S¹-Actions on Cohomology Complex Projective Spaces with Three Components of the Fixed Point Sets

Etsuo TSUKADA and Ryo WASHIYAMA (Received July 17, 1978)

§0. Introduction

A closed oriented smooth 2*n*-manifold *M* is called a *cohomology complex* projective *n*-space (cohomology CP^n), if the integral cohomology ring of *M* is isomiphic to that of the complex projective *n*-space CP^n , i.e., if there exists an element $\alpha \in H^2(M; \mathbb{Z})$ such that

(0.1) $H^*(M; Z) = Z[\alpha]/(\alpha^{n+1}), \quad <\alpha^n, [M] > = 1.$

Then the conjecture of T. Petrie [4; Intro.] for homotopy complex projective spaces follows immediately from the following statement:

(0.2) Assume that M is a cohomology CP^n with $\alpha \in H^2(M; \mathbb{Z})$ satisfying (0.1). If M admits a non-trivial (smooth) S¹-action, then the total Pontrjagin class of M is given by

$$p(M) = (1 + \alpha^2)^{n+1}.$$

K. Wang [6] and T. Yoshida [7] have proved independently the conjecture of T. Petrie for semi-free actions by the following

THEOREM ([6; Prop. 2.2–3, Cor. 2.5]). (0.2) is valid, if M admits an S^{1} -action whose fixed point set has two (connected) components.

The purpose of this note is to prove the following

THEOREM 1. (0.2) and the conjecture of T. Petrie are valid, if M admits an S¹-action whose fixed point set has three components.

We shall prove this theorem by the following

THEOREM 2. Let M be a cohomology CP^n . Then any effective S¹-action on M with three components of the fixed point set is of the linear type.

Here, an S^1 -action on M is defined to be of the *linear type*, if its normal representations of the fixed point set are of the same type as those of a linear S^1 -action on CP^n (cf. Definition 1.6).

Since a non-trivial S^1 -action on M induces an effective S^1 -action on M, Theorem 1 follows immediately from Theorem 2 and the following theorem; recently A. Hattori [3] has proved it, and our original proof of it in the special case is thus excluded.

THEOREM ([3; Prop. 4.15]). (0.2) is valid, if M admits a non-trivial S^{1} -action of the linear type.

We note that there exists an exotic S¹-action on cohomology CP^3 which is not of the linear type ([4; II, §4]), but (0.2) is valid for n=3 by the results of J. Dejter [2] and T. Yoshida [8].

The authors are very grateful to Professor M. Sugawara for his helpful suggestions.

§1. Preliminaries

In this section, we recall some results due to G. Bredon [1], T. Petrie [4] and J. C. Su [5].

Let M be a cohomology CP^n , and suppose that M admits a non-trivial (smooth) S¹-action and its fixed point set $F(S^1, M)$ has l (connected) components $F_0, F_1, \ldots, F_{l-1}$. Then

(1.1) (cf. [1; VII, Th. 5.1]) each S¹-submanifold F_i of M is a cohomology CP^{n_i} and

$$n + 1 = \sum_{i=0}^{l-1} (n_i + 1).$$

Let η be the Hopf bundle over M, i.e., the complex line bundle over M whose first Chern class is equal to $\alpha \in H^2(M; \mathbb{Z})$ in (0.1). Then

(1.2) ([4; II, Def. 1.2, Cor. 1.15]) there are distinct integers $a_0, a_1, ..., a_{l-1}$, which are well-defined up to translation, with the following property: An S^1 -action on η , which is a lifting of the given S^1 -action on M, acts on the fibre $\eta|_x$ ($x \in F_i$) via the complex representation $t^{a_i} \in R(S^1)$.

(1.3) (cf. [1; VII, §5]) For each i=0, 1, ..., l-1, let v_i be the normal bundle of F_i in M. Then there are positive integers $m_{i,u}$ $(u=1,..., n-n_i)$ with the following property: An S¹-action on the complex $(n-n_i)$ -plane bundle v_i , which is induced by the given S¹-action on M, acts on the fibre $v_i|_x$ $(x \in F_i)$ via the complex representation

$$\sum_{u=1}^{n-n_i} t^{m_{i,u}} \in R(S^1).$$

This representation is called the normal representation of F_i in M.

For any subgroup H of S^1 , let F(H, M) denote the fixed point set of the H-action on M which is the restriction of the given S^1 -action on M.

LEMMA 1.4. Let H be a subgroup of S^1 of order h, and Y be the component of F(H, M) containing F_i . Then

dim
$$Y = \dim F_i + 2 \# \{ u : h | m_{i,u} \},\$$

where #A is the number of elments of a finite set A.

PROOF. By noticing that Y is an S^1 -submanifold of M and by studying the complex dimension of the normal bundle of F_i in Y, we see immediately the lemma by the definition of the normal representation. q.e.d.

(1.5) (cf. [1; VII, Th. 5.5]) The integers in (1.2) and (1.3) satisfy

$$\prod_{u=1}^{n-n_i} m_{i,u} = \prod_{0 \le j \le l-1, j \ne i} |a_j - a_i|^{n_j+1}$$

for i = 0, ..., l - 1.

DEFINITION 1.6. The given S¹-action on M is said to be of the linear type, if $|a_j - a_i|$ occurs $(n_j + 1)$ -times in the integers $m_{i,u}$ $(u = 1, ..., n - n_i)$, i.e., if the normal representation of F_i in M is given by

$$\sum_{0 \le j \le l-1, j \ne i} (n_j + 1) t^{|a_j - a_i|}$$

for i = 0, ..., l - 1.

(1.7) ([5; Th. 5.1]) For any prime p and any positive integer r, each component $F_k(p^r)$ ($k=0, 1, ..., l(p^r)-1$) of $F(Z_{p^r}, M)$ is $F_k(p^r)_{Z_p} CP^{n_k(p^r)}$ and

$$n + 1 = \sum_{k=0}^{l(p^r)-1} (n_k(p^r) + 1).$$

Here, the notation $N_{\widetilde{Z_p}}CP^m$ means that N is a closed oriented (smooth) 2*m*-manifold and the cohomology ring $H^*(N; Z_p)$ is given by

$$H^*(N; Z_p) = Z_p[\alpha]/(\alpha^{m+1}), \qquad \alpha \in H^2(N; Z_p).$$

COROLLARY 1.8. In (1.1) and (1.7),

$$n_k(p^r) + 1 = \sum_{i \in L_k} (n_i + 1),$$

where $L_k = \{i: i=0, 1, ..., l-1, F_i \subset F_k(p^r)\}$.

PROOF. Since $F_k(p^r)$ is an S¹-submanifold of M,

$$\chi(F_k(p^r)) = \chi(F(S^1, F_k(p^r)))$$

(χ is the Euler characteristic) by [1; III, Th. 10.9]. Further $F(S^1, F_k(p^r)) = \bigcup_{i \in L_k} F_i$. Thus we see the desired equality. q. e. d.

(1.9) ([5; Th. 5.4]) Two components F_i and F_j of $F(S^1, M)$ are contained in a component of $F(Z_{pr}, M)$ if and only if $|a_j - a_i|$ is a multiple of p^r .

(1.10) ([5; Prop. 6.3]) Let H be a subgroup of S^1 and Y be a component of F(H, M). If $Y \cap F(S^1, M) \neq \emptyset$, then

dim
$$Y \leq 2(\chi(Y) - 1)$$
.

COROLLARY 1.11. In (1.10), if Y contains exactly one component F_i of $F(S^1, M)$, then $Y=F_i$ and dim $Y=2(\chi(Y)-1)$.

If the order of H is h in addition, then none of the integer $m_{i,u}$ in (1.3) is a multiple of h.

PROOF. By the assumption, $F(S^1, Y) = F_i$ and $\chi(Y) = \chi(F(S^1, Y))$. Thus

$$\dim Y \ge \dim F_i = 2(\chi(F_i) - 1) = 2(\chi(Y) - 1) \ge \dim Y$$

by (1.1) and (1.10). Thus dim $Y = \dim F_i$ and $Y = F_i$.

The last half follows immediately from Lemma 1.4.

q. e. d.

§2. Proof of Theorem 2

In the rest of this note, we assume that the given S^1 -action on M is effective and that the fixed point set $F(S^1, M)$ has three components F_0 , F_1 and F_2 .

LEMMA 2.1. For the integers a_0 , a_1 and a_2 in (1.2), any two of $|a_0 - a_1|$, $|a_0 - a_2|$ and $|a_1 - a_2|$ are relatively prime.

PROOF. Assume that p^r $(p: prime, r \ge 1)$ divides $|a_0 - a_1|$ and $|a_0 - a_2|$. Then some component $F_0(p^r)$ of $F(Z_{p^r}, M)$ contains F_0, F_1 and F_2 by (1.9). Hence dim $F_0(p^r) = 2n_0(p^r) = 2n = \dim M$ by (1.7), Corollary 1.8 and (1.1). Thus $F_0(p^r) = M$, which contradicts the effectivity of the S¹-action on M. q.e.d.

LEMMA 2.2. If $|a_i - a_j|$ $(i \neq j)$ is a multiple of p^r (p: prime, $r \ge 1$), then the fixed point set $F(Z_{p^r}, M)$ has two components $F_0(p^r)$ and F_k , where

$$F_0(p^r) \supset F_i \cup F_j, \quad \{i, j, k\} = \{0, 1, 2\}.$$

PROOF. By (1.9) and the above proof, $F(Z_{p^r}, M)$ has components $F_0(p^r)$ and $F_1(p^r)$ such that $F_0(p^r) \subset F_i \cup F_j$ and $F_1(p^r) \supset F_k$. Then $n_0(p^r) = n_i + n_j + 1$ and $n_1(p^r) = n_k$ by Corollary 1.8, and these equalities imply that

$$F(Z_{p^{r}}, M) = F_{0}(p^{r}) \cup F_{1}(p^{r}) \text{ and } F_{1}(p^{r}) = F_{k}$$

by (1.1) and (1.7).

LEMMA 2.3. Let

 $\sum_{\mu=1}^{n-n_0} t^{m_{0,\mu}} \in R(S^1) \qquad (n-n_0 = n_1 + n_2 + 2)$

be the normal representation of F_0 in M (cf. (1.3)).

(i) If $p^r ||a_i - a_0|$ (p: prime, $r \ge 1$), then $\{u: p^r | m_{0,u}\}$ consists of exactly $n_i + 1$ elements, where i = 1 or 2.

(ii) If $p^r ||a_1 - a_0|$ and $q^s ||a_2 - a_0|$ (p, q: prime; r, $s \ge 1$), then $\{u: p^r | m_{0,u}\} \cap \{u: q^s | m_{0,u}\} = \emptyset$.

PROOF. (i) By Lemma 2.2, $F(Z_{p^r}, M)$ has a component $F_0(p^r)$ such that $F_0(p^r) \supset F_0 \cup F_i$ and $F_0(p^r) \cap F_j = \emptyset$ ($\{i, j\} = \{1, 2\}$). Then we see (i) by Lemma 1.4 and Corollary 1.8.

(ii) By Lemma 2.2, there are components $F_0(p^r)$ and $F_0(q^s)$ of $F(Z_{p^r}, M)$ and $F(Z_{q^s}, M)$, respectively, such that

$$F_{0}(p^{r}) \supset F_{0} \cup F_{1}, F_{0}(p^{r}) \cap F_{2} = \emptyset; F_{0}(q^{s}) \supset F_{0} \cup F_{2}, F_{0}(q^{s}) \cap F_{1} = \emptyset.$$

Then, $F(Z_{p^rq^s}, M) = F(Z_{p^r}, M) \cap F(Z_{q^s}, M)$ has a component Y with $Y \supset F_0$, $Y \cap (F_1 \cup F_2) = \emptyset$. Thus, since (p, q) = 1 by Lemma 2.1, (ii) follows immediately from the latter half by Corollary 1.11. q. e. d.

Now, we can prove Theorem 2 in §0 by Definition 1.6 and the following

LEMMA 2.4. The normal representation in the above lemma is given by

 $(n_1 + 1)t^{|a_1 - a_0|} + (n_2 + 1)t^{|a_2 - a_0|}.$

PROOF. It is sufficient to prove the lemma by assuming $|a_1 - a_0| \ge |a_2 - a_0|$. Case I: $|a_1 - a_0| = 1$ or 2, and $|a_2 - a_0| = 1$.

For this case, the lemma follows immediately from (1.5) and (i) of the above lemma.

Case II: $|a_1 - a_0| \ge |a_2 - a_0| \ge 2$.

By the above lemma, we see easily that

$$\{u: p_1^{r_1}|m_{0,u}\} = \{u: p_2^{r_2}|m_{0,u}\}$$

if $p_k^{r_k} ||a_i - a_0|$ (p_k : prime, $r_k \ge 1$) for k = 1, 2, where i = 1 or 2. Thus the lemma follows from (1.5).

Case III: $|a_1 - a_0| \ge 3$ and $|a_2 - a_0| = 1$.

For this case, $|a_2 - a_1| \ge 2$ and we see by Case II that

(2.5) the normal representation of F_1 in M is given by

$$(n_0+1)t^{|a_0-a_1|} + (n_2+1)t^{|a_2-a_1|}.$$

q.e.d.

Now, suppose $p^r q^s ||a_0 - a_1|$, where p, q are distinct primes and $r, s \ge 1$, and let Y be the component of $F(Z_{p^r q^s}, M)$ containing F_1 . Then Lemmas 1.4, 2.1 and (2.5) imply that

(2.6)
$$\dim Y = \dim F_1 + 2(n_0 + 1) = 2(n_0 + n_1 + 1).$$

Furthermore,

(2.7)
$$Y \cap F_2 = \emptyset$$
 and $Y \supset F_0 \cup F_1$.

In fact, since $F(Z_{p^rq^s}, M) = F(Z_{p^r}, M) \cap F(Z_{q^s}, M)$, Lemma 2.2 implies $Y \cap F_2 = \emptyset$. By (2.6), dim $Y > \dim F_1$ and $Y \supseteq F_1$. Thus we see $Y \supset F_0$ by the first half of Corollary 1.11.

Therefore, by (2.6-7) and Lemma 1.4, we see that

$$2(n_0 + n_1 + 1) = \dim Y = \dim F_0 + 2\#\{u: p^r q^s | m_{0,u}\},\$$

which implies $\#\{u: p^r q^s | m_{0,u}\} = n_1 + 1$. This and Lemma 2.3 (i) imply that

(2.8)
$$\{u: p^r | m_{0,u}\} = \{u: q^s | m_{0,u}\} \quad \text{if} \quad p^r q^s | |a_0 - a_1|.$$

Thus the lemma follows from (2.8) and (1.5).

References

- [1] G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Math. Vol. 46, Academic Press, 1972.
- [2] I. J. Dejter, Smooth S¹-manifolds in the homotopy type of CP⁸, Michigan Math. J., 23 (1976), 83–95.
- [3] A. Hattori, Spin^e-structures and S¹-actions, to appear.
- [4] T. Petrie, Smooth S¹-actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc., 78 (1972), 105–153.
- [5] J. C. Su, Integral weight system of S¹ actions on cohomology complex projective spaces, Chinese J. Math., 2 (1974), 77–112.
- [6] K. Wang, Differentiable circle group actions on homotopy complex projective spaces, Math. Ann., 214 (1975), 73-80.
- [7] T. Yoshida, On smooth semifree S¹-actions on complex projective spaces, Publ. Res. Inst. Math. Sci., Kyoto Univ., 11 (1976), 483–496.
- [8] _____, On S¹-actions on cohomology complex projective spaces, Sugaku (in Japanese), 29 (1977), 154–164.

Department of Mathematics, Faculty of Science, Hiroshima University and Department of Mathematics, Faculty of Science, Niigata University