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§1. Introduction

The K- and KO-rings of the standard lens space L"(m)=S?"*1/Z, mod m
are investigated by several authors, and the structures of the reduced K- and
KO-rings K(L"(m)) and KO(L"(m)) are determined by J. F. Adams [1, Th.7.3-4]
when m=2 (L"(2)=RP?"*! is the real projective space), and T. Kambe [3]
when m is an odd prime. Furthermore, the additive groups K(L"(p")) (p: prime)
and K~0(L"(p')) (p:odd prime) are determined by N. Mahammed [9, Th.3],
and an explicit additive base of K(L"(p")) (p: odd prime) is given in [5, Th.1.7].

In this note, we shall determine the additive structure of

KO(L"(2"))  forany r2.

Let p be the non-trivial real line bundle over L"(2"), and n be the canonical
complex line bundle over L"(2"), i.e., the induced bundle of the canonical complex
line bundle over the complex projective space CP" by the natural projection
n: L"(2")>CP". Then we can prove the following

ProrposiTION 1.1. The reduced KO-ring K~0(L"(2')) (r=2) is generated by
the stable classes

(1.2) Kk=p—1, & =rn—2(rnis the real restriction of ) ;
and there hold the following relations:
1 if n=1mod4,

(1.3) =0 for i>1[n/2] +¢ 6=
0 otherwise;

(1.4) a(r—1) =2k, k2= — 2k,
(1.5) kG = — 2k + TiZHQ2 + 6)a()[T:=2+1 (2 + 6(1)},
where 6(s)=6%+ X35 1y,;67 e KO(L"(2)) is given inductively by

(1.6) 3(0) = &, a(s) =4a6(s—1) + a(s—1)? O<s<r).
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Hence we see that K~0(L"(2’)) is generated additively by
(1.7) {k, 7: 1 <i<N'}, N =min{2'—-1, [n/2] + ¢&}.

Furthermore we have the following main theorem, where Z,{a) means the
cyclic group of order u generated by a; a, and b, are the integers with

(1.8) a;,=1[n/2], n=2%a,+b, 0=Zb,<?2s O<s<r),

¢ is the one in (1.3), N’ is the one in (1.7); and «, & and &(s) are the elements in
(1.2) and (1.6).

THEOREM 1.9. The reduced KO-group of the standard lens space L"(27)
mod 2" (r=2) is given as follows.

@) ([6, Th.B]) KO(L°(4))=Z,{x) and KO(L"(4)) is the direct sum
KO(L"(4)) = Z,(k + 291G @ Z,1)<F
u =2ute, y(1) = 221+l nz1),
where the first generator is able to be replaced by x if n=1mod4.
() KO(L"(2") (r=3) is the direct sum
KO(L"(2") = 3¥0Z,<6>, N’ =min{2-1—1,a, + ¢},
and the order u(i) and the generator &,
Go =+ XNy2,6/, 6= Yioyz;67 (1 Li<N)

where z;=1 or 1 —2%()~1 (a’(i)=2), are given as follows:
(@) The case n¥1mod4: For i=0,

u(0) = 2o--1, Go = Kk + X223 D@ -t D7G(r—1—1)  (n 227,
u(0) = 2, Oy =K (n <21,
and for i=25+d=<a, with 0<s<r—2 and 0<d <25,
u(l) =212, . G =g if i=1;
u(z) —_ 2r—s-—2+a., 6:’ - &(S) + Z§=1 2(2‘—1)(a,+1)&(s__t) l:f i=2s g 2,
a1+ 1 for 2d S by,
u(i) = 2r—s—3+a'(i)’ a'(l‘) p—
s+1 SJor 2d> by,

&, = 16D (2 + 6(D) — 29 D-1545(s)
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+ Y51 201D (154G (s + 1 — ) if i=24+d23,d21.

(b) The case n=1 mod4: u(i) and &; are the same as (a) if i#a,+1
mod 2"2; and

u() = 29, 6; = GG (D ITi=3 (2 + 6(1)
ifi=a; +1-2"%a,_;—1)=2"2+4+d,2d=b,_  +1 (nz27");
u(i) = 2, 6, =" if i=a;+1 (n<2Y).

As compared with the above theorem, the result for the real projective space
L"(2)=RP2?"*1 js stated as follows:

(1.10) (J. F. Adams [1, Th.74])  KO(L"(2)) = Z, (), u' = 22ar+i+e,

In §2, we study some relations in the reduced K-ring K(L"(2r)) which is
generated by the stable class o =5 —1 with the relations 6"*1=0=(1+06)*"—1, and
give an additive base of K(L"(2")) explicitly in Theorem 3.1.

In §4, we study the induced homomorphism

i*: KO(L"(2") — KO(L"1(27) (i:L"(2r) = L"(2"))

by using the results of B.J. Sanderson [11, Th. (3.9)] on the KO-ring of the
complex projective space, and prove the first half of Proposition 1.1 in Propo-
sition 4.4(ii) and (1.3) in Corollary 4.12 (ii). Furthermore, by using the Bott
sequence ([2, (12.2)]), we prove some properties of the complexification

¢: KO(L"(27)) — R(L"(2"))

in Proposition 5.3, which contains the recent result of M. Yasuo [12, (A.13)]
that ¢ is monomorphic if n=3mod4.

By using these results, we study some relations in KO(L"(2")) in §§6-7,
and obtain the relations (1.4-5) in Proposition 6.3, and prove finally the main

theorem in §7. Moreover, the group KO(LZ(2")) of the 2n-skeleton Lz(27)
of L*(2r) is given in Theorem 7.5.

§2. Some relations in K(L"(2"))
The group S!={ze C:|z|]=1} acts on the (2n+ 1)-sphere

S21*1 = {(zg,..., 2,) € CMF1i|zg|? + o+ |2,]2 = 1}

diagonally (i.e., z(zgs..., Z,)=(22¢,..., 22,)), and the orbit manifold
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L*(m) = S?**Z,., Z,={zeSt:z"n=1}c S, (mz=z2)
is the standard lens space mod m. By considering the subspace
2.1) Li(m) = {[zo,..., 2,] € L"(m): z, is real = 0} = L"(m),
we have the cell-decomposition L*(m)= L§(m) U e2"*1=\U?2{1e’, and
2.2) L(m)/ Lg(m) = §2"*1,  Li(m)/ L§™}(m) = §*"~1U,, *",

where the attaching map m:S?"~1— 5271 is the map of degree m.
Let CP"=S?"*1/S1 be the complex projective space, and

(2.3) n: L(m) — CP*, =: Lim)— CP"

be the natural projection and its restriction.
Let 5 be the canonical complex line bundle over CP”. Denote also the ca-
nonical one n*n over L*(m) or L%(m) by 5, and its stable class by

(2.4) o =n—1 in R(L"(m)) or R(L&(m)).
Since the first Chern class of #™ is 0 in H*(L"(m))=H*(Li(m))=Z,,,
2.5) nm—1=(1+0)"—1 =0 in K(L"(m)) or K(L&(m)).

Further we have the following by using the Puppe exact sequences of (2.2) and
the results of J. F. Adams [1, Th.7.2] on K(CP"):

PropoSITION 2.6 ([4, Lemma 2.4, Prop. 2.6]). (i) The induced homomor-
phism

i*: R(L"(m)) — R(L*'(m))  (i: L"'Y(m) = L"(m))
is epimorphic, i*6=0 and Ker i*=Z,{(c") .

(i) R(L"(m))=R(L&m)) by the induced homomorphism of the inclusion,
and this ring contains exactly m" elements and is generated by o which satis-
fies a"t1=0 and (2.5).

Now let m=2r, and consider the reduced K-ring
Ry = Rws2y) (rzy
and its elements
2.7) o) =n*-1=(1+0)*—-1 (0Zs=<r), o(0) = o.

Then by definition and by (1+06)?"—1=0 in (2.5), we see that
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(2.8) o(s) =20(s—1) + a(s—1)? (0O<s<r), a(r) =0,

and (1+0(s))>* *—1=0. These and ¢"*'=0 in Proposition 2.6(ii) imply the
following

LemMa 2.9 ([8, Lemmas 2.3-4]). (i) For any integers kq,..., ks, =0 and
k>0 (0=s=<r),

20 scoo(t)* s =0  in K(L"2")
if h=0 is an integer such that 25(h—r+s) = n— X 5-0 2°k,.
(ii) For any integers kg,..., k—; Z0and k,>1=20 (0<s<r),
2Wag(s)es = (=1)120 *lag(s)*~! (e =[5z a(®)¥) in K(L"(27))
if K 20 is an integer such that 25t (h'—r+s+1)=n— X 5., 2%,.
Furthermore, we see the following
LemMmaA 2.10. IfO0<s<r,n<d+2%k, d=0 and k=2, then
Y5 224 2%gdg(s—1) =0 in R(L"(27).

Proor. If k is even, the lemma is proved in [8, Lemma 2.5].
Since n<d+2%k, by Lemma 2.9 and ¢"*!=0 in Proposition 2.6 (ii), we
see that

(2.11) 2r-s-lgdg(s)k = 4 2r—s"2+kgdg(s), 2rsTlgdt2tk = (),
Suppose that k=2k'+1=21is odd. Then we can prove that
(2.12) 2rs~1gdg(s —t+ 1) 7'k — 2r=s=lgdg(s —¢)2'k
+ 2rs"2%kgdg(s —1)o(s) + 2rs"2*2kgdg(s—1) if t=1Z<,
=( 4 2rs~t2kgdg(5—1) 4 2r-s2t4kgdg(s —2) if t=2Z<s,
2r-s=2+2gdg (s —1) if 35t<s

in R(L"(2")), instead of () in the proof of [8, Lemma 2.5], as follows.
Set u=s—t for 1<t<s. Then we see that

(2.13)  2rs-lgdg(u+ 1)2 7 = 2r-5-164{26(u) + o (u)?}2* a(u+1)2*""
(by (2.8))

— %;16'<2'ik )2r-—s—1+iado-(u)2"“k'—io-(u+ 1)2"‘
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= 2r"1gdg(u)> ¥ g (u+1)>*" (by Lemma 2.9(1)),

by noticing that (2'{" = 0mod 2+ if i=2°j>1 and j is odd.

If t=1, then the left hand side of (2.12) is equal to

2r=sgdg(s — 1) *+1 = 2r=sgdg(s—1) {o(s)—20(s— 1) }?¥" (by (2.13) and (2.8))
= zﬂ‘&(z’{")(_ 1)i2r=s+igdg(s — 1)i+1g(s)2k'~i
= 2r-sgdg(s—1)a(s)k~1 + 2r-s~t+kgdg(s— 1)k (by Lemma 2.9 (i)).

This is equal to the right hand side of (2.12) by Lemma 2.9.
If t = 2, then the left hand side of (2.12) is equal to

(2.14) ,?;;‘(2'1.'1) or-s-1+igdg(y)y2tk=i (by (2.13) and (2.8)).
The i-th term of this sum is equal to
. 2t—1 . . .
(— 1)"1( i )2"““2 koda(u) if i#1,2,4,
by Lemma 2.9 (ii)). If i=2" (v=0, 1 or 2), then the i-th term in (2.14) is equal to
21 —s—14i —i t-1g—
( i )2' s=itigdg(u)~H{o(u+1) — 20(u)}?>* 7'*2
= + 2r—u—2+i—vo-d0-(u)4—ia-(u+ 1)2"116—2
+ (2'_1 2rs=3+i42¢ "k gd g (yy)2¢ " hH 2
i

-1
by Lemma 2.9 (i), since 2;,, > = 2"1"vmod 2¢~*. Further this is equal to

i 2r—u—5+i—u+2"1kada-(u)4—io-(u+ 1) + (_ 1)i-1<2tl:_1) 2r—s—2+2'ka-da-(u)
by Lemma 2.9 (ii). Thus the sum (2.14) is equal to the sum of
i=1

2"1( —_ 1)1—1(2;-1) 2r—s—2+2'kada(u) — 2r—s—2+2‘kada(u) s

+ 2rmu=42"kgd{g(u) 2+ o (u)3}o(u+1) = + 2342 kgdg(u + 1)

(the equality follows from Lemma 2.9 (ii) since a(u)?>+o(u)*=20(u)—o(u+1)+
o(u)o(u+1) by (2.8)) and
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+ 22 Tikgdg(y 4 1) if ¢ 2 3;

and the last term does not appear if t=2. Hence we see (2.12) also for t=2.
Now, by (2.11-2), we see that

(2.15) X s_p2r s 2*2%kgdg(s—1)
4 2r-3+kgdtig(]) if s=1,
+ 2r-s72%kgdg (s —1)o(s) + 2rs~1+2kgdg(s —1) if s=2.
If s = 2, then by (2.15) x 6(s—1) and Lemma 2.9, we see that
2rs=2tkgdg (s —1)0(s) = £ 272+ 2kgdg(s — 1) = £ 25~ 1+2kgdg(s —1).

Thus the right hand side of (2.15) is 0 as desired if s=2. The same is also valid
if s=1 by Lemma 2.9 (i).
Therefore the lemma is proved completely. q.ed.

§3. The additive structure of K(L"(2"))

By the results in §2, we have the following theorem, where ¢ and o(s) are
the elements in (2.4) and (2.7), and a, and b, are the integers in (1.8), i.e.,

n=2a,+b, 0<b <2 (=<s<r).

THEOREM 3.1 (cf. N. Mahammed [9, Th. 3]). The reduced K-group of
the standard lens space L"(2") or its 2n-skeleton L§(2") (r=1) of (2.1) is the
direct sum

R(L2)) = RWWy2) = Ty ZypCo), N =min{2'—1, n},
and the order (i) and the generator o; of the i-th cyclic factor for
1Zi=d+2°<N, 0Zs<r and 0=5d <2,
are given as follows:

a,+1 if d<b,
t(l) — 2r-s—2+a(i), a(l) —_

ag if d> b,
ala(s) if d=b,

G’i =
335023~ Dalgdg(s— 1) otherwise.

PrOOF. By Proposition 2.6 (i) and (1+06)*—1=0 in (2.5), we see that
R(L"27) is generated additively by {¢i: 1 <i< N}, and hence it is also so by
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{Gl:léléN}y

since 0;=0'+ X i1 x;;07 by (2.7) and the above definition.
On the other hand, by Lemmas 2.9 (i), 2.10 and the above definition, we see
that

t(i)o; =0 for 1<iZN,
since n=2%a,+b,<d+2%a(i) and a(i)=2 if i=d+2°<N. Further
i {(r—s—=24+a)2s+b,+1} + (r—u)(b,+1)
=it (r—s—=2)25+(n+Du+(r—u)(n—2+1) = nr
by (1.8), where u=r if n=2" and a,=1 otherwise. Thus
L@ =2,

which is equal to the order of K(L"(2")) by Proposition 2.6 (ii).
Therefore, we have the theorem. _ q.e.d.

Here, we prepare the following for the purpose of the later sections.
Instead of K(L"(2")), we consider the quotient ring

(3.2) R(L™12r)[20™y  (rz2),

where the ideal (26"*!) generated by 2¢"+! is the cyclic subgroup Z,,-:{20"*!)
by Proposition 2.6; and we denote an element in K(L"*1(2")) and its coset in
R(L"1(27)/{20"*1) by the same letter.

Lemma 3.3. (i) o"*1#0 in K(L"*1(2")/{20™*1) of (3.2).
(ii) Lemma 2.9 holds for R(L**1(27))/{26™*1) instead of K(L"(2")).

(iii) So does Lemma 2.10 under the additional assumption that s<r—?2
or n+2=d+2sk.

ProoF. (i) is seen immediately by Proposition 2.6 (i).

(ii) In the proof of Lemma 2.9 ([8, Lemmas 2.3-4]), we use the relation
o"*1=0in K(L"(2")) only at the first step of the inductive proof of [8, Lemma 2.3]
to show that 2r+k¢»~h =0 for h <0, which follows from the relations

(3.4) 26"t =0 and o2 =0 in  K(L"1(27)/20m1y ,

since r=2. Hence we can prove (ii) by the same argument as [8,Lemmas 2.3-4].
(iii) In the proof of Lemma 2.10 (and [8, Lemma 2.5]), we use the relation
o"1=0 in K(L"(2")) only to show that 2r—s~1g4+2*k=( in (2.11) (and [8, p.87]),
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which follows from (3.4) if r—s—1=1 or d+2%k=n+2. Hence we can prove
(iii) by the same argument as Lemma 2.10 (and [8, Lemma 2.5]). q.e.d.

LemmAa 3.5. (i) IfO<s<r, n<d+2%, d=0 and k=2, then
+ 2r—s—2+ka-da-(s) = 2?=1 2r—s—1+2‘(k—1)a-da(s_t)2‘ in K(Ln(zr)) .

(ii) If s<r—2 or n+2=d+2°k in addition, then the above equality holds
also in R(L"*1(27))/<26™+1) of (3.2).

Proor. We see easily (i) by Lemmas 2.10 and 2.9, and (ii) by (iii) and
(ii) of the above lemma. q.e.d.

REMARK 3.6. We notice that the result of [5, Th. 1.7] on K(L"(p")) for
an odd prime p holds also for p=2. In fact, by using Lemma 3.5 (i) instead of
Lemma 2.10, we see that the generator o; in Theorem 3.1 is able to be replaced by

Y5020 D@D -Dgdg(s—1)**  if i=d+25d+#b,

§4. The induced homomorphism on the KO-groups
of the inclusion L"1(2") < L*(2")

We use the following notations frequently:
(4.1 Lrl = L™27), Li*=L§2) (rz2),

where the latter is the 2n-skeleton in (2.1).
Consider the stable classes

4.2) Gg=ro=m-2, k=p—1 in KO(L¥)

of (1.2), where o € K(LF) is the one of (2.4), r: K—KO is the real restriction, and
p is the non-trivial real line bundle over L%, i.e., p is the real line bundle over
Lk whose first Stiefel-Whitney class w,(p) e H(L¥; Z,)=Z, is non-zero.

LEMMA 4.3. By the complexification c: KO(L¥)—R(L¥),
cd = 0%/(1 + 0), ck =o0o(r—1),
where o(r—1)=n?"""—1¢€ R(L¥) is the element in (2.7).
Proor. Let t: K—K be the conjugation. Then cr=1+t¢, ty=n"1 and
cg=cro=1+00N-D=n+n'1-2=m0-1)?*n=0d*1 + o).

The second equality follows from cp=n%""" ([6, Prop. 3.3]). q.e.d.
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Now, we can prove the following
ProroSITION 4.4. (i) The induced homomorphism
it: KO(LY) — KO(LE™Y) (i Li~* < L)
is isomorphic if k=7, 6, 5 or 3 mod 8, epimorphic otherwise and
Z, 2521y if k= 8m + 4,
Z,{g¥mt1) if k=8m+2,
4.5) Kerif =
Z,{x52m) if k=8m+1,
Z,{a%™) if k=8m,m>0.

(i) if6=a, ifkx=x and the ring K~O(LL°) is generated by & and k.

Proor. The two equalities in (ii) are clear by definition.
Consider the commutative diagram

KO(8?m) 22, KO(S2") -2, KO(S2"~ 1\, e2") — KO(S?"1) X2%, KO(S?"~1)

” [ s

Ro(sy -2, KoLz i, KoL)

P i

KO(CP") =, KO(L?") KO(L2"-?)

of the Puppe exact sequences, where p’s are the projections (cf. (2.2)) and = is
the second one in (2.3).

(4.6) Ifk=7,6,5 or 3 mod8, then Keri}= 0 since Kb(S") = 0.
Let n=4m+2,4m+1 or 4m. Then Kb(Sz")=Z, Z,or Z, and
P¥sz = 2y"mH, yImttor yin - (p*: KO(S?7) —> KO(CP™),

respectively, by the results of B. J. Sanderson [11, Th. (3.9)], where s,, € KO(S?")
is a generator and y=r;1—2eK7)(CP"). On the other hand, n*y=¢& by defi-
nition. Thus by the above commutative diagram of the exact sequences, we
see that

4.7 Ker i}, (n—4m=2, 1 or 0) is the cyclic subgroup generated by 2g2m*!,
a?m*1 or ¢2m, and its order is a divisor of 27, 2 or 27, respectively.

For the case k=8m+ 1, consider the diagram
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L 2 LYLIm(=SY 2= LIALI[LImY) = LiASS

Ja Jime ini

Lk x LkwxPr, [k x (CP4m|CP4m~1) L, [k A (CP*|CP4m=1) = Lk A S8m,
where 4 is the diagonal map, 7 and ¢ are the homeomorphisms given by
T([Zos--+s Zam—1> Zaml) = [Zams Zos-+> Zam—11>
o([z], [zo,...; Zam)) = [2Z0se-» ZZ4m] (z4m is Teal = 0),

n’s are the ones in (2.3), ¢ is the projection and i is the inclusion. Then we see
easily that this diagram is homotopy commutative by the homotopy h,: L¥
— Lk A (CP*m|CP4m~1) given by

h(D) = ([ + (1= 1) |z4m| ™) ?24m; 1Z0s--5 1Zam-1], T(0))

(=[zo»...» Zaml € L¥). Hence by noticing that t*=1: KO(LK)— KO(L¥), we
have the commutative diagram

KO(L¥) 2 KO(S) -2, KO(L!AS*™) = KO(L}) ® KO(S*™)

]. i*@l}

KO(L¥)® KO(L¥) 12~ _ KO(L¥) ® KO(CP*") 2 KO(L¥) ® KO(S®"),

where - is the multiplication in the ring KO(LF).
In this diagram, n*p*sg, =a2™ by the above proof of (4.7), and i*k=k is a
generator of KO(LY)=KO(S')=Z, by definition. Thus

(4.8) Keri¥, .= Im p* is generated by k2" whose order is 2 or 1.

Now, we see the latter half of (ii) inductively by (4.6-8), so that the ring
homomorphism i} is epimorphic for any k by the equalities in (ii). Thus we have
the proposition by (4.6-8) and by showing

2rG2mtl £ 0 in fO(L§m+4)’ F2mtl £ () in IfO(LE"‘“) ,
“4.9)

kG2 £ 0  in KO(L®m*Y),  2r1G2m 20 in KO(L™).
Since the complexification ¢ is a ring homomorphism, Lemma 4.3 implies
¢t = g% /(1 +0)t, c(k6?) = a(r—1)6?/(1 +0)'.
Then by using Proposition 2.6, Lemma 2.9 (ii) and (2.7), we see (4.9) as follows:

(410) 2r062m+1 = 2ro-4m+2 — __2r—]a-4m+3 # 0 n K(L§m+7),
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so that 2rG2m+1£0 in KO(L8™*7), which implies the first relation in (4.9) by
(4.6) for k=7, 6,5 mod8. Hence the second one in (4.9) holds by (4.7) for
n=4m+2 and (4.6) for k=8m+3. Moreover,

(4.11) ca?™t =0, c(ke?™) = o(r—1)o*™ = 2r-lgém+l 3£ 0 in K(L&8m+2),

so that g2m*+1#£KkG?" in K?)(Lf"'”), which implies the third one in (4.9) by (4.7)
for n=4m+1. Further the last one holds since 2"!¢g?m=2r-1g4"#£0 in
R(L8m).

Thus we see (4.9), and the proposition is proved completely. g.e.d.

By (i) of the above proposition, we see immediately the following

COROLLARY 4.12. (i) (N. Mahammed [10, Th. 3.4.2], M. Yasuo [13, Th.
(0.1)]). The order of the group KO(L"(2")) (r =2) is equal to 2(r+DIn/21+1%e ywhere
¢ is the integer in (1.3), i.e., e=1 if n=1 mod 4, =0 otherwise.

(ii) =0 in KOWL"2)) if i>[n2]+e.

§5. The complexification
It is known that the complexification c is contained in the Bott exact sequence
(5.1 KO!(X) -2 KO(X) — R(X)

(R. Bott [2, (12.2)]), where KOi (KO°=KO) is the reduced KO-cohomology
and 0 is the natural homomorphism.

By using this sequence, we prove the following proposition on the com-
plexification

¢t KO(L"(2) — R(L'2)  (rz2),
which contains the result of M. Yasuo [12, (A.13)] that

(5.2) ¢ is monomorphic if n=3 mod4.

ProPOSITION 5.3. For any n=4m+1, 0<1<3, we set
(5.4) n=2[n/2]+1=n ifnisodd, =n+1 otherwise.
Then there are monomorphisms of rings
¢, : KO(L"(2)) — R(L™(27) if 1#1,
e ¢;: KO(L"(27) — R(LY*1(27)/K26"+1y  if 1=1,

(r=2, and the last ring is the one in (3.2)) such that cy=c and the diagram



KO-Groups of Lens Spaces Modulo Powers of Two 481

KO(L8m+7) i, KO(L8m+5) —i*, KO(L8m*3) _i*, KO(L#m+1)

(5.6) =l e l l N l

K(L§m+7) — K(L§m+5) - K(L§m+5)/<2a4m+2> - K"(L§m+3)

is commutative, where i’s are the inclusions and i, ' are the projections with

Yy =i*.

Proor. We prove the proposition inductively by assuming
(57)  KOY(L#m) =0, (KOYL?) = KO'(pt)=0 is well known).

Consider the Puppe exact sequence

KO(L2") —i*, KO(L2"2) — KO\(S2%~1\U,. e2") _P*,
KO'(L2") i+, KO (L2m2)

of the second one in (2.2). Since the left i* is epimorphic by Proposition 4.4 (i),
(5.8) p* is monomorphic for any n.

On the other hand, by the Puppe exact sequence for KO! of the first one in the
proof of Proposition 4.4, we see easily that

(5.9) KOY(S?"'U, ey =2Z, ifn=10or2modd4, =0 otherwise.
Therefore (5.7) implies

(5.10) KO(L8"+2) = Z,.
Consider the Bott exact sequences in (5.1) and the commutative diagram

KO'(L2m-2) —2, KO(L2"~2) —< R(L2""2)

] [ T

Ko\(L2my -2, KO(L?") —<» R(L2").
Then by the second equality in (4.5) and the first one in (4.11), (5.10) implies
(5.11) Imd =Kerc= Z,{*m') =Keri¥,,, in KO(LE"*?)
(ip: Ls-1c Lk, If a e KOY(LEm*4), then i*do=di*a=as?m+1 by (5.11), so that
du = (a + 2a")6?"*1 in KO(L8"*4) forsome a’eZ,a=0or 1,

by Proposition 4.4 (i) for k=8m+4, 8m+3. On the other hand,
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(5.12) cg2mtl = gém+2 {n K~(L§m+4)’ er<o.4m+2> - K(L'S_m+4)’
by Lemma 4.3 and Proposition 2.6. Hence (a+2a’)o*"*2=cda=0 in K(L8m*4),
so that a=0. Thus di*a«=0, so that i*a«a=0 by (5.10-11). Therefore i*:
KO'(L8*4)—KO'(L8"+2) is 0, and the first exact sequence and (5.8-9) imply
(5.13) KO\ L8m+4) = Z,.

Similarly, the first equality in (4.5) and (5.12-13) imply that
(5.14) Imd = Kerc = Z, {27621y in KO(LE"*%).
If Be KO\(L8"*), then i*dB=0i*B=2rbG?>*! (b=0 or 1) by (5.14), and df=
2rb52m+1 in KO(L8"*6) by (4.6). Hence by (4.10) and Proposition 2.6,

—2r-1pg4m+3 — orp(cg2m*+1) = cdf = 0 in K(L§m+6) = K(L§m+7),

so that b=0. Thus 0i*8=0, so that i*f=0 by (5. 13-14). Therefore
i*: KO'(L8"*6)—KO'(L8™+%) is 0, and the first exact sequence and (5. 8-9) imply
(5.15) KO'(L8m+6) = 0, so that KO'(L8"*7) = KO!(L8"*8) = 0
by the Puppe exact sequence KVOI(S")LVEO‘(L,’.‘),L»K~01(L§‘1)%K~02(Sk)..,

Now, the above proof shows that (5.7), (5. 10-11) and (5. 13-15) are valid
Jfor any m by induction; and these imply the proposition as follows.

c3=c is monomorphic by (5.15) and the Bott exact sequence, and so is
¢, =c3i* ! since the upper left i* in (5.6) is isomorphic by Proposition 4.4 (i).
In the middle of (5.6), we have noticed in (3.2) that

Kery = Z,,-:{26*m*2y  in K(L8m*5).

Further iy, <: LE"** <= L85 induces isomorphisms of the KO- and K-groups
by Propositions 4.4 (i) and 2.6 (ii), and hence (5.12) and (5.14) are valid in K(L8™*5)
and KO(L8m+5), respectively. Thus we see that

Ker (Yc) = Z,.2621y  in KO(L&™*5).

On the other hand, the upper middle i* in (5.6) is epimorphic and its kernel is
equal to the right hand side of this equality by Proposition 4.4 (i). Therefore
¢, =yci* 1 is the desired monomorphism.

Similarly, in the right of (5.6), i* is epimorphic and (5.11) implies Ker i*
= Kerc since both i#,.;’s on the KO- and K-groups are isomorphic. Thus
co=ci* 1 is the desired monomorphism. q.e.d.
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As an application of the above proposition, we see the following

CoroLLARY 5.16 ([8, Th. 1.4], cf. M. Yasuo [12, Prop. (3.5)]). In
KO(L"(27) (r=2), the order of the power & (1<i<[n/2]) of G in (4.2) is equal to

2rtn=2i ifpjs odd, 2rt"2*t1 if nis even;
Gtn/21+1 s of order 2 if n=1 mod4, and is 0 otherwise; and §l"/21+2=0,

Proor. We see the results for & (i>[n/2]) by Proposition 4.4 (i).

The order of ¢! (1Zi<n’) in K(L"(27)) is equal to 2r+"'~i by [4, Th. 1.1],
and we see similarly that the same is true in K(L"*1(2")/{26™ *!> by using
Lemma 3.3 (ii). Furthermore, by Lemma 4.3 and the commutativity of (5.6),
the monomorphism ¢, in (5.5) satisfies

cdt = a?/(1 + o).
Therefore we see easily the results for ¢ (1 ZiZ[n/2]). g.e.d.
REMARK 5.17. We can prove that KOY(L¥) (r=2) is equal to
0 if k=0,60r7mod§, Z, if k=2or4modS§,
Z if k=1or5mods, Z,®Z, if k= 3modSs,

which has been proved by M. Yasuo [13, Th. (0.1-2)]. In fact, the first half
is proved in the proof of Proposition 5.3. Then, we see the results for k=1, 5
mod 8 by using the exact sequence after (5.15) where p* is monomorphic, and for
k=8m+3 by noticing that LX/L¥~2 is homotopy equivalent to S¥~1v S* and by
studying its Puppe exact sequence.

§6. Some relations in KO(L"(2"))

Together with & and « in (4.2), we consider the real restriction
6.1) a(s) = ro(s) e K~0(L"(2’)) 0=s=<r), 60 =g, dr)=0,
where a(s) € K(L"(2") is the element in (2.7).

LEMMA 6.2. (i) By the complexification ¢: KO(L"(27))— R(L"(2")),

ca(s) = o(8)?/(1 + a(s)), c(2+ a(s)) = (2 + o(s+ 1))/(1 +0(s)).

(ii) (i) and Lemma 4.3 hold also for c, in (5.5) instead of c.

Proor. (i) The first equality is seen by the same way as the first one in
Lemma 4.3, and it implies the second one by (2.8).
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(ii) is seen immediately by the commutative diagram (5.6). q.e.d.
Now, we study some relations in KO(L"(2")).
ProPosITION 6.3. (i) The following relations hold in K~O(L"(2')) (r=z2):
6.4) a(s) = 4(s—1) + a(s—1)? O<s=r),
i.e., 6(s) coincides with the element given by (1.6).
6.5) a(r—1) =2k, k?= —2.
6.6) K2+ () = Tiz2 {2 + FNFOTTZ, (2 + 6(u))}
O=ss=sr—-2);
in particular, k(2+&(r—2))=0 and we have (1.5) by taking s=0.
(ii) KO(L"(2%) (r=2) is generated additively by the elements
{k,6::1 i< N}, N =min{21-1, [n/2] + ¢},
where ¢ is the integer in Corollary 4.12 and N' is the one in Theorem 1.9 (ii).

Proor. (i) The second equality in (6.5) follows from (1 +k)2=p2?=1.
By Lemmas 6.2 (i), 4.3 and (2.8), we see easily that

c6(s) = Ro(s—1) + o(s—1)»)?/(1 + a(s—1))? = c(46(s—1) + a(s—1)?),
ca(r—1) =20(r—-1)1 + o(r—1))/(1 + o(r—1)) = 2ck.

Thus we have (6.4) and the first equality in (6.5) for m =3 mod 4, since ¢ is mono-
morphic in this case by (5.2), and so for any n by the equalities in Proposition
4.4 (ii).

Similarly we see (6.6) by showing that the c-images of its both sides are equal
as follows: By Lemmas 6.2 (i), 4.3 and (2.8),

Ol Ti7+1 2 + 6(w) } = o()T1izte2 2 + oW)/TTEF (1 + o(w)
={6()(2 + a(t+1))—0o(t+1) }HTizt+2 2 + a(w)/(1 + o(r—1)),

since o(t)?(1+0(1))=0(t)(2+0o(t+1))—o(t+1). Hence the c-image of the right
hand side of (6.6) is equal to

2 + o(s+ D)) {o(s+ DI Tizi+2 2 + o) —o(r— 1}/ + a(s) (1 + o(r—1))
= {o(r) — 2 + o(s+1))a(r—1)}/(1 + o(s))(A + o(r—1)),
which is equal to c{x(2+ 6(s))} since 26(r — 1)+ o(r — 1)2=0(r)=0.
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(i) By a(0)=a and (6.4), we see inductively that
6.7) 6(s) = 62 + Y35t y,67 (ys;: even).
Hence by the first equality in (6.5), 32" ' is a linear combination of
(6.8) {k,d": 1 Zi<2r1},

and so is k2 by the second one in (6.5). Moreover so is kG by (6.6) for s=0
whose right hand side is a polynomial on & of degree 21 —1 by (6.7).

On the other hand, the ring KO(L"(27)) is generated by ¢ and k by Prop-
osition 4.4 (ii). Thus we see that it is generated additively by (6.8), and we
obtain (ii) by Corollary 4.12 (ii). q.e.d.

In the following, we use the monomorphism ¢, in (5.5).

LemMma 6.9 (cf. [8, Lemmas 3.4-5]). The following relations hold in
KO(L"(2")) (r=2) where n’=2[n/2]+1 is the integer in (5.49):

(i) For any integers k,..., ky_1 20 and k,>0 (0<s<r),
2 T30 60« = 0

if k=0 is an integer such that 25(k—r+s)=n'— 3 5.0 2! k,.

(ii) For any integers k,..., k,_, =0 and k;>1=20 (0<s<r),

2K ag(s)ks = (— 1)k +2lgg(s)ks—! (a = TIzZd a()*e)

if k20 is an integer such that 257 (k' —r+s+1)=n"— Y35, 2" k,.

Proor. (i) By Lemmas 6.2 (ii), 2.9 (i) and 3.3 (ii), we see easily that

(2} T3=0 6(D*) = 2 Ti=o {o(@®)**¢/(1 + 0 (1))} = O,

where ¢, is the monomorphism in (5.5). Thus we see (i).
(ii) We see easily that 2*¥*+2lag(s)ks==26(s+1)=0 if k,—1>1=0 by (i).
Thus we have (ii) by (6.4). q.e.d.

§7. Proof of the main theorem

Furthermore, we obtain the following relations in KO(L*(2")) (r=2).
LemMmAa 7.1. (1) IfO<s=Zr—2, n<2%k and k=2, then

T 2rsT¥2UkG(s—) =0 in  KO(L"(2")).
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(ii) Incaserz3orn#1 mod4, if n<2'k and k=2, then
k=l 4 Fro102%=25(,—1—1) =0  in KO(L"(2")).
(iii) If n<2r=k, then 2%k =0 in KO(L"(2")).
Proor. (i) By Proposition 5.3, it is sufficient to show that
R (27) if 71#1,
(¥)  Xio2 532 iG(s—)=0 in

R(L»+1(2n) /o™ *1y  if =1,

where n=1 mod4, ¢, is the one in (5.5) and n’ is the one in (5.4).
If t=2, then we see easily that

2rosT3R2keG(s—t) = —2rsT 12 k=g (s — )27 (by Lemma 6.9 (ii))
= —2rms1¥20 =g (s — 1)2°(1 + a(s—1))/(1 + o(s))

(by Lemma 6.2 (ii) and (2.7))

= —=2r=s~12:G=Dg(s— )2 (1 + a(s)) (by Lemmas 2.9 (i) and 3.3 (ii)).
Similarly, we see easily that 2r—s=3+2k¢,g(s—1) is equal to

2rs73%2k(g(s—1)2 + a(s—1)3)/(1 + a(s)) = —2r~s~1*+2%=Dg(s—1)2/(1 + o(s))
by Lemmas 2.9 (ii) and 3.3 (ii); and 2r~s=3*k¢,5(s) is equal to

2r=s=3+kg(s)2/(1 + a(s)) = 2r~5"2*kg(s)/(1 + o(s))

(by Lemmas 2.9 and 3.3 (ii)).

Thus we see (*) by Lemma 3.5, since n’ <2k by n<2%k, s >0 and (5.4).

(i) By noticing that n<2"~'k implies n'+1<2"'k if n=1 mod4 and
r=3, we see by the above proof that (i) holds also for s=r—1 unless n=1 mod 4
and r=2. Thus (ii) holds since 2x=g(r—1) by (6.5).

(iii) By Lemmas 6.2 (ii), 2.9 (i) and 3.3 (ii), we see that 2¥c;x=2%¢(r—1)=0.
Thus (iii) holds. q.e.d.

Here we attend to the special case r=2.

ProoF oF THEOREM 1.9 (i). In KO(L"(4)) (n>0), we see that
22021415 = ( (by Lemma 6.9 (i),
2tn/2)(c 4 2Mn/21G) = 0 if n#1mod4 (by Lemma 7.1 (ii)),

and 2(m2M41=0 (by Lemma 7.1 (iii))). On the other hand, 3[n/2]+1+¢ is
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the order of K~O(L”(4)) by Corollary 4.12 (i), and we see the desired result by
Proposition 6.3 (ii). q.e.d.

To study the case r=3, we consider the first term

(7.2) (s, d) = @G (DIT=L 2 + (1)) e KO(L"(27))
O<s=r-2,0<d<2)

in the definition of &, for i=2+d in Theorem 1.9 (ii) (cf. (6.4)).

LemMmA 7.3. () IfO<s=r—2,n<2d+25*k' and r—s—2+k' =0, then

-2k G(s, d) =0 in KO(L2%)).
(i) If k'=2 in addition to (i), then
2r-s=3k G (s, d) + 231 (—1)2TR2@ DR -1GdG(s+1—1£)} = 0

in KO(L"27)), unless n=1 mod4, s=r—2 and n+1=2d+2"1k’.

Proor. (i) In the same way as the proof of (6.6), we see that

¢,0(s, d) = 62?7 26(1)a(s + 1)/(1 + 6)%(1 + 6(s))

by using Lemma 6.2 (ii). Hence we see easily that 27—s-2*¥¢g(s, d)=0 by
Lemmas 2.9 (i) and 3.3 (ii). Thus we have (i) by Proposition 5.3.
(ii) Similarly, by using (2.8), we see that

2r-s=3tke,G(s, d) = 2r-s3K g2dg(s+1)/(1+ 6)4(1 + 0(5)) .
Also, we see easily that (— 1)2*7'2r—s=4+2'%¥’¢(545(s + 1 — t)) is equal to
—2r-s=2420k =D (FaG (s + 1 — 1)2* ) (by Lemma 6.9 (ii))
= =2rsm2H 2k =Dg2dg(s+1— 1) /(14 6)4(1 + o(5))
(by Lemma 6.2 (ii) and (2.7)).

Since the assumption n<2d+25t1k’ implies n' <2d+2s*1k’ by (5.4), these and
Lemma 3.5 imply that the c,-image of the left hand side in-(ii) is 0. Thus we see
(ii) by Proposition 5.3. qg.e.d.

Now, we are ready to prove the main theorem.

PrOOF OF THEOREM 1.9 (ii). By the definition of u(i) and &; in the theorem,
the equality

u@s; =0 (0<i<N) in KO(L"(?2")
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follows from Lemma 6.9 (i) for n>1 and i=1; from Lemma 7.1 for i=2%(s=1)
or 0 since

n<2%(a,+1), and a,=21 if 22< N’ or aq,._;, 21 if n=21;
from (4.5) for n=1mod4 and i=a,+1; and from Lemma 7.3 otherwise since
n<2d+2%a'(i), a()=2 if i=d+2°=a,(=[n/2)).

On the other hand (s, d)=6%"*4+ 322, y;;6/+41 by (7.2) and (6.7), and
hence the definition of 4;, (6.7) and Corollary 4.12 (ii) imply

60=K'+ Zy;lz_,&"; &i= E.‘,-:lz“-ij, Z“:Odd (1 éiéN’),

since a’(i)=2 as is noticed above. Thus Proposition 6.3 (ii) and Corollary
4.12 (i) imply that KO(Ln(27)) is generated additively by

{6;:0Zi<N'}.
Furthermore, by the definition of u(i), we see easily that
IMou@® =24 A=(@+1)[n2]+1+e
In fact, this is clear if n<2. If n=2*+b, (1=Su<r), then
A=14(r-14+2ay)+ X422 {(r—s—3 + a,41)2° + [by4/2]}
+ (r—u)[b,/2] + ¢
=r+@w+a;, +(r—u2'—(r-1)+ (r—-uw)(a;—2"H+e¢
=(@r+1Da; +1+e

If n=2r, then we have the above equality by replacing the first term 1 with a,_,
—(a,-1—1) and by taking u=r.

Moreover the order of KO(L*(2%)) is equal to 2* by Corollary 4.12 (i).

Thus we have proved the theorem completely. q.e.d.

REMARK 7.4. We notice that the additive base of K?)(L"(S)) given in
[7, Prop. (4.3)] is slightly different from that in Theorem 1.9 for =3, but these
are related by the relation (6.6) for s=0.

Finally, we notice the following

THEOREM 7.5. For n>0, the reduced KO-group of the 2n-skeleton L#(2")
(r=2) of (2.1) is given by
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_ KO(L"(2")| Z,{27+"25)  if n=0mod 4,
Ko(Ly(2) =1 .
KO(L"(27)) otherwise.

Proor. By Proposition 4.4 (i), it is sufficient to show that
kG2m = 2r+4m=25 in  KO(L*"(27))  (m > 0).
This is seen by Proposition 5.3, since ¢y(kd?™) is equal to
o*mo(r—1)/(1+0)*m = 2 1g*m+1[(14+g) = 2"*4m=262 /(14 g) = 2"+4m=2¢\G

in R(L*m*+1(2r)) by Lemmas 6.2 (ii), 2.9, Proposition 2.6 and (2.7). q.e.d.
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