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1. Introduction

The linear differential equation

(i.i) 0,

where z is a complex variable and q is an integer larger than n, has an extended
form of the well-known Airy equation. For n = 2 and q = 3 (1.1) is exactly the
Airy equation which has a long history of investigations. Two linearly inde-
pendent entire solutions of the Airy equation Ai(z) and Bi(z) are called the Airy
functions of the first and second kind, respectively. Their properties have been
studied in great detail (see [5, 6]). For instance, we here give a brief exposition
of the global behavior of the Airy function of the first kind

(1.2) Ai(z) =
73m

- Σ
y3m+l

M=0

Ai(z) is recessive on the positive real axis argz=0 and admits the following
asymptotic behavior as z tends to infinity :

(1.3)

Γ(s + ̂

in - -z- π < arg z < - π,

Ai(z)

in — π < argz < π,

(I)'\ 4 y

in π < arg z < -r- π.
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The negative real axis arg z = ± π is the actual Stokes line of Ai(z). By means of

the asymptotic behavior (1.3) and an application of the principle of the argument,

we see that zeros of Ai(z) are located in a small sector including the Stokes line,
more precisely, just on the Stokes line, and moreover can obtain an exact number
of zeros contained in a disk with a sufficiently large radius, though we can also
use LommeΓs method to know the zero-free domains of Ai(z).

C. A. Swanson and V. B. Headley [7] defined the Airy functions of the first
and second kind satisfying a second order linear differential equation of the form
(1.1), where q is an arbitrary integer larger than 2, in terms of the modified Bessel
function of the first kind and investigated continuation formulas, linear depend-

ence relations, zero-free domains, the distribution of zeros and other properties.
In this paper we shall define the Airy function of the first kind satisfying the

higher order linear differential equation (1.1) which reduces to the original Ai(z)

when n = 2 and q = 3. As not explained explicitly anywhere, the Airy function of

the first kind should be defined as a particular entire solution of linear differential
equations of the form (1.1) which is principally recessive on the positive real axis

argz=0. For that reasoning, we have to assume that n is even, i.e., n = 2N, N

being a positive integer.

In order to define the extended Airy function of the first kind, we first in-
vestigate the global behaviors of solutions of the linear differential equation (1.1).
Such investigations have been done by H. L. Turrittin [8], J. Heading [2] and B.
L. J. Braaksma [1]: But we here use our theory of solving a two point connec-
tion problem established in the papers [3, 4] to obtain the desired result. We
shortly explain our method (see [4: Section 8]). By the change of variables

z = tn we can rewrite (1.1) in the form

(1.4) - n(n - 1)} - nn = 0,

where $ denotes the differential operator If we put

(1.5)
= y,

yp = {& - n(n - p + 1)} {& - n(n - p - n(n -

(p = 2, 3,..., n)

and denote the column vector (yi9 y^..., yn) by 7, then we have

(1.6)

Λ(Λ-0

Λ(Λ-2)

0

0

n 1

o o;
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A further application of the shearing transformation

475

(1.7) X = S(t)Y,

reduces (1.6) to the system of linear differential equations

<dX
(1.8)

where

( P i 0

P2

0

(i = i, 2,..., «),Pi - (« - ;')(« +

0 1

0\
•

\Ί
•

nn 0 0

We now apply our general theory to this system of linear differential equations.
We can immediately obtain a fundamental set of solutions of (1.8) which are
expressed in terms of convergent power series

(1.9) X(t)
m=0

j = 1, 2,..., n),

where the coefficients G7 (m) (j = 1, 2,..., n) satisfy the systems of linear difference
equations

(1.10)
(m m) = AqGj(m - q)9

= 0 (r<0) ( = 1, 2,..., n).

On the other hand, we derive formal solutions of (1.8) at ί=oo, an irregular
singular point of rank q, with the following form

(1.11) f (k = 1, 2,..., n),

where the characteristic constants λk = nωj" 1 (ωn = exp (2πi/n)), μfc = (n -h ̂ ) (n — 1)/2
(fc=l, 2,..., n) and the coefficients Hk(s) (k = l,29...9n) satisfy the systems of
linear difference equations

(1.12)
J (λk - AJH*(s) = (A0 - μk + s

1 H*(0) ^ 0, fl*(r) = 0 (r < 0) (k = 1, 2,..., n).
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Then we can prove the following expansion formulas, together with the explicit
determination of the Stokes multipliers Tk

Ί:

(1.13) Xj(t) = ̂  ΣoGj(m)ίm

= f ( Σ Σ Γfcf H*(s)gk

jl(m +
m=0 \k-l 1=1 s=0

n 4 oo
= Σ Σ Tkn Σ Hk(s)xk

jl(ίί s) (y=l,2,. . . ,
*=1ί=l s=0

where we put

(1.14)

£oβ*
1

J - μk

? /

(ω* = exp(2πi/<2); j, fe = 1, 2,..., n; / = 1, 2,..., 4).

The functions xk

t(t, s) satisfy nonhomogeneous linear differential equations of
the first order and hence have the global integral representations which yield their
global behaviors in the whole complex plane. From (1.13) and the global be-
haviors of Xji(t, s) we can consequently solve the connection problem for (1.8),
obtaining the following result:

(1.15) Xj(t) - JE T*JikX*(f) (j = 1, 2,..., n)

as t-+ao in the sector S(lί9 /2,..., U = 5/1(A1) Π Sl2(λ2) Π ••• n Sln(λn), where

3ττ 2ττ 7Γ 2ττ
/ Λ ^ ^ = g f c q q '

I running over all integers.
Returning to the original linear differential equation (1.1), we rewrite the

above result in the form of

THEOREM 1. Let yj(z) (y = l, 2,..., n) be a fundamental set of entire solu-
tions o/(l.l) of the form

(1.17) yj(z) = z*-J Σ (fl Γ(m+l
m=0\ί=l \
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Then we have

(1.18) yj(z) ~ £ Tk

jlky
k(z) (j = 1, 2,..., n)

as z-»oo in the sector S(llt /2,..., 0 = 5^ n S?2 Π ••• n S?n, S^ (/c=l, 2,..., w)

denoting the sectors

(1.19) Sf: (21 - 3)π - — (Λ - 1) ^ argJ < (2/ - l)π - —(A: - 1)
/I n

(/-O, ±1±2,...),

w/iβrβ yfc(z) (fc = l, 2,..., n) are formal solutions o/(l.l) of the form

(1.20) j*(*> = βxp(-^ ω*-'z2)zίs=^
5=0

ft*(s) beingf the first component of the column vector Hk(s). In the above the

Stokes multipliers T^ are given by

(7,/c = l,2,...,n; / = 0, ± 1, ±2,...).

As an example illustrating the above theorem, we consider the most simple

differential equation, where n = q. In this case the linear differential equation

(1.1) has only constant coefficients and expίωjj^z) (fc = l, 2,..., n) are its global

solutions. The Stokes multipliers corresponding to (1.21) are rewritten in the

form

(1.22) Tk

jt = (2πΓ^ n-ί(^^-J~n (J9 k = 1, 2,..., .«),

which are independent of /, i.e., the sectors (1.19), and then the relations (1.18)

imply the identical formulas

(1.23) yj(z) = z -ί Σ (ΠJ m=o\ί*ι
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•Σ:
* = 1

exp (ω*-1*) (7 = 1, 2,..., n).

This fact is easily checked by expanding the exponential functions in the last line
of (1.23) in terms of power series and taking account of the relation

* U-DGW.+*) _ " U-D* _ ί H (h = °}>

£"" ' *"+*)β£ω-k ""[o ( 1 < Λ < Λ - 1 ) .

As to the Stokes multipliers in other cases, refer to and compare with the results
in [8, 2, 1].

2. Definition of the extended Airy function of the first kind Aί(z)

We now define, as already explained, the extended Airy function of the first
kind Ai(z) by an entire solution of an even order, i.e., n=2N (N^l)-th order
linear differential equation (1.1) which is principally recessive on the positive real
axis argz=0. As a matter of course, such a function is uniquely determined.
In fact, we put and then obtain

(2.1) Ai(z) = ]

as z tends to infinity in the sector S(ll9 /2> > U Since the positive real axis
arg z=0 is included in the sector

(2.2) S(l, 1,..., 1, 2, 2,..., 2) = 5} Π - Π S? n S£+1 Π - n Sϊ": 0 ̂  argz" < -^~

and among the exponential factors of formal solutions (1.20) the exponential
factor for /c=W + l is principally recessive on the line argz = 0, we only have to
determine the constants Cj (j = l, 2,..., n) by the equation

(2.3) JS CjTfc = δkN+ί (k = 1, 2,..., n),

where ίί7 denotes the Kronecker delta and lk is set equal to 1 for IrgfcrgN and 2
for N+ί^k^2N. We now calculate the determinant composed of the Stokes
multipliers appearing in (2.3) and its cofactors.
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(2.4)

T2N T^N ... , _..
L 12 * 22 * 2N2

T2 ηr2 T2
1 11 ^ 2 1 "•-* 2N1

11 21 2/Vl

4 €

.̂  ^

ί 9

... i

...ΛV/-1 n-l

where we have put

(2.5)

•ω

1, 1, ω

M= (Λ + g)(l-ii)
2/z

and K^X!, x2> » xn) denotes the Vandermonde determinant. Let us denote the
cofactor corresponding to (1,7') element ω -NU-V of the Vandermonde determi-
nant in (2.4) by (-iy+1J,. Putting xj = ω-»-l+J (7=2, 3,..., n), each Δj (7 = !,
2,..., n) has the following form:

(2.6)

where Pn-j(x29

i.e.,

( PΛ-j
(2.7) I

= Π

-v-J... -v-n— 1
^ 3 ^ 3

(7 = 1, 2,...,/ι),

.,xn) is a fundamental symmetric function of degree n—7,

(7 = 1, 2,..., n).
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Taking account of (2.4-7), we find from (2.3) that the constants Cj O'=l, 2,..., n)
are given by

(2 8)(2Λ)

ι=ι

(y = 1,2,. ..,«).

In the above P,,_J (ω~N+1,..., 1,..., ωj"1) can be calculated as follows:

(2.9) X*) = (x + ω~N+1)(x + ω-»+2)-(x + ί)-(x + ω»-2)(x + a)?'1)

2x cos

ι=ι

whence

(2.10)

From this, we easily see that all P11_;(ω~JV+1,..., 1,..., ω*"1) are real number, that
is, all Cj are real number, and moreover we have the symmetric relations

(2.11) PB_,K"+1,..., 1,..., to?'1) = Pj-άω-"*1,..., 1,..., <-')

0 = 1,2 AT).

Thus we have defined the extended Airy function of the first kind Ai(z) as follows:

</W = 7 Σ ( - l)^'^ Pa-j(ω-N+ί,..., 1 ω?-1)

(2.12)

We here make a remark. In the definition of the original Airy function of the
first kind and the like by C. A. Swanson and V. B. Headley the constant factor
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y is dropped and is included in the Stokes multipliers, but, for simplicity of later
considerations, we take the above definition (2.12) in this paper.

We shall now show linear dependence relations. It is easy to see that Ai(ωk

qz)

(fc=0, ±1, ±2,...) are solutions of the linear differential equation (1.1) and

(2.13) Ai(ω\z) = ΣιCΛ(ωJz)= Σ c/»*<"-'ty(z)

holds. Let k{ (i = 1, 2,..., n) be mutually distinct modulo q. Then we have

(2.14)

where

nin „
1 ' '

(/= 1,2,..., Λ),

which obviously reduces to the well-known relation and the like in [7] when n=2.
We can moreover calculate the Wronskian

^z), Λ/(ω*>z),..., Ai(ωk

q»z); z]

(2.16) =

From this, it follows that Ai(ωkiz) (i=l, 2,..., n) make a fundamental set of
solutions of the linear differential equation (1.1).

3. Stokes phenomenon of Aί(z)

We shall now investigate the Stokes phenomenon of the extended Airy
function of the first kind Ai(z).

We have defined Ai(z) such that

Ai(z)~yN+l(z) as z-> oo in 5(1,..., 1,2,...,2): 0 ^argz"<-^-.
N/ί+Ί

The asymptotic behavior of 4i(z)inthe sector 5(1,..., 1, 1, 2,..., 2) lying below is

immediately derived from (2.1), replacing TJ5"1 by T^f1 (y = 1, 2,..., n) as follows:

' yN+i(z) asz-» oo in 5(1,..., 1, 1, 2,...,2): - -5- ^argz»<0,
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whence we have

(3.1) Ai(z) ~ yN+ί(z) as z -> oo in - -J- ̂  arg z» < -5L .

Like this, in order to investigate the Stokes phenomenon of Ai(z\ we have only
to evaluate the coefficients in the right hand side of (2.1), which become the
Stokes multipliers of Ai(z). We first calculate them. From (1.21) and (2.8) it
follows that

. CD~NMV (ω~N m~N+l ϊ m**-*}l Wq rwvu 'ί » ^f j j A J J "'̂  y

(ωU*-ι)-π(ι-ι))> pHm. 1,..., ωy-i)
-", ωj"+1,..., 1,..., ω^1)

exp — -ni Π sinί^-ΐ—πj

= D} (k = 1, 2,..., n\ I = 0, ± 1, ± 2,...).

We can therefore rewrite (2.1) in the following form:

(3.3) Aί(z) ~ Σ Dkι*yk(z)

as z tends to infinity in the sector S(lί9 /2,.. , /„).

We are now in a position to analyze the global behavior of Ai(z) in the whole
complex plane 0^argz<2π. Considering (1.19), we see that if z lies in the

q

sector &**: — k<argz" < -^(k +1) when k successively runs over 1, 2,..., q — 1,N — ^ jy
then the subscript lN+ί-k of Sγ£*~\ only increases its value by 1, the others
being unchanged, successively, where JV + l — k is considered as a number K=N
+1 - k (mod 2N) (1 ̂  ̂  ̂  2N). From this fact, taking account of (3.2) and (3.3),
we can obtain the asymptotic behavior of Ai(z) in the whole complex plane
0^argz<2π and summarize results derived in the following

THEOREM 2. Let q=μn + vϊtn (μ^l, 0:gv<n). We put

2N-1 / / i L. \

iM, Ί Π sinf J ^ κ π)
(3.4) ^ . = e x p - l . . >ί.. ^ 1 I (t-0,1,2,...).

JS
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Then we have

(3.5) AKz) ~ dfny»+\z) + dpn

as z tends to infinity in the sector

(3.6) rpn+r: (ip + -̂ ) π ̂  arg z«

(p = 0, l,...,μ; r = 0, 1,...,2N- 1; pn + r<q),

where the superscript N—r of yN~r(z) is considered as a number ?=N—
r(mod2N) (l^f^2N), d_k(fc>0) is set equal to zero and moreover the last

(2N— 1) Stokes multipliers are vanishing, i.e.,

(3-7) a( | i_1)rt+v+1 = a(μ_1) r t+v+2 =•••= dμn+v^ί = 0.

Similarly, in the whole complex plane — 2π^argz<0, we have

(3.8) Λ/(z)

as z tends to infinity in the sector

(3.9) ^.(pn+Γ) : - 2/; + ̂ ±Λ π ̂  arg zn < - 2/7 .+ - - π

where the superscript again keeps the meaning stated above and clk denotes the
complex conjugate of dk.

In order to obtain the asymptotic behavior of Ai(z) on the Riemann surface,
we may only make p and r run over positive integers and 0, 1,..., 2N— 1, respec-

tively, with the Stokes multipliers dk and Uk.

From the above relations (3.5) we can see where the Stokes phenomenon of
Ai(z) occurs. Consider the Stokes phenomenon of Ai(z) in the whole complex
plane 0 ̂  arg z < 2π. We put

(3.10) θk = ̂ Lr + JLrk (k=0,l,...,q-l).
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In the first n sectors, according as z moves from yk to ̂ k+ί (fc=0, 1,..., n — 1),
yN+ί~k(z) appears for the first time, and then all yk(z) are appearing in the right
hand side of (3.5) as far as z reaches the sector ^ (//_1)r t+v+1. From this fact we

have, putting 0= argz»,

(3.11) Ai(z)~y»+\z) (Q£Θ<ΘN),

(3.12) Ai(z) ~ dh+1-Ny*-*(z) (θk^θ<θk+ί)

We have to pay attention to the last (n — 1) sectors because some of the
Stokes multipliers vanish there. We see that yv+1~(v+1)(z), yN+l-(v+2\z),...,
yv+ι-(«+v-i){2) one after another disappear in the sector £fk according as k

takes (μ— l)tt + v + l, (μ— l)n + v + 2,..., μn + v — 1 successively. On the other
hand, yn~v(z), ^w""v~1(z),..., yN~v+1(z) one after another become dominant in
the sector θk£θ<θk+i when fc takes (μ— l)n + v, (μ — l)n-f-vH-l,..., (μ— l)n-hv
+N— 1 in succession, and after that, because of the consecutive disappearance of
others, yN~v+l(z) becomes dominant. Consequently, we have

(3.13) Ai(z) - dk+1-Nr-*(*) (Ok ̂  θ < flkψl)

(fc = (μ - l)n + vf 0* - l)n + v + 1,..., (/ι - l)n + v + N - 2),

(3.14) Xί(z) - ̂ -1)rt+v^-v+1(^) (θq-N-ι ^ θ

The half-lines arg zn = θk (k = N9 N-hl,..., q — N — 1) therefore are the actual
Stokes lines of Ai(z) in the whole complex plane Orgarg z<2π.

4. The distribution of zeros

From the global behavior derived in the preceeding section we can now
investigate the distribution of zeros of Ai(z) on the Stokes lines.

Let β, Pl and P2 be points of intersection of the circle \z\ = p with one of the

Stokes lines θk (fc=JV, N+1,..., q-N-l\ the rays 0=0fc-ε and 0=0k + ε, ε

being an arbitrarily small positive number, respectively. From (2.12) and (3.12-
14) we then have for a sufficiently large p

(4.1) AOPί arg Ai(z) = arg dk.N

+ arg lexp—p»ίcos(0k — ε + ̂ -^—π)+ /sinί 0Λ — e -f -̂ -̂ —
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-argΛz(z)|OPl92=o

log(l

- ε)

(4.2)

(4.3)

ε)

(4.4)

Hence we have for a sufficiently large p and a sufficiently small ε

(4.5) AO

from which it follows that putting

(4.6)
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(4.7) AOPiQp2θ arg Ai(z) = 2mπ + 0(1) .

Consequently, we obtain the following result on the distribution of zeros of
Ai(z) on the Stokes lines.

THEOREM 3. There exists an integer m0 such that for any integer m^m0

exactly m zeros of Ai(z) are located on each Stokes line argz= — (2k + 1)

(k = N9 N+ 1,..., q — N—ΐ) in the disk \z\<p9 p denoting the number (4.6).

5. LommePs method

The well-known LommeΓs method is very effective for the investigation of
the location of zeros of Ai(z) satisfying a second order linear differential equation
of the form (1.1) (see [6, 7]). As for the extended Airy function of the first kind,
we can only use LommeΓs method to investigate the location of JV-zeros of Ai(z).

Let a be an ΛΓ-zero of Ai(z\ i.e.,

(5.1) Ai(ά) = Ai'(a) =•••= AH*~*\a) = 0.

From the definition (2.12) we easily see that Ai(k)(z)=A&\z) (fc = 0, 1,...), which
implies that a is also an N-zero of Ai(z).

By the change of variables z = ax9 where x is a real variable, the linear dif-
ferential equation (1.1) becomes

(5.2) x" ~ (Ai(axJ) - a*x*Ai(ax) = 0.

This and the integration by parts lead to

(5.3) α*Γ x*~»Ai(ax)Ai(bx)dx = Γ
Jxo Jxo

+ (-

where b is an arbitrary complex number and x0 is an arbitrary real number.
Interchanging a with b in the above, an another relation can be obtained. From
two relations just derived, we then obtain the so-called Green's symmetric iden-

tities
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(5.4) (α« - b*) x*-«Ai(ax)Ai(bx)dx
JXQ

- ( - 1)̂

(5.5)

4- ( - l)^-1

Assuming that a = reiθ is a nonreal ΛΓ-zero of y4i(z) and putting b = ά in these
identities (5.4) and (5.5), we can investigate N-zero-free domains of Ai(z). For

instance, if 0<θ<^— π, then, taking account of (3.11) and letting x0 tend to

infinity in (5.4), we have

(5.6) (α« - ά«)(™ x*-»\Ai(ax)\2dx = 0,

which is a contradiction. Thus there are no N-zeros of Ai(z) in the sectorial

domain 0< argz< -y— π, and like this, we can conclude from (5.6) that there

are no ΛΓ-zeros of Ai(z) in sectorial domains where ;4ΐ(z)-»0 as z->oo.

We now put XQ^O and then obtain

(5.7)
Jo

= (-l)sin(rt -

-f ( - l)2sin(«

-f

+ ( -
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(5.8)
Jo

(- 1) sin (q - 1)0

+ (- l)*sin(g - n + l^

We here calculate Ai^'^^Ai^'J^O) (7=1, 2,..., JV). Since

(5.9) Λ/<'-ι>(0) = r( - l)»-^^f ("^> P^ω^+V ., 1,..., ω^1)

=l

(j = 1,2,. ..,«),

(5.10)

= }>2( - irV'"'""1'!^-!^^1 ..... 1,..., ωΓ1))2

<0 (7 = 1,2,...,ΛΓ),

where we have used the symmetric relations (2.11). Taking account of (5.10),

we can see that sectorial domains where one of the relations (5.7) and (5.8) does

not hold are N-zero-free domains of Ai(z). For instance, it is easily seen that

the sectorial domains

(5.Π) { β I ( - 1) Sia (.n -W > 0, ( - 1)' sin (." " 3)g > 0,...,
( J sm qθ smqθ

.
v ' smqθ

and

are ΛΓ-zero-free domains. We have already shown that zeros of /4/(z) are located
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on the Stokes lines argz=— (2/c + l) (k = N9 N + l,..., q-N-l), where sinqθ is

vanishing. We can therefore mention that as long as either of the right hand
sides of (5.7) and (5.8) is not vanishing on a Stokes line, there exist no N-zeros
of Ai(z) on that Stokes line. As an example illustrating the above fact, we
consider a case when n=4 and 4 = 8. In this case the Stokes lines are given by

a r g z ^ f π , | π, |π, ^π.

Only on the Stokes line arg z = -5- π in the upper half-plane we have
o

(- 1) sin 30 > 0, (- I)2 sin θ > 0

and also

(- 1) sin 70 < 0, (- I)2 sin 50 < 0.

From this, we can insist that there exist no 2-zeros of Ai(z) on the Stokes lines

argz= -r-π and -^-π.
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