S^{1}-Actions on Cohomology Complex Projective Spaces with Three Components of the Fixed Point Sets

Etsuo Tsukada and Ryo Washiyama

(Received July 17, 1978)

§0. Introduction

A closed oriented smooth $2 n$-manifold M is called a cohomology complex projective n-space (cohomology $C P^{n}$), if the integral cohomology ring of M is isomiphic to that of the complex projective n-space $C P^{n}$, i.e., if there exists an element $\alpha \in H^{2}(M ; Z)$ such that

$$
\begin{equation*}
H^{*}(M ; Z)=Z[\alpha] /\left(\alpha^{n+1}\right), \quad<\alpha^{n},[M]>=1 . \tag{0.1}
\end{equation*}
$$

Then the conjecture of T. Petrie [4; Intro.] for homotopy complex projective spaces follows immediately from the following statement:
(0.2) Assume that M is a cohomology $C P^{n}$ with $\alpha \in H^{2}(M ; Z)$ satisfying (0.1). If M admits a non-trivial (smooth) S^{1}-action, then the total Pontrjagin class of M is given by

$$
p(M)=\left(1+\alpha^{2}\right)^{n+1}
$$

K. Wang [6] and T. Yoshida [7] have proved independently the conjecture of T. Petrie for semi-free actions by the following

Theorem ([6; Prop. 2.2-3, Cor. 2.5]). (0.2) is valid, if M admits an S^{1} action whose fixed point set has two (connected) components.

The purpose of this note is to prove the following
Theorem 1. (0.2) and the conjecture of T. Petrie are valid, if M admits an S^{1}-action whose fixed point set has three components.

We shall prove this theorem by the following
Thborem 2. Let M be a cohomology $C P^{n}$. Then any effective S^{1}-action on M with three components of the fixed point set is of the linear type.

Here, an S^{1}-action on M is defined to be of the linear type, if its normal representations of the fixed point set are of the same type as those of a linear S^{1}-action on $C P^{n}$ (cf. Definition 1.6).

Since a non-trivial S^{1}-action on M induces an effective S^{1}-action on M, Theorem 1 follows immediately from Theorem 2 and the following theorem; recently A. Hattori [3] has proved it, and our original proof of it in the special case is thus excluded.

Thborem ([3; Prop. 4.15]). (0.2) is valid, if M admits a non-trivial S^{1} action of the linear type.

We note that there exists an exotic S^{1}-action on cohomology $C P^{3}$ which is not of the linear type ($[4 ; \mathrm{II}, \S 4]$), but (0.2) is valid for $n=3$ by the results of J. Dejter [2] and T. Yoshida [8].

The authors are very grateful to Professor M. Sugawara for his helpful suggestions.

§ 1. Preliminaries

In this section, we recall some results due to G. Bredon [1], T. Petrie [4] and J. C. Su [5].

Let M be a cohomology $C P^{n}$, and suppose that M admits a non-trivial (smooth) S^{1}-action and its fixed point set $F\left(S^{1}, M\right)$ has l (connected) components $F_{0}, F_{1}, \ldots, F_{l-1}$. Then
(1.1) (cf. [1; VII, Th. 5.1]) each S^{1}-submanifold F_{i} of M is a cohomology $C P^{n_{i}}$ and

$$
n+1=\sum_{i=0}^{l-1}\left(n_{i}+1\right) .
$$

Let η be the Hopf bundle over M, i.e., the complex line bundle over M whose first Chern class is equal to $\alpha \in H^{2}(M ; Z)$ in (0.1). Then
(1.2) ([4; II, Def. 1.2, Cor. 1.15]) there are distinct integers $a_{0}, a_{1}, \ldots, a_{l-1}$, which are well-defined up to translation, with the following property: An S^{1}-action on η, which is a lifting of the given S^{1}-action on M, acts on the fibre $\left.\eta\right|_{x}\left(x \in F_{i}\right)$ via the complex representation $t^{a_{i}} \in R\left(S^{1}\right)$.
(1.3) (cf. [1; VII, §5]) For each $i=0,1, \ldots, l-1$, let v_{i} be the normal bundle of F_{i} in M. Then there are positive integers $m_{i, u}\left(u=1, \ldots, n-n_{i}\right)$ with the following property: An S^{1}-action on the complex $\left(n-n_{i}\right)$-plane bundle v_{i}, which is induced by the given S^{1}-action on M, acts on the fibre $\left.v_{i}\right|_{x}\left(x \in F_{i}\right)$ via the complex representation

$$
\sum_{u=1}^{n=n_{i}} t^{m_{i}, u} \in R\left(S^{1}\right) .
$$

This representation is called the normal representation of F_{i} in M.

For any subgroup H of S^{1}, let $F(H, M)$ denote the fixed point set of the H-action on M which is the restriction of the given S^{1}-action on M.

Lemma 1.4. Let H be a subgroup of S^{1} of order h, and Y be the component of $F(H, M)$ containing F_{i}. Then

$$
\operatorname{dim} Y=\operatorname{dim} F_{\iota}+2 \#\left\{u: h \mid m_{i, u}\right\},
$$

where $\# A$ is the number of elments of a finite set A.
Proof. By noticing that Y is an S^{1}-submanifold of M and by studying the complex dimension of the normal bundle of F_{i} in Y, we see immediately the lemma by the definition of the normal representation.
q.e.d.
(1.5) (cf. [1; VII, Th. 5.5]) The integers in (1.2) and (1.3) satisfy

$$
\prod_{u=1}^{n-n_{i}} m_{i, u}=\Pi_{0 \leqq j \leqq l-1, j \neq i}\left|a_{j}-a_{i}\right|^{n_{j}+1}
$$

for $i=0, \ldots, l-1$.
Definition 1.6. The given S^{1}-action on M is said to be of the linear type, if $\left|a_{j}-a_{i}\right|$ occurs $\left(n_{j}+1\right)$-times in the integers $m_{i, u}\left(u=1, \ldots, n-n_{i}\right)$, i.e., if the normal representation of F_{i} in M is given by

$$
\Sigma_{0 \leqq j \leqq l-1, j \neq i}\left(n_{j}+1\right) t^{\left|a_{j}-a_{i}\right|}
$$

for $i=0, \ldots, l-1$.
(1.7) ([5; Th. 5.1]) For any prime p and any positive integer r, each component $F_{k}\left(p^{r}\right)\left(k=0,1, \ldots, l\left(p^{r}\right)-1\right)$
of $F\left(Z_{p^{r}}, M\right)$ is $F_{k}\left(p^{r}\right) \widetilde{Z_{p}} C P^{n_{k}\left(p^{r}\right)}$ and

$$
n+1=\sum_{k=0}^{l\left(p_{0}^{r}\right)-1}\left(n_{k}\left(p^{r}\right)+1\right)
$$

Here, the notation $N_{\widetilde{Z_{p}}} C P^{m}$ means that N is a closed oriented (smooth) $2 m$-manifold and the cohomology ring $H^{*}\left(N ; Z_{p}\right)$ is given by

$$
H^{*}\left(N ; Z_{p}\right)=Z_{p}[\alpha] /\left(\alpha^{m+1}\right), \quad \alpha \in H^{2}\left(N ; Z_{p}\right)
$$

Corollary 1.8. In (1.1) and (1.7),

$$
n_{k}\left(p^{r}\right)+1=\sum_{i \epsilon L_{k}}\left(n_{i}+1\right)
$$

where $L_{k}=\left\{i: i=0,1, \ldots, l-1, F_{i} \subset F_{k}\left(p^{r}\right)\right\}$.
Proof. Since $F_{k}\left(p^{r}\right)$ is an S^{1}-submanifold of M,

$$
\chi\left(F_{k}\left(p^{r}\right)\right)=\chi\left(F\left(S^{1}, F_{k}\left(p^{r}\right)\right)\right)
$$

$\left(\chi\right.$ is the Euler characteristic) by [1; III, Th. 10.9]. Further $F\left(S^{1}, F_{k}\left(p^{r}\right)\right)=$ $\underset{i \in L_{k}}{\cup} F_{i}$. Thus we see the desired equality.
q.e.d.
(1.9) ([5; Th. 5.4]) Two components F_{i} and F_{j} of $F\left(S^{1}, M\right)$ are contained in a component of $F\left(Z_{p^{r}}, M\right)$ if and only if $\left|a_{j}-a_{i}\right|$ is a multiple of p^{r}.
(1.10) ([5; Prop. 6.3]) Let H be a subgroup of S^{1} and Y be a component of $F(H, M)$. If $Y \cap F\left(S^{1}, M\right) \neq \emptyset$, then

$$
\operatorname{dim} Y \leqq 2(\chi(Y)-1)
$$

Corollary 1.11. In (1.10), if Y contains exactly one component F_{i} of $F\left(S^{1}, M\right)$, then $Y=F_{i}$ and $\operatorname{dim} Y=2(\chi(Y)-1)$.

If the order of H is h in addition, then none of the integer $m_{i, u}$ in (1.3) is a multiple of h.

Proof. By the assumption, $F\left(S^{1}, Y\right)=F_{i}$ and $\chi(Y)=\chi\left(F\left(S^{1}, Y\right)\right)$. Thus

$$
\operatorname{dim} Y \geqq \operatorname{dim} F_{i}=2\left(\chi\left(F_{i}\right)-1\right)=2(\chi(Y)-1) \geqq \operatorname{dim} Y
$$

by (1.1) and (1.10). Thus $\operatorname{dim} Y=\operatorname{dim} F_{i}$ and $Y=F_{i}$.
The last half follows immediately from Lemma 1.4.

§ 2. Proof of Theorem 2

In the rest of this note, we assume that the given S^{1}-action on M is effective and that the fixed point set $F\left(S^{1}, M\right)$ has three components F_{0}, F_{1} and F_{2}.

Lemma 2.1. For the integers a_{0}, a_{1} and a_{2} in (1.2), any two of $\left|a_{0}-a_{1}\right|$, $\left|a_{0}-a_{2}\right|$ and $\left|a_{1}-a_{2}\right|$ are relatively prime.

Proof. Assume that p^{r} (p : prime, $r \geqq 1$) divides $\left|a_{0}-a_{1}\right|$ and $\left|a_{0}-a_{2}\right|$. Then some component $F_{0}\left(p^{r}\right)$ of $F\left(Z_{p^{r}}, M\right)$ contains F_{0}, F_{1} and F_{2} by (1.9). Hence $\operatorname{dim} F_{0}\left(p^{r}\right)=2 n_{0}\left(p^{r}\right)=2 n=\operatorname{dim} M$ by (1.7), Corollary 1.8 and (1.1). Thus $F_{0}\left(p^{r}\right)=M$, which contradicts the effectivity of the S^{1}-action on M. q.e.d.

Lemma 2.2. If $\left|a_{i}-a_{j}\right|(i \neq j)$ is a multiple of p^{r} ($p:$ prime, $r \geqq 1$), then the fixed point set $F\left(Z_{p^{r}}, M\right)$ has two components $F_{0}\left(p^{r}\right)$ and F_{k}, where

$$
F_{0}\left(p^{r}\right) \supset F_{i} \cup F_{j}, \quad\{i, j, k\}=\{0,1,2\} .
$$

Proof. By (1.9) and the above proof, $F\left(Z_{p^{r}}, M\right)$ has components $F_{0}\left(p^{r}\right)$ and $F_{1}\left(p^{r}\right)$ such that $F_{0}\left(p^{r}\right) \subset F_{i} \cup F_{j}$ and $F_{1}\left(p^{r}\right) \supset F_{k}$. Then $n_{0}\left(p^{r}\right)=n_{i}+n_{j}+1$ and $n_{1}\left(p^{r}\right)=n_{k}$ by Corollary 1.8, and these equalities imply that

$$
F\left(Z_{p^{r}}, M\right)=F_{0}\left(p^{r}\right) \cup F_{1}\left(p^{r}\right) \text { and } F_{1}\left(p^{r}\right)=F_{k}
$$

by (1.1) and (1.7).
q.e.d.

Lemma 2.3. Let

$$
\sum_{u=1}^{n-n_{0}} t^{m_{0}, u} \in R\left(S^{1}\right) \quad\left(n-n_{0}=n_{1}+n_{2}+2\right)
$$

be the normal representation of F_{0} in M (cf. (1.3)).
(i) If $p^{r}| | a_{i}-a_{0} \mid$ (p : prime, $r \geqq 1$), then $\left\{u: p^{r} \mid m_{0, u}\right\}$ consists of exactly $n_{i}+1$ elements, where $i=1$ or 2 .
(ii) If $p^{r}| | a_{1}-a_{0} \mid$ and $q^{s}| | a_{2}-a_{0} \mid(p, q:$ prime; $r, s \geqq 1)$, then $\left\{u: p^{r} \mid m_{0, u}\right\}$ $\cap\left\{u: q^{s} \mid m_{0, u}\right\}=\varnothing$.

Proof. (i) By Lemma 2.2, $F\left(Z_{p^{r}}, M\right)$ has a component $F_{0}\left(p^{r}\right)$ such that $F_{0}\left(p^{r}\right) \supset F_{0} \cup F_{i}$ and $F_{0}\left(p^{r}\right) \cap F_{j}=\varnothing(\{i, j\}=\{1,2\})$. Then we see (i) by Lemma 1.4 and Corollary 1.8.
(ii) By Lemma 2.2, there are components $F_{0}\left(p^{r}\right)$ and $F_{0}\left(q^{s}\right)$ of $F\left(Z_{p^{r}}, M\right)$ and $F\left(Z_{q^{s}}, M\right)$, respectively, such that

$$
F_{0}\left(p^{r}\right) \supset F_{0} \cup F_{1}, F_{0}\left(p^{r}\right) \cap F_{2}=\varnothing ; F_{0}\left(q^{s}\right) \supset F_{0} \cup F_{2}, F_{0}\left(q^{s}\right) \cap F_{1}=\varnothing .
$$

Then, $F\left(Z_{p^{r} q^{s}}, M\right)=F\left(Z_{p^{r}}, M\right) \cap F\left(Z_{q^{s}}, M\right)$ has a component Y with $Y \supset F_{0}$, $Y \cap\left(F_{1} \cup F_{2}\right)=\varnothing$. Thus, since $(p, q)=1$ by Lemma 2.1, (ii) follows immediately from the latter half by Corollary 1.11.
q.e.d.

Now, we can prove Theorem 2 in $\S 0$ by Definition 1.6 and the following
Lemma 2.4. The normal representation in the above lemma is given by

$$
\left(n_{1}+1\right) t^{\left|a_{1}-a_{0}\right|}+\left(n_{2}+1\right) t^{\left|a_{2}-a_{0}\right|} .
$$

Proof. It is sufficient to prove the lemma by assuming $\left|a_{1}-a_{0}\right| \geqq\left|a_{2}-a_{0}\right|$.
Case I: $\left|a_{1}-a_{0}\right|=1$ or 2 , and $\left|a_{2}-a_{0}\right|=1$.
For this case, the lemma follows immediately from (1.5) and (i) of the above lemma.

Case II: $\quad\left|a_{1}-a_{0}\right| \geqq\left|a_{2}-a_{0}\right| \geqq 2$.
By the above lemma, we see easily that

$$
\left\{u: p_{1}^{r_{1}} \mid m_{0, u}\right\}=\left\{u: p_{2}^{r_{2}} \mid m_{0, u}\right\}
$$

if $p_{k}^{r_{k} \mid}| | a_{i}-a_{0} \mid\left(p_{k}\right.$: prime, $\left.r_{k} \geqq 1\right)$ for $k=1,2$, where $i=1$ or 2 . Thus the lemma follows from (1.5).

Case III: $\left|a_{1}-a_{0}\right| \geqq 3$ and $\left|a_{2}-a_{0}\right|=1$.
For this case, $\left|a_{2}-a_{1}\right| \geqq 2$ and we see by Case II that
(2.5) the normal representation of F_{1} in M is given by

$$
\left(n_{0}+1\right) t^{\left|a_{0}-a_{1}\right|}+\left(n_{2}+1\right) t^{\left|a_{2}-a_{1}\right|}
$$

Now, suppose $p^{r} q^{s}| | a_{0}-a_{1} \mid$, where p, q are distinct primes and $r, s \geqq 1$, and let Y be the component of $F\left(Z_{p^{r} q^{s}}, M\right)$ containing F_{1}. Then Lemmas 1.4, 2.1 and (2.5) imply that

$$
\begin{equation*}
\operatorname{dim} Y=\operatorname{dim} F_{1}+2\left(n_{0}+1\right)=2\left(n_{0}+n_{1}+1\right) \tag{2.6}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
Y \cap F_{2}=\varnothing \quad \text { and } \quad Y \supset F_{0} \cup F_{1} . \tag{2.7}
\end{equation*}
$$

In fact, since $F\left(Z_{p^{r} q^{g}}, M\right)=F\left(Z_{p^{r}}, M\right) \cap F\left(Z_{q^{s}}, M\right)$, Lemma 2.2 implies $Y \cap F_{2}=\varnothing$. By (2.6), $\operatorname{dim} Y>\operatorname{dim} F_{1}$ and $Y \supsetneq F_{1}$. Thus we see $Y \supset F_{0}$ by the first half of Corollary 1.11.

Therefore, by (2.6-7) and Lemma 1.4, we see that

$$
2\left(n_{0}+n_{1}+1\right)=\operatorname{dim} Y=\operatorname{dim} F_{0}+2 \#\left\{u: p^{r} q^{s} \mid m_{0, u}\right\},
$$

which implies $\#\left\{u: p^{r} q^{s} \mid m_{0, u}\right\}=n_{1}+1$. This and Lemma 2.3 (i) imply that

$$
\begin{equation*}
\left\{u: p^{r} \mid m_{0, u}\right\}=\left\{u: q^{s} \mid m_{0, u}\right\} \quad \text { if } \quad p^{r} q^{s}| | a_{0}-a_{1} \mid . \tag{2.8}
\end{equation*}
$$

Thus the lemma follows from (2.8) and (1.5).
q.e.d.

References

[1] G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Math. Vol. 46, Academic Press, 1972.
[2] I. J. Dejter, Smooth S^{1}-manifolds in the homotopy type of $C P^{8}$, Michigan Math. J., 23 (1976), 83-95.
[3] A. Hattori, Spin ${ }^{c}$-structures and S^{1}-actions, to appear.
[4] T. Petrie, Smooth S^{1}-actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc., 78 (1972), 105-153.
[5] J. C. Su, Integral weight system of S^{1} actions on cohomology complex projective spaces, Chinese J. Math., 2 (1974), 77-112.
[6] K. Wang, Differentiable circle group actions on homotopy complex projective spaces, Math. Ann., 214 (1975), 73-80.
[7] T. Yoshida, On smooth semifree S^{1}-actions on complex projective spaces, Publ. Res. Inst. Math. Sci., Kyoto Univ., 11 (1976), 483-496.
[8] , On S^{1}-actions on cohomology complex projective spaces, Sugaku (in Japanese), 29 (1977), 154-164.

Department of Mathematics, Faculty of Science, Hiroshima University and Department of Mathematics, Faculty of Science, Niigata University

