of coalgebras. Thus we consider

the decomposition of rings from a slightly different viewpoint.

Let C be a coalgebra over a field. Then we shall prove the following result:

A necessary and sufficient condition for C to be indecomposable is that for any

simple subcoalgebras S and S" there exists a sequence

of simple subcoalgebras such that

•SiΛSi + ^ S j + i Λ S , for /•= 1,..., r - 1 .

The proof is divided into two parts. First, in Section 2, we reduce this problem

to the finite-dimensional ease, where coalgebras can be completely turned into

algebras. Secondly, in Section 3, we prove the paraphrased assertion.

All notations and terminology we will use are the same as in [3].

1. Notations, Definitions and Main Theorem

Throughout this paper all coalgebras and algebras are over a fixed field k.

Let C be a coalgebra. We denote by © = ©(C) the set of all simple subco-

algebras of C.
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(1.1) Let <5 = WS; be a partition of 8, i.e., S is a disjoint union of subsets

<5λ9 and Rλ the sum of all simple subcoalgebras belonging to S λ . Then the sum

is direct, where Λ ΐCRλ = \j Λ nRλ.

In fact, assume that (Λ °°ΛA) n ( Σ Λ °°^)^0. Since this is a subcoalgebra
μΦλ

of C, it contains a simple subcoalgebra, say 5. Then

SeS(Λ%) n S I Σ A ^ ^ S ; n (

which contradicts the assumption that the union of ®/s is disjoint.

(1.2) A coalgebra is said to be indecomposable if it cannot be decomposed
into a direct sum of two non-zero subcoalgebras.

(1.3) Let S, S' be simple subcoalgebras of C. We denote S~S' if either
S=S' or there is a finite sequence

S = Sι9 o 2,..., Sr = S

of simple subcoalgebras of C such that S i Λ S ί + 1 # S ί + 1 ΛSJ for i=l,. . . , r—1.
Then, as easily seen, the relation ~ is an equivalence relation in S(C).

Let S λ (λ e A) be the equivalence classes and put Rλ=

The main theorem of this paper is

THEOREM. C = Σ Θ Λ ° ° K A . Moreover each summand Λ°°Λλ is in-
λeΛ

decomposable.

2. Reduction to the Finite-Dimensional Case

(2.1) Let D be a subcoalgebra of C and let S, S' be simple subcoalgebras
ofD (a priori of Q. // S~Sr in S(D), then S~S' in S(C).

PROOF. Let Sl9 S2 be in 8(D). By [2] (2.3.1) we have

Therefore, for Sί9 S2 in ®(D) if SίΛcS2 = S2ΛcSί then SίADS2 = S2ADSί.
Thus S~S' in ®(D) implies that 5 ^ S ' in ®(C).

(2.2) TΓe can assume that the coalgebra C in THEOREM is of finite dimension.
In fact, assume that THEOREM holds for all finite-dimensional coalgebras.

Let C be any coalgebra and let c be any element of C. Then the subcoalgebra
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D generated by c is of finite dimension. Thus by the assumption D has the

decomposition as in THEOREM :

D = Σ Θ Dv

From (2.1) and the definition of Dt it is claer that

for some λ. It follows that

c e D c Σ φ

(2.3) Let C be a finite-dimensional coalgebra and A = C* the dual algebra

of C. The correspondence W ι-* W1 gives an inclusion reversing bijection

between the set of all linear subspaces of C and that of A. A subcoalgebra

corresponds to a two-sided ideal; the sum (resp. intersection, wedge) of two

subcoalgebras does to the intersection (resp. sum, product) of corresponding

ideals; simple subcoalgebras do to maximal ideals ([3], Propositions 1.4.5,

1.4.6, 9.0.0).

By virtue of (2.2) and (2.3), we have completely reduced the situation to the

case of finite-dimensional algebras. In this case we can paraphrase THEOREM

as follows:

(2.4) Let A be a finite-dimensional algebra. We can define an eqivalence

relation in the set of all maximal ideals of A as follows: For maximal ideals

M, M' of A, we write M~M' if either M = M' or there is a sequence of maximal

ideals

M = Mx, M 2,...,M r = M'

such that MiMi+ιΦMi+ίMifor i = l,..., r - 1 . Lβί SWl(ί = l,..., s) be the equiva-

lence classes and put

Pi = Γ\ M.

Then we have the canonical isomorphism

and each AjPf is indecomposable (as a ring), where PJ° =

3. Finite-Dimensional Algebras

Let A be a finite-dimensional algebra.

n=l
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(3.1) There exists a positive integer d such that

r\ in = ιά

n-l

for all (one or two-sided) ideals / of A. We denote ld by 700. In fact, for example,

d = dimkA.

(3.2) S0l(y4), the set of all maximal ideals of A, is a finite set and

N = r\ M
MeSJl(A)

is the (Jacobson) radical of A.

(3.3) Let /, J be two-sided ideals of A such that I+J = A. Then

If] J = IJ + JL

PROOF. By hypothesis

1 = α + b

for some a in I and b in J. Let x be any element of / Π J. Then

x = αx + bx

where αx e /J and bx e JI. This implies that

' / n cίj + jί.

The converse inclusion is clear.

(3.4) Let Pi be as in (2.4). Then for i # j we have

P? + pγ = A.

Indeed, this follows from the fact that only maximal ideals containing Pt are

members of the class $0li5 and any (proper) ideal is contained in some maximal one.

This implies, by Chinese Remainder Theorem (e.g., [1], p.46), the canonical

homomorphism

is surjective. The kernel of this homomorphism is ΓΛPf.

(3.5) Let M l 5 . . . , Mr be distinct maximal ideals and I an ideal of A such

that MiI=IMi for i = l,..., r. Then
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i(M1 n - n Mr)^{Mι n - n Mr)i

PROOF. We prove this by induction on r. It is trivial for r = l . Assume

that the assertion holds for r—1. Let K=*MX n ••• ί l M r _ 1 ( Since all M/s are

distinct maximal ideals we have

K + Mr = A.

Therefore by (3.3) we have an equality

K n MΓ = KMr + MrK,

so that this commutes with /.

(3.6) Let Pf be as in (3.4). By (3.5) we have

Pf n Pf = PJ°py.

Indeed, two maximal ideals belonging to distinct classes commute. Therefore

Pf n - n p ? = Pf p ?

= 0.

Consequently the homomorphism

A—>ΠAIPT

is an isomorphism. This completes the proof of THEOREM.

4. Corollaries and Example

In this section we list some direct consequences of THEOREM and an example.

(4.1) Let C be a coalgebra and C1 = COΛCO, where Co is the coradical

of C. Then C is indecomposable if and only if Cx is indecomposable.

In fact, since S A CS' C Ct for simple subcoalgebras S and S', we have

S Λ cS
f = S Λ cιSf.

(4.2) A necessary and sufficient condition for a coalgebra C to be de-

composed into the direct sum of its irreducible components is that

SΛS' = SΆS
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for any simple subcoalgebras S and Sf of C.

Note that when C is cocommutative this condition is trivial.

(4.3) Even if C is indecomposable, the number of simple subcoalgebras

need not be finite.

EXAMPLE. Let C be a vector sapce with basis {xn\ n = l, 2,...} u {yn\ n =

1, 2,...}. Define A and ε as follows:

A(xn) = xn ® xn9 ε(xn) = 1, for n = 1, 2,...,

χn®yn + yn® χn+u ε(yn) = o, for n = l, 2,...

Then C is actually a coalgebra and S(C) = {/ocJ n = l, 2,...}. It is easy to see

that for each n

kxn A kxn+ x Φ kxn+ ί Λ kxn,

since yn belongs to the left but not to the right. Thus by THEOREM C is

indecomposable.
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