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1. Introduction

In this paper, we shall be concerned with the following elliptic variational
inequalities with obstacle Ψ

( — Au + aw ^/ in Ω,

(VI) 11 ^ Ψ in Ω,

( (u - Ψ)(- Au + αw - /) = 0 in Ω

under the three types of boundary conditions

(DC) ii = ψ on Γ,

(NC) = ^ on Γ

and

(SC) u^ψ, ^^Φ, . (""Ψ)(^ -*) = ° on Γ>

where Ω is a bounded domain in RN with smooth boundary Γ, n is the unit outer
normal to Γ, A denotes the Laplace operator and α is a positive constant. The
boundary conditions (DC), (NC) and (SC) are the Dirichlet condition, the
Neumann condition and the Signorini condition, respectively. The variational
inequalities (VI) have been investigated by many authors. For instance, we
refer to the papers [3], [4] and [6]. Applications of the variational inequalities
(VI) to physical problems have been given in [1] and [5].

Given a solution u of (VI), the domain Ω is divided into two parts Ω1 and

Ω2 such that

u(x)=Ψ(x)}9

u(x) > Ψ(x)} .

Ω! is called the coincidence set of u. It is of interest to give an estimate of the
size of Ωx. Recently, A. Bensoussan, H. Brezis and A. Friedman [2] gave an
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estimate of the size of Ω^ under the Dirichlet boundary condition and N. Yamada
[7] obtained an estimate under the other boundary conditions. These estimates
are independent of α.

The purpose of this paper is to give an estimate depending on α such that
the coincidence set Ω{ converges to the whole set Ω as α->oo, and to study the
behavior of solutions of (VI) near the boundary Γ. To prove our results we shall
make use of a comparison theorem (Theorem 2.1) and comparison functions
constructed by using the Bessel functions.

2. Notation and Preliminaries

Let Ω be a bounded domain with smooth boundary Γ and let Wk p(Ω) and
W* *(Γ) be the usual Sobolev spaces. For a maximal monotone graph β in jR2

withθeβ(θ) we put

;ze/f(r)} if reD(β),

β-(r) = min [z z e β(r)} if r e D(β) ,

β+(r) = β~(r) = + oo if r <£ D(β) and r ^ sup D(β),

β+(r) = β~(r) = - oo if r <£ D(j8) and r ^ inf D(β) ,

where D(β) is the domain of β.
We assume

(2. 1) fe L°°(Ω), Ψ e W2>™(Ω) and φ, ψ e W^°°(Γ)

and put

K = {υeW^Ω); v^Ψ a.e. in Ω}9

which is a closed convex set in Wίt2(Ω).
We consider the following elliptic variational inequalities

(2.2) ( (- Au + <*u)(v - u)dx ^ ί f(v - u)dx for any veK
JΩ JΩ

with the boundary condition

(2.3) - 4r- + Φ e β(u - ψ) a.e. on Γ,
on

where α is a positive constant and n is the unit outer normal to Γ.
In the case
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f (- oo, + αo) if r = 0,
(2.4) β(r) =

[φ if r * 0,

the boundary condition (2.3) is the Dirichlet condition (DC).
In the case

(2.5) β(r) = 0 for any r 6 R\

the boundary condition (2.3) is the Neumann condition (NC).
In the case

(2.6) β(r) =

0 if r > 0,

(- °°> 0] if r = 0,

φ if r < 0,

the boundary condition is the Signorinί condition (SC).
By using the same method as in [3], we see that the problem (2.2) and (2.3)

has a unique solution u in W2 2(Ω) which is continuous on Ω, provided that the
condition (2.1) and

(2.7) — —£— + β~(Ψ — ψ) ^ φ a.e. on Γ

are satisfied. Hence, the problems (VI) with the three types of the boundary
conditions (DC), (NC) and (SC) have a unique solution u which should be under-
stood in the sense of the solution of the problem (2.2) and (2.3).

The following comparison theorem will be used in the proof of our main
theorems. For the proof we refer to [3] and [7].

THEOREM 2.1. For /eL°°(Ω), Φe W2^(Ω) and φ.ίj/eW^^Γ) let we
W2 2(Ω) Π C(Ω) be a solution of the inequalities

- Au + OLU ^/, u ^ 9 in Ω9

where β is a maximal monotone graph in R2.

Iff^L Ψ^Φ a.e. inΩ, φ^φ, ψ^ψ a.e. on Γ and β~^β+, then for the
solution u of (2.2) and (2.3) we obtain u^u a.e. in Ω.

3. Comparison functions

In this section we construct a comparison function which plays an important
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role in the proof of our main theorems.
Consider the initial value problem for the ordinary differential equation

in (0, oo),
(ODE)

= μ'(0) = 0,

where α and y are positive constants. This problem (ODE) has a solution μ
of the following form

where Iv(t) is the modified Bessel function of the first kind of order v and Γ(t) is
the gamma function (for the definitions, see [8]). By using the relation {t~vlv(i)}'

= rv/v+1(ί), we get

It follows from (3.1) and (3.2) that μ(t)>0 and μ'(t)>Q in (0, oo), and that
θμ'(t) ^ μ'(θt) for 0 ̂  θ ̂  1 and ί^ 0.

LEMMA 3.1. For any positive constant C there exists a positive constant
RΛ such that

( i ) μ(RΛ) = C and μ(t) > C for t > Ra9

(iii) R , s - a s a\0,

(iv) Ra \ 0 as a /* oo.

PROOF. Since μ(f)/Όo as ί/Όo and ju(0)=0, there exists a positive con-
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stant JRα such that μ(βα) = C and μ(f)>C for t>Ra. Noting the relation

2NC \ γ ( N \ oo 1
- c + α W2ΛΓC Y» . rί v— >c

u . D (2NC\2
we obtain #α <(—-— ) .

Next it follows from μ(RΛ) = C that

2m , C

which implies that RΛ is strictly decreasing in α. Since μ(jRα) = C, we get

INC
Rl-

Hence, Rχ/( - ) as α\0. Finally, jRα< 2α~4 for sufficiently large α, since

for sufficiently large α. Therefore, Λα\0 as α/Όo.

LEMMA 3.2. For any positive constant C there exists a positive constant
Rx such that

(i) μ'(Λj = C and μ'(ί) ̂  C for t ^ &„

(ϋ) **<ψ,

(Hi) &Λ \ 0 as a / oo.

PROOF. Note that μXO)=0 and μ'(0/°o as ί/oo by the relation (3.2).
Hence, there exists a positive constant &Λ such that μ'(£α) = C and μ'(f)^C for

α.
By the relation
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we get RΛ<
NC

It follows from μ'(RΛ) = C that

Hence, RΛ is strictly decreasing in α.

Finally we obtain

> c

for sufficiently large α, which implies that £β<2α~ifor sufficiently large α.

Therefore, Ra\Q as α/Όo.

4. Estimates of the coincidence sets in the interior

In this section, we will always assume that there exists a positive constant γ

such that

(4.1) /+ ΔΨ - -y a.e. in

and we consider the solutions u of (2.2) and (2.3) under the hypotheses (2.7) for
the three types β of (2.4), (2.5) and (2.6), that is, u is the solution of (VI) under the
three types of boundary conditions (DC), (NC) and (SQ.

Put u = u — Ψ. We see that u satisfies the following variational inequalities

(4.2)

' - Δu + αu ^ / in ί2,

M ^ 0 in ί2,

M(~ Jiϊ + αw — /) = 0 in ί2,

~ _^— -f. (βeβ(ϊi — ̂ ) on Γ1,

where/

Let μ(t) be the solution of (ODE) and for a point x0 6 Ω define the function
\v(x) on δ by

(4.3)

It is clear that

- x0|).
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4- αw(x) = — γ in Ω.

4.1. The Dirichlet problem

Taking β as in (2.4), the boundary condition yields the Dirichlet condition
(DC). In this case we have the following estimate.

THEOREM 4.1. Assume that (4.1) holds and δί =ess sup (ψ— Ψ)>Q. Then

there exists a positive constant RΛ such that

( i ) u(x) = Ψ(x) for x e Ω and dist (x, Γ) £ RΛ,

(iii) R Λ / - δ ^ 2 as α\0,

(iv) RΛ\Q as α/oo.

PROOF. Taking C=δi in Lemma 3.1, we obtain a positive constant jRα

satisfying μ(Ra) = δί9 μ(t)>δί for t>RΛ and (ii)~(iv) in Theorem 4.1.
Let x 0 eΩ such that dist(x0, Γ)^RΛ. The function w(x) defined on Ω by

(4.3) satisfies

w ^ 0, — Aw + αw = — γ ^/ in Ω.

Since μ(Ra) = δi9 μ(0>δi for t>RΛ and dist(xθ5 O^K«> for xeΓ we get

w(x) = μ(|x - x0|) ̂  ̂  = i?(x) = ιAW - )̂.

Hence, by using Theorem 2.1 we obtain u ̂ w in ί2, which implies w(x0) = w(x0) —

4.2. The Neumann problem

Taking β as in (2.5), the boundary condition yields the Neumann condition

(NC).
For a given x0 e Ω we put

(4.4) ΘQ(XQ) = inf {cos (n(x), x - x0) x e Γ} ,

where n(x) = (n!(x), n2(x),..., nN(x)) is the unit outer normal to Γ at xeΓ and
(n(x), x-x0) denotes the angle between n(x) and x-x0. If Ω is convex, then

THEOREM 4.2. Assume that (4.1) fioWs, Ω is convex and <52=ess sup
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(φ — -= — j >0. Then there exists a positive constant Ra such that

( i ) u(x) = Ψ(x) for xeΩ and Θ0(x) dist (x, Γ) ̂  £α,

(ii) RΛ<-γδ2,

(iiϊ) RΛ \ 0 as a / oo.

PROOF. Taking C=<52 in Lemma 3.2, we obtain a positive constant #α

such that μ'(βα) = <52, μ'(f)^2 f°r *^^a» and (ϋ) and (iii) are satisfied.
Let x0eΩ be such that 00(x0) dist (x0, Γ)^£α. Noting that 0<00(x0)^l

and θμ'(i)^μ'(θt) for 0^0^1, for xeΓ we get

(4.5) - (*) = Σ f = ι - - W « i W = ̂ '(|x - x0l)cos(/i(x), Λ: -

It follows from Θ0(^o) l^-^ol ^^α and (4.5) that

0 (jc) - - .(*) on Γ.

Hence, by Theorem 2.1 we obtain U(XO)=Ψ(XQ).

4.3. The Signorini problem

Taking β as in (2.6), we obtain the Signorini boundary condition (SC). In
this case we have the following estimate for the coincidence set.

THEOREM 4.3. Assume that (4.1) holds, Ω is convex, ^1=ess sup(ι/r— ψ)

( dΨ \ Γ

φ — -ϊ — )>0. Then there are positive constants Ra and
^ on /
RΛ such that

( Ί ) u(x) = Ψ(x) for xeΩ and dist (x, Γ) ^ max

where Θ0(x) is the same one as in (4.4),

(ii) Λ β < ί 1 and &a<-δ29

(iii) RΛ\Q and RΛ\0 as α/Όo,

PROOF. Taking C=δί in Lemma 3.1 and C=<52 in Lemma 3.2, we obtain
positive constants jRα and Ra such that μ(Ra) = δί9 μr(RΛ)=δ2, and the condition
(ii) and (iii) are satisfied. By using the same methods as in the proof of Theorems
4.1 and 4.2, we get
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w ^ φt ^L ^ φ on Γ.
on

Hence, we obtain the assertion of Theorem 4.3.

5. Estimates near the boundary

We continue to impose the condition (4.1) on/.
Let μ(t) be the solution of (ODE) and for arbitrary fixed constant α>0 put

v(ί) = μ(t - a) for t > a.

It is easy to see that

v"(f) + j^zJ-v'(0 - αv(ί) < y in (a, oo).

For a given x0 e Γ we define the function w(x) on Ω by

Γ 0 if |x - xoϊ ^ <*>
w(x) =

[ v(|x - x0|) if \x - x0l > β

Then the function w(x) satisfies the following

we^ 2 2(Ω) n C(β),

(5.1) w ^ O in Ω,

v — Jw 4- αw ^ — 7 ^/ in Ω,

where f=f+AΨ — oίΨ. This function w(x) plays an important role in deriving

the estimates near the boundary.
In the case of the Dirichlet problem we obtain

THEOREM 5.1. Assume that (4.1) holds and 51=ess sup(^ — Ψ)>0.
r

Suppose that there exist a point x0EΓ and a positive number r>RΛ, where Ra

is the same one as in Theorem 4.1, such that ψ(x)= Ψ(x)for xeΓ and \x — x0\^r.

Then, we have u(x)=Ψ(x) for xeΩ and \x — x0[^aΛ = r — RΛ. Hence, aΛ-+r as

α->oo by Theorem 4.1.

PROOF. Define the comparison function w(x) on Ω by

ί 0 if |x - x0| ^ α.,
w(x) =

[ μ(|x - x0| - αα) if |x..- x0| > aΛ.

We shall show that w ̂  \j/ = ψ - ψ on Γ. In case x E Γ and |x - x0| > Λ we get
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w(x) = μ(\x - X0| - 0α) ̂  μO -

In case xeΓ and |x-x0| ̂
r> it is clear that w(x)^(x). Hence, by Theorem 2.1

we get H(x0)=ίP(x0).

Next we shall consider the Neumann problem. For a given x 0eΓ an^
r>0 define Θ0(x0; r) by

0o(xo; r) = inf {cos (n(x), x - x0); x e Γ and |x - x0| ^ r} .

If Ω is strictly convex, that is, Γ does not contain any line segment, then Θ0(x0 r)
>0.

THEOREM 5.2. Assume that (4.1) holds, Ω is strictly convex and δ2 =

ess sup (φ—-ϊ — )>0. Suppose that there are a point x0eΓ and a number
r \ on / βψ

r>RJΘ0(x0; r), where KΛ is the same as in Theorem 4.2, such that φ(x)= -* — (x)
on

for xeΓ and |x — x0|^r. Then u(x)=Ψ(x) for xeΩ and |x — x0|^^« = ̂  —
^JΘo(xΌ\ r). Hence, άa->r as α~>oo by Theorem 4.2.

PROOF. Define the comparison function w(x) on Ω by

f 0 if |x - x0| ^ 4.,
w(x) =

I μ(\x - x0| - αα) if |x - x0l > όα.

In case x e Γ and \x — x0\^r9 we get

) = μ'(\x - x0| - O cos (n(x), x - x0)

^ μ'dx - x0| -

In case xeΓ and |x-x0|<r, it is clear that --(x)^^(x), since $(x) = 0 for

x e Γ and |x - x0| < r. Thus, the proof is complete.

Finally, for the Signorini problem we have

THEOREM 5.3. Assume that (4.1) holds, Ω is strictly convex, δv =ess sup (ψ

( dΨ \ Γ

φ — -~ — )>0. Suppose that there are a point x0eΓ
• 'and a number r>max{Λα, RJΘ0(x0', r)}, where RΛ and RΛ are the same as in
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fiψ
Theorem 4.3, such that \l/(x)=Ψ(x) and φ(x) = ̂ -(x) for xeΓ and |x-x0|^r.

on
Then u(x)=Ψ(x) for xeΩ and |x-x0|^αα = r-max {RΛ9 £α/00(x0; r)}. Hence,
άβ-»r as a-*oo by Theorem 4.3.

PROOF. Define the comparison function w(x) on Ω by

ί 0 if |x - x0| ^ άα,
w(x) =

[ μ(\x - x0| - <U if |x - x0l ^ α«

The same calculations as in the proof of Theorems 5.1 and 5.2 show that

and -̂ -(x) ̂  $(x) on Γ.

This completes the proof of Theorem 5.3.
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