Structure of Rings Satisfying (Hm) and (Ham)

Raj Kumar Jain

(Received April 10, 1978)

All rings considered in this paper are commutative but may not have a unity. An ideal A of a ring R is said to be a multiplication ideal if for every ideal B of R, $B \subseteq A$, there is an ideal C of R such that $B=A C$. An ideal A is said to be an M-ideal if for every ideal B containing A, there is an ideal C such that $A=B C$. R is said to be a multiplication ring if every ideal of R is a multiplication ideal (equivalently every ideal is an M-ideal). A ring R is said to be an ($A M$)-ring if for any two ideals A and B of $R, A<B$, there is an ideal C of R such that $A=B C$. An ideal A is said to be simple if there is no ideal A^{\prime} with $A^{2}<A^{\prime}<A$. A ring R is said to be primary if R has at most one proper prime ideal. R is said to be a special primary ring if R has a prime ideal P such that every ideal of R is a power of P. If S is a multiplicatively closed subset of R and A is any ideal then A^{e} denotes the extension of A to the quotient ring R_{S} and $A^{e c}$ denotes the contraction of A^{e} to R. A ring is said to satisfy (*)-condition if every ideal with prime radical is primary. A ring R is said to satisfy (Hm) or (Ham) according as every proper homomorphic image of R is a multiplication ring or an ($A M$)-ring. The purpose of this note is to determine the structure of rings satisfying (Hm) and (Ham) and the desired structure is given by Theorems 1.7 and 2.5.

1. Let R be a ring and N be its set of nilpotent elements. For any subset S of R, define $S^{\perp}=(N: S)=$ set of all x in R such that $x S \subseteq N[7$, p. 434]. The following lemma is due to Griffin [7, Lemma 7].

Lemma 1.1. If for any element x of a ring R there exists an ideal D such that $(x)=D\left(N+(x)+x^{\perp}\right)$ then there is an idempotent $e \in\left(x^{\perp}\right)^{\perp}$ and a positive integer n such that $x^{n}=e x^{n}$.

Lemma 1.2. If R is a ring satisfying (Hm) and $x \in R$ such that $x^{2} \neq 0$ then (x) is an M-ideal.

Proof. Suppose A is any ideal of R such that $x \in A$. Now $(x) /\left(x^{2}\right) \subseteq$ $A /\left(x^{2}\right)$ in $R /\left(x^{2}\right)$ which is a multiplication ring. There is an ideal I containing x^{2} such that $(x) /\left(x^{2}\right)=\left(A /\left(x^{2}\right)\right)\left(I /\left(x^{2}\right)\right)$. Thus $(x)=A I+\left(x^{2}\right)=A(I+(x))+\left(x^{2}\right)$ $=A(I+(x))$, since $x^{2} \in A(I+(x))$. Therefore (x) is an M-ideal.

Corollary 1.3. If R is a ring satisfying (Hm) such that $\operatorname{rad}(0)=(0)$ then R is a multiplication ring.

Corollary 1.4. If R is a ring satisfying (Hm) and $x \in R$ with $x^{2} \neq 0$ then there are an idempotent $e \in\left(x^{\perp}\right)^{\perp}$ and an integer n such that $x^{n}=e x^{n}$.

Proor. It follows from Lemmas 1.1 and 1.2.
Lbmma 1.5. If R is a ring satisfying (Hm) such that $x^{2} \neq 0$ for some $x \in R$ then R is idempotent.

Proof. Since $R /\left(x^{2}\right)$ is a multiplication ring, $\left(R /\left(x^{2}\right)\right)^{2}=R /\left(x^{2}\right)$. Thus R $=R^{2}+\left(x^{2}\right)=R^{2}$.

Theorem 1.6. If R is a ring satisfying (Hm) and $x \in R$ such that $x^{2} \neq 0$ then there exists an idempotent e such that $x=e x$.

Proof. Since $x^{2} \neq 0,(x)$ is an M-ideal. There is an ideal I of R such that $(x)=I R=I R^{2}=(I R) R=x R$. Let $x=x y, y \in R$. Now $0 \neq x^{2}=x^{2} y^{2}$ implies that $y^{2} \neq 0$ and by Corollary 1.4 we get an idempotent e and an integer n such that $y^{n}=e y^{n}$. Then $x=x y=x y^{2}=\cdots=x y^{n}=x\left(e y^{n}\right)=e\left(x y^{n}\right)=e x$.

Notation. Let R be a ring and x a non-zero element of R. If there exists a prime integer p such that $p x=0=x^{2}$ then we denote $I_{p}^{x}=\{x, 2 x, \ldots, p x=0\}$ which is isomorphic to $Z /(p)$ as a Z-module.

Thborem 1.7.* A ring R satisfies (Hm) if and only if R satisfies one of the following:
I. R is a multiplication ring.
II. $x^{2}=0$ for each $x \in R$ and $R=I_{p}^{x}$ type.
III. R has a unity and a unique maximal ideal M such that
(i) $M^{2}=(0)$.
(ii) If $x, y \in M$ such that $(x) \nsubseteq(y)$ and $(y) \nsubseteq(x)$ then $M=(x)+(y)$.
(iii) There is an ideal A such that $(0)<A<M$ and every such A is principal.
(iv) R does not contain a chain of five ideals.
(v) R is noetherian.

Proof. Assume R satisfies (Hm). Suppose II does not hold. Let $x \in R$ such that $x^{2} \neq 0$. By Theorem 1.6 there exists an idempotent e such that $x=e x$. Let $A=e R$ and $B=\{r-e r: r \in R\}$. Then A and B are ideals of R and it is easy to see that $R=A \oplus B$. Clearly $A \neq(0)$. If $A<R$ then $B \neq(0)$ and hence $A(\cong R / B)$ and $B(\cong R / A)$ are multiplication rings and consequently R is a multiplication ring. If $A=R$ then e is the unity of R and (i) to (v) of III follow from [14, Theorem 2.5 and Theorem 3.12]. Now suppose $x^{2}=0$ for each x in R. If $(0)<(x)<R$,

[^0]then $R /(x)$ is a multiplication ring. Let $\bar{e}=e+(x)$ be any non-zero idemoptent in $R /(x)$. It can be easily seen that $e^{2} \neq 0$ which is impossible. Thus $R=(x)$ for every $x \neq 0$ in R. It is now plain that $R=I_{p}^{x}$ type for some prime integer p.

The converse is trivial, for if R satisfies I or II then R evidently satisfies (Hm) and if R satisfies III then R satisfies (Hm) by [14, Theorem 3.12].

Corollary 1.8. A ring satisfying (Hm) satisfies (*)-condition.
Proof. This follows from Theorem 1.7 and [6, Theorem 7].
2. In this section we establish the structure of rings satisfying (Ham). The structure of ($A M$)-rings was established by Mori [10] and Griffin [7].

Lemma 2.1. If R is an (AM)-ring then R satisfies one of the following:
I. $R=R^{2}$ and hence R is a multiplication ring.
II. $R \neq R^{2}$ and every non-zero ideal of R is principal and a power of R.

Proof. This is [7, Proposition 4].
Lemma 2.2. Let R be a ring satisfying (Ham). If $A<B$ are ideals of R such that $A B \neq(0)$ then there is an ideal C of R such that $A=C B$.

Proof. Let $a \in A$ and $b \in B$ such that $a b \neq 0$. Since $A /(a)<B /(a)$, there is an ideal I containing (a) such that $A /(a)=(I /(a))(B /(a))$. Thus $A=I B+(a)$. Again $(a) /(a b)<B /(a b)$ implies that there is an ideal J containing $(a b)$ such that $(a)=J B+(a b)$. Thus $A=I B+J B+(a b)=(I+J) B+(a b)=(I+J) B$.

Corollary 2.3. If R is a ring satisfying (Ham) without nilpotent elements then R is an (AM)-ring.

Lemma 2.4. If A is any ideal of a ring R such that there is no ideal of R properly between A and A^{2} then for every positive integer n, the only ideals between A and A^{n} are $A, A^{2}, A^{3}, \ldots, A^{n}$.

Proof. This is [3, Lemma 3].
Theorem 2.5. A ring R satisfies (Ham) if and only if R satisfies one of the following:
I. $R=R^{2}$ and R satisfies (Hm).
II. $R \neq R^{2}$ but $R^{2}=(0)$ such that every non-zero proper ideal of R is of the type I_{p}^{x} and every two proper distinct ideals I_{p}^{x} and I_{q}^{y} intersect at (0) and $R=I_{p}^{x} \oplus I_{q}^{y}$.
III. Either R is an (AM)-ring or there is a non-zero proper prime ideal P of R satisfying the following:
(i) $P^{2}=(0)$ and $P=I_{p}^{x}$ type.
(ii) $P<R^{2}$ or $R=R^{2} \oplus P$.
(iii) The only ideals of R are (0), P, R, R^{2}, \ldots Each ideal of R is generated by at most two elements.

Proof. Suppose R satisfies (Ham).
Case I. $\quad R=R^{2}$. We shall prove that R satisfies I. Let $A \neq(0)$ be any ideal of R. Since R / A is an $(A M)$-ring and $(R / A)^{2}=R / A$, we deduce from Lemma 2.1 that R / A is a multiplication ring. Thus R satisfies (Hm).

Case II.* (0$)=R^{2}<R$. In this case the ideals of R are the Z-submodules of the additive group R. By Lemma 2.1, every homomorphic image of R is simple and isomorphic to $Z /(p)$ for some prime p. It follows that R is a finitely generated abelian group. By Lemma $2.1, R$ satisfies the condition II.

Case III. (0) $<R^{2}<R$. Let $0 \neq y \in R^{2}$. Suppose there is an ideal I such that $R^{2}<I<R$. Then $R /(y)$ is an $(A M)$-ring and $(R /(y))^{2}=\left(R^{2}+(y)\right) /(y)=R^{2}$ $/(y)<R /(y)$. Lemma 2.1 implies that every non-zero ideal of $R /(y)$ is a power of $R /(y)$ which is impossible since $(R /(y))^{2}<I /(y)<R /(y)$. Thus there is no ideal of R properly between R and R^{2}. Using Lemma 2.4 we deduce that the only ideals of R between R and R^{n} are R, R^{2}, \ldots, R^{n} for every integer n. Hence every ideal of R properly containing (y) is a power of R. Let A be any ideal of R. If $A^{2} \neq(0)$ then every ideal of R properly containing A^{2} is a power of R. In particular if $A^{2}<A$ then A is a power of R. Hence for every ideal A of R, either $A^{2}=(0)$ or $(0) \neq A=A^{2}$ or A is a power of R. Suppose $A^{2} \neq(0)$ and A is not a power of R. Then $A=A^{2}$. Let $0 \neq x \in A^{2}$. Then every ideal of R properly containing (x) is a power of R. As $(x) \subseteq A$ and A is not a power of R, we get $(x)=A$. Since $A=A^{2},(x)=\left(x^{2}\right)=\left(x^{3}\right)=\cdots$. Let $x=r x^{2}, r \in R$. Then $(r x)^{2}$ $=r x$. Denote $e=r x$. Then e is a non-zero idempotent and $A=(x)=(e)$. Let $B=\{r-e r: r \in R\}$. Then $R=A \oplus B . \quad \mathrm{A} \cong R / B$ and $A^{2}=A$ implies that A is a multiplication ring. Since R is not a multiplication ring, B is not a multiplication ring. But $B \cong R / A$ is an ($A M$)-ring. Therefore $B^{2} \neq B$. Hence $B^{2}=(0)$ or $B=R^{k}$ for some integer $k>1$. If $B^{2}=(0)$, then $R^{2}=A^{2} \oplus B^{2}=A^{2}=A \subseteq R$. We get that $A=R^{2}$ which is impossible. Now suppose that $B=R^{k}, k>1$. Then $R=A \oplus R^{k}=A^{2} \oplus R^{k} \subseteq R^{2}$ which is again impossible. Thus for every ideal A of R, either A is a power of R or $A^{2}=(0)$. If A is any proper ideal of R such that $A \nsubseteq R^{2}$, then $R=R^{2}+A$. If there is a non-zero $y \in R^{2} \cap A$, then A is a power of R or $A=(y) \subseteq R^{2}$, a contradiction. Hence $R=R^{2} \oplus A$. Let $0 \neq a \in A$. Then as above $R=R^{2} \oplus(a)$ and therefore $A=(a)$. Thus every non-zero ideal A of R satisfies one of the following:

[^1](i) A is a power of R.
(ii) $A^{2}=(0), A$ is a principal ideal generated by every non-zero element of A such that either $R=R^{2} \oplus A$ or $A<R^{2}$.
Also $R^{2} \neq(0)$. Let $a, b \in R$ such that $a b \neq 0$. If $(a b)<(a)$ then (a) is a power of R and if $(a b)<(b)$ then (b) is a power of R. If $(a b)=(a)=(b)$ then we get $(a)=\left(a^{2}\right)$ and such a case is impossible, as we have already proved. Thus for some $k, R^{k}=(x)$ is a principal ideal. If $k=1$ then every ideal of R is principal. Suppose $k>1$. Let R^{t} be any power of R. We can find a least integer m such that $t<2 m k$. If $R^{t}=R^{2 m k}$ then R^{t} is a principal ideal. If $R^{t}>R^{2 m k}$ and $R^{2 m k} \neq(0)$ then $R^{t} / R^{2 m k}$ is a non-zero ideal of $R / R^{2 m k}$ which is an (AM)-ring whose every ideal is principal. Since $R^{2 m k}$ and $R^{t} / R^{2 m k}$ are principal ideals, R^{t} is generated by at most two elements. If $R^{2 m k}=(0)$ then by Lemma 2.4, the only ideals of R are powers of R and hence R is an ($A M$)-ring.

Consider now $\operatorname{rad}(0)$. If $\operatorname{rad}(0)=R$ then every element of R is nilpotent. Thus $R^{k}=(x)$ is nilpotent, showing that R is an (AM)-ring. If $\operatorname{rad}(0) \neq R$ then there is a prime ideal $P,(0)<P<R$. Clearly P is not a power of R. Thus $P^{2}=(0)$ and P is the principal ideal generated by every non-zero element of P such that either $R=R^{2} \oplus P$ or $P<R^{2}$. Suppose $A \neq(0)$ be any ideal of R which is not a power of R. Then $A^{2}=(0)$ and it implies that $A \subseteq P$. Since P is generated by every non-zero element of $P, A=P$. Thus P is the only non-zero ideal of R which is not a power of R. Hence either R is an $(A M)$-ring or there is a prime ideal P of R such that $P=I_{p}^{x}$ type, $P<R^{2}$ or $R=R^{2} \oplus P$.

Now assume that R satisfies any one of I, II, III. If R satisfies I then clearly R satisfies (Ham). Suppose R satisfies II. If A is any non-zero proper ideal of R then $R=A \oplus I_{q}^{y}$ type by II. Since I_{q}^{y} is an $(A M)$-ring, $R / A\left(\cong I_{q}^{y}\right)$ is an $(A M)$ ring and hence R satisfies (Ham). Lastly assume that R satisfies III. If $R^{k} \neq(0)$ for any k then R / R^{k} is clearly an ($A M$)-ring. It remains only to verify that R / P is an ($A M$)-ring. Now any non-zero ideal of R / P is $\left(R^{k}+P\right) / P, k$ an integer such that $R^{k} \nsubseteq P$. Now $\left(R^{k}+P\right) / P=(R / P)^{k}$ and hence R / P is an $(A M)$-ring.

Acknowledgement

The author expresses his gratitude to Professor Surjeet Singh, Department of Mathematics, Guru Nanak Dev University, Amritsar (India), for his kind guidance during the preparation of this manuscript.

References

[1] D. D. Anderson, Multiplication ideals, multiplication rings and the ring $R(X)$, Can. J. Math. 28 (1976), 760-768.
[2] H. S. Butts and R. C. Phillips, Almost multiplication rings, Can. J. Math. 17 (1965), 267-277.
[3] R. W. Gilmer and J. L. Mott, Multiplication rings as rings in which ideals with prime radical are primary, Trans. Amer. Math. Soc. 114 (1965), 40-52.
[4] R. W. Gilmer, Eleven non-equivalent conditions on a commutative ring, Nagoya Math. J. 26 (1966), 183-194.
[5] , Commutative rings in which each prime ideal is principal, Math. Ann. 183 (1969), 151-158.
[6] -, Extension of results concerning rings in which semi-primary ideals are primary, Duke Math. J. 31 (1964), 73-78.
[7] M. Griffin, Multiplication rings via their total quotient rings, Can. J. Math. 26 (1974), 430-449.
[8] W. Krull, Über allgemeine Multiplicationsringe, Tôhoku Math. J. 41 (1946), 320-326.
[9] M. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
[10] S. Mori, Struktur der Multiplicationsringe, J. Sci. Hiroshima Univ. Ser. A 16 (1952), 1-11.
[11] , Über Idealtheorie der Multiplicationsringe, J. Sci. Hiroshima Univ. Ser. A 19 (1956), 429-434.
[12] J. L. Mott, Equivalent conditions for a ring to be a multiplication ring, Can. J. Math. 16 (1964), 429-437.
[13] S. Singh, Principal ideals and multiplication rings, J. London Math. Soc. 3 (1971), 311-320.
[14] C. A. Wood, Commutative rings for which each proper homomorphic image is a multiplication ring, J. Sci. Hiroshima Univ. Ser. A 33 (1969), 85-94.
[15] O. Zariski and P. Samuel, Commutative Algebra I, Van Nostrand, Princeton, 1958.
[16] —— Commutative Algebra II, Princeton, 1968.

> Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, India

[^0]: *) I am indebted to the referee, whose comments enabled me to put Theorem 1.7 in the present form.

[^1]: *) I am thankful to the referee for suggesting me the proof of Case II which has considerably simplified my original proof.

