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All rings considered in this paper are commutative but may not have a unity.
An ideal A of a ring R is said to be a multiplication ideal if for every ideal B of R,
B^A, there is an ideal C of R such that B — AC. An ideal A is said to be an
M-ideal if for every ideal B containing A, there is an ideal C such that A = BC.
R is said to be a multiplication ring if every ideal of R is a multiplication ideal
(equivalently every ideal is an M-ideal). A ring R is said to be an (ylM)-ring if
for any two ideals A and B of R, A<B, there is an ideal C of R such that A = BC.
An ideal A is said to be simple if there is no ideal A' with A2<A' <A. A ring
R is said to be primary if R has at most one proper prime ideal. R is said to be
a special primary ring if R has a prime ideal P such that every ideal of R is a
power of P. If S is a multiplicatively closed subset of R and A is any ideal then
Ae denotes the extension of A to the quotient ring Rs and Aec denotes the con-
traction of Ae to R. A ring is said to satisfy (*)-condition if every ideal with
prime radical is primary. A ring R is said to satisfy (Hm) or (Ham) according
as every proper homomorphic image of R is a multiplication ring or an (ylM)-ring.
The purpose of this note is to determine the structure of rings satisfying (Hm)
and (Ham) and the desired structure is given by Theorems 1.7 and 2.5.

1. Let R be a ring and N be its set of nilpotent elements. For any subset
S of JR, define S1 = (N: S) = set of all x in R such that xS<ΞN[7, p. 434]. The
following lemma is due to Griffin [7, Lemma 7].

LEMMA 1.1. If for any element x of a ring R there exists an ideal D such

that (x) = D(N + (x) + x 1) then there is an idempotent ee(x±)± and a positive
integer n such that xn = exn.

LEMMA 1.2. If R is a ring satisfying (Hm) and xeR such that x2^Q

then (x) is an M-ideal.

PROOF. Suppose A is any ideal of .R such that xeA. Now (x)/(x2)^
A/(x2) in R/(x2) which is a multiplication ring. There is an ideal / containing
x2 such that (x)/(x2) = (AI(x2))(I/(x2)). Thus (x) = AI + (x2) = A(I + (x)) + (x2)
= A(I + (x)), since x2eA(I + (x)). Therefore (x) is an M-ideal.

COROLLARY 1.3. If R is a ring satisfying (Hm) such that rad(0) = (0) then
R is a multiplication ring.
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COROLLARY 1.4. If R is a ring satisfying (Hm) and xεR with

then there are an idempotent ^(x1)1 and an integer n such that xn = exn.

PROOF. It follows from Lemmas 1.1 and 1.2.

LEMMA 1.5. If R is a ring satisfying (Hm) such that x2 7^0 for some xeR
then R is idempotent.

PROOF. Since R/(x2) is a multiplication ring, (R/(x2))2 = R/(x2). Thus R

THEOREM 1.6. If R is a ring satisfying (Hm) and xeR such that
then there exists an idempotent e such that x = ex.

PROOF. Since x2^0, (x) is an M-ideal. There is an ideal / of R such

that (x) = IR = IR2 = (IR)R = xR. Let x = xy, yeR. Now 0^x2 = x2j;2 im-
plies that <y2τ^0 and by Corollary 1.4 we get an idempotent e and an integer n

such that yn = eyn. Then x = xy = xy2 = = xyn = x(eyn) — e(xyn) = ex.

NOTATION. Let R be a ring and x a non-zero element of R. If there exists
a prime integer p such that px = Q = x2 then we denote I* = {x9 2x,..., px = Q}
which is isomorphic to Z/(p) as a Z-module.

THEOREM 1.7.* A ring R satisfies (Hm) if and only if R satisfies one of

the following :
I. R is a multiplication ring.

II. x2 = 0 for each x e R and R = lx

p type.
III. R has a unity and a unique maximal ideal M such that
(i) M2 = (0).

(ii) Ifx9 yeM such that (x)φ(j) and GOΦ(*) then M = (x) + (y).
(iii) There is an ideal A such that (0)<^4<M and every such A is principal.

(iv) R does not contain a chain of five ideals.
(v) R is noetherian.

PROOF. Assume R satisfies (Hm). Suppose II does not hold. Let x e R
such that x27^0. By Theorem 1.6 there exists an idempotent e such that x = ex.

Let A = eR and B = {r — er: reR}. Then A and B are ideals of R and it is easy to
see that R=A®B. Clearly ,4^(0). If A<R then B^(0) and hence A(^R/B)
and B(^R/A) are multiplication rings and consequently R is a multiplication

ring. If A = R then e is the unity of R and (i) to (v) of III follow from [14, Theorem
2.5 and Theorem 3.12]. Now suppose x2 = 0 for each x in R. If (0)<

*) I am indebted to the referee, whose comments enabled me to put Theorem 1.7 in the present
form.



Structure of Rings Satisfying (Hm) and (Ham) 3

then R/(x) is a multiplication ring. Let e = e + (x) be any non-zero idemoptent
in R/(x). It can be easily seen that e2^Q which is impossible. Thus R = (x)
for every x^O in R. It is now plain that R = I* type for some prime integer p.

The converse is trivial, for if R satisfies I or II then R evidently satisfies
(Hm) and if R satisfies III then R satisfies (Hm) by [14, Theorem 3.12].

COROLLARY 1.8. A ring satisfying (Hm) satisfies (*)-condition.

PROOF. This follows from Theorem 1.7 and [6, Theorem 7],

2. In this section we establish the structure of rings satisfying (Ham). The
structure of (/4M)-rings was established by Mori [10] and Griffin [7].

LEMMA 2.1. If R ίs an (AM)-ring then R satisfies one of the following :
I. R = R2 and hence R is a multiplication ring.

II. R^R2 and every non-zero ideal of R is principal and a power of R.

PROOF. This is [7, Proposition 4].

LEMMA 2.2. Let R be a ring satisfying (Ham). If A<B are ideals of R
such that AB^(Q) then there is an ideal C of R such that A = CB.

PROOF. Let aeA and beB such that αb^O. Since A/(a)<B/(a)9 there
is an ideal / containing (a) such that A/(a) = (I/(a))(B/(a)). Thus A=IB + (a).
Again (a)/(ab)<B/(ab) implies that there is an ideal J containing (ab) such that
(a) = JB + (ab). Thus A = IB + JB + (ab) = (I + J)B + (*&) = (/ + J)B.

COROLLARY 2.3. // R is a ring satisfying (Ham) without nilpotent ele-
ments then R is an (AM)-ring.

LEMMA 2.4. If A is any ideal of a ring R such that there is no ideal of R
properly between A and A2 then for every positive integer n, the only ideals
between A and An are A, A2

9 A3,..., An.

PROOF. This is [3, Lemma 3].

THEOREM 2.5. A ring R satisfies (Ham) if and only if R satisfies one of the

following:
I. R = R2 and R satisfies (Hm).

II. R^R2 but R2 = (G) such that every non-zero proper ideal of R is of
the type /£ and every two proper distinct ideals /£ and Pq intersect at (0) and

R = Ix

p®Iy

q.
III. Either R is an (AM)-ring or there is a non-zero proper prime ideal P

of R satisfying the following:
( i ) P2 = (0) and P = Ix

p type.
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(ii) P<R2 or R = R2@P.

(iiϊ) The only ideals of R are (0), P, R, R2,.... Each ideal of R is gener-
ated by at most two elements.

PROOF. Suppose R satisfies (Ham).
Case I. R = R2. We shall prove that R satisfies I. Let A Φ (0) be any ideal

of R. Since R/A is an (AM)-ήng and (R/A)2 = R/A, we deduce from Lemma 2.1
that RjA is a multiplication ring. Thus R satisfies (Hm).

Case II.* (Q) = R2<R. In this case the ideals of R are the Z-submodules
of the additive group R. By Lemma 2.1, every homomorphic image of R is
simple and isomorphic to Z/(p) for some prime p. It follows that .R is a finitely
generated abelian group. By Lemma 2.1, R satisfies the condition II.

CaselΠ. (0)<fl2<jR. Let Q^yeR2. Suppose there is an ideal / such
that R2<I<R. Then R/(y) is an (4M)-ring and (RI(yy)2 = (R2 + (yy)/(y) = R2

/(y)<R/(y). Lemma 2.1 implies that every non-zero ideal of R/(y) is a power of
R/(y) which is impossible since (R/(yJ)2<I/(y)<R/(y). Thus there is no ideal
of R properly between R and R2. Using Lemma 2.4 we deduce that the only
ideals of R between R and Rn are R, R2,..., Rn for every integer n. Hence every
ideal of R properly containing (y) is a power of R. Let A be any ideal of jR.
If A2 7^(0) then every ideal of R properly containing A2 is a power of R. In par-

ticular if A2<A then A is a power of jR. Hence for every ideal A of R, either
A2 = (G) or (0)^A — A2 or A is a power of R. Suppose A2^(0) and A is not a

power of R. Then A = A2. Let Q^xeA2. Then every ideal of R properly
containing (x) is a power of R. As (x)^A and A is not a power of R9 we get
(x) = A. Since 4=A2, (x) = (x2) = (x3) = . Let x = rx2, r e R. Then (rx)2

= rx. Denote e = rx. Then e is a non-zero idempotent and A = (x) = (e). Let
B = {r-έ?r: re#}. Then R=A@B. A^R/B and ,42 = ,4 implies that A is a
multiplication ring. Since jR is not a multiplication ring, B is not a multiplication

ring. But B^R/A is an (AM)-ring. Therefore B2^B. Hence J32 = (0) or
£ = £* for some integer fc>l. If £2 = (0), then £2 = 42052 = A2 = 4£ii.

We get that A = R2 which is impossible. Now suppose that B = Rk

9 k> 1. Then

jR = ̂ 40jR
fc = y4

20JR
fcc jR2 which is again impossible. Thus for every ideal A

of R, either A is a power of R or ^42 = (0). If A is any proper ideal of # such that
A^R2, then ̂  = ̂ 2 + ̂ 4. If there is a non-zero y eR2 n A, then ^4 is a power of
R or .4 = 00^£2, a contradiction. Hence R = R2@A. Let 0^0 e A Then as
above R = R2®(a) and therefore A = (ά). Thus every non-zero ideal A of R
satisfies one of the following:

*) I am thankful to the referee for suggesting me the proof of Case II which has considerably
simplified my original proof.
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(i) A is a power of R.

(ii) A2 = (Q), A is a principal ideal generated by every non-zero element
of A such that either R = R2®A or A<R2.

Also R2 Φ (0). Let a,beR such that αb ̂  0. If (ab) < (a) then (a) is a power
of R and if (α6)<(ft) then (6) is a power of R. If (αb) = (α) = (fc) then we get

(a) = (a2) and such a case is impossible, as we have already proved. Thus for
some k, Rk = (χ) is a principal ideal. If k=l then every ideal of R is principal.

Suppose k> 1. Let #' be any power of #. We can find a least integer m such

that t<2mk. If Rί = Λ2mk then #< is a principal ideal. If R'>JR2m* and

/μmΛ^o) then R'/R2mk is a non-zero ideal of #/#2wfc which is an (AM)-ήng

whose every ideal is principal. Since R2mk and RtIR2mk are principal ideals,

Rt is generated by at most two elements. If R2mk=(Q) then by Lemma 2.4, the

only ideals of R are powers of R and hence R is an (ylM)-ring.
Consider now rad(O). If rad(0) = R then every element of R is nilpotent.

Thus Rk = (χ) is nilpotent, showing that R is an (^4M)-ring. If rad(0)^K then

there is a prime ideal P, (0)<P<jR. Clearly P is not a power of R. Thus

P2 = (0) and P is the principal ideal generated by every non-zero element of P such
that either R = R2@P or P < R2. Suppose A Φ (0) be any ideal of R which is not
a power of R. Then A2 = (0) and it implies that A^P. Since P is generated by

every non-zero element of P, A = P. Thus P is the only non-zero ideal of R
which is not a power of R. Hence either .R is an (^M)-ring or there is a prime

ideal P of R such that P = Ix

p type, P<jR2 or R = R2®P.
Now assume that R satisfies any one of I, II, III. If R satisfies I then clearly

R satisfies (Ham). Suppose R satisfies II. If A is any non-zero proper ideal of
£ then R = A@Pq type by II. Since JJ is an (>4M)-ring, R/A(^Pq) is an (AM)-

ring and hence .R satisfies (Ham). Lastly assume that # satisfies III. If

for any k then R/Rk is clearly an (AM)-ιmg. It remains only to verify that

is an (/4M)-ring. Now any non-zero ideal of R/P is (Rk + P)/P, k an integer such
that RkζP. Now (Rk + P)/P = (R/P)k and hence R/P is an (^M)-ring.
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