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1. Introduction

We shall be concerned with the system of linear ordinary differential equa-
tions with a parameter

ε-4-= A(t,B)X, (1.1)

where the n by n matrix function A(t9 ε) is holomorphic in the domain

D(tθ9εQ9θo) = {(ί,ε) I \t\ ̂  ί0, 0 < |ε| ^ ε0, |argε| ^ Θ0}

and admits the uniform asymptotic expansion

A(t, ε) - Σ ^iCOe1' as ε > 0 in I arg ε I ̂  00. (1.2)
ί=0

The coefficients A|(i)(i = 0, 1,...) of (1.2) are holomorphic in the closed disk
1 1 1 ̂  ί0. We here assume that

f O 1 n

0 1

\* 1
' 0 0,

q being a positive integer, which implies that the origin f = 0 is a turning point of
(1.1).

In order to investigate asymptotic behaviors of solutions of (1.1) in a full

neighborhood of the turning point ί = 0, we usually try to find a matrix β(ί,ε),

which is holomorphic in D(tl9sl9θl9)(Q<t1£tθ9 0<ε1^ε0, 0<Θ1^Θ0) and ad-
mits an asymptotic expansion of the form

β(t, β) ~ Σ JVOβ1 as ε—>0 in | a rgβ |^θ l s (1.3)
i=0

where the coefficients P4(ί)(ί=0, 1,...) are holomorphic in |ί|^ίl5 such that the
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transformation Y = Q(t,έ)X reduces (1.1) to a system of linear differential equa-
tions for y, whose asymptotic behaviors can then be easily analyzed in \t\^tί.
In this analysis, however, we encounter a troublesome fact that (1.3) does not

hold uniformly in the full neighborhood of the turning point \t\^tί.
To our knowledge, such a problem to seek a simplifying transformation

Q(t, ε) admitting the uniform asymptotic expansion in a full neighborhood of a
turning point has been completely solved only for second order linear differential
equations (see [7], [2], [4]). W. Wasow [7] first succeeded in solving the prob-
lem in the case when n = 2 and q = i by an elegant method. The purpose of this
paper is to show that an extended Airy function of the first kind defined by M.
Kohno [1] plays an important role in solving clearly the full uniform simplifica-
tion problem for (1.1), where n is even, i.e., n = 2N (ΛΓ^l) and q = l, by only
following W. Wasow's method.

2. Formal reduction

It is well known that when q = 1, (1.1) can be reduced to the system of linear
differential equations

= A0(t)Y (2.1)

by a formal transformation

ί=0

where the coefficient matrices P£t)(i = Q, 1,...) are holomorphic for |ί|gί
P0(0) = /, J denoting the identity matrix. This result was proved by K. Okubo

[3] and independently by W. Wasow [5].
We here restate the method of reduction in [3] to obtain a slightly modified

result in the case when q is an arbitrary positive integer.

Let μ(f, ε) be a row vector and put

Pι(t,e) =

pk-ι(t,έ)A(t9ε) (2.2)

Then it is easily seen that the transformation

p2(t, ε)
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reduces (1.1) to the system of linear differential equations

ε , = D\t, ε) i,

where B(t, ε) is a companion matrix with the form

B(ί, ε) =

0 1
0 1

0

under the condition that

o Ί
, ε) A2«.β) ••• bn(ί,ε) j

= Σ bk(t9έ)pk(t,έ). (2.3)

We shall now attempt to determine the row vector μ(t, ε) so that the functions

bk(t,ε) (fc=l, 2,..., n) are as simple as possible. The substitution of the power
series of (1.2) into (2.2) leads to

Λ+i = Mo + ε(kμ'Ak

0-ι + μψk(AQ; A,)) + ε2fk(t, ε, μ)

where

ΣS-Mi^r 1 + *Σ

and fk(t, ε, μ) is a linear form in μ, μ',..., μ(/c). Considering this and putting

ί, ε) = ε25fc(ί, ε) (fc = 2, 3,..., n - 1),

we can write the condition (2.3) as follows:

nt«μ' + μψn(A0; A^AQ + ε/π(ί, ε,

= « [Σ 6^ βXMS"1 + ε[(/c-l)μ^-2 +

= ε (2.4)
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where hn(t, ε, μ, β) is a bilinear form in μt*""1* and Bk (fe=l, 2,..., n — 1). We here
substitute the formal series

μ(t, β) = Σ

into (2.4) and equate the coefficients of like powers of ε in both sides, thereby
obtaining the following systems of linear differential equations

)Λ = 0, (2.5)

*=1

0 = 1,2,...), (2.6)

where Gj.^ί, μ, 5) includes μ0(0> μι(0> »μi-ι(0 and their derivatives linearly,
and bkj(t) (7 = 0, 1,..., ί — 2) linearly. Since

0 /.-, \

where /^ denotes the j by j identity matrix and we have put

(A® A®\
^ι(0 = (βtt(0; i, * = 1, 2,..., « ) = . . U = 1, 2,., n),

}, A{{\ A$ and A^ being matrices of type (n-j, n-j\ (n-j,j\ (j, n-j)
and (7,7), respectively, we see that

n

y = l l j^i

. .-i
= Σ + Σ

0

and hence (2.5) can be rewritten in the form

. - i / O 0

Mo ?/
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Hence, if it is assumed that

aik(i) = 0(tq~l) (k < i; i, k = 1, 2,..., n),

then the matrix Φ(t) is holomorphic at ί = 0 and Φ(0) is of the form

ί 0
_ q *

n

751

(2.7)

Φ(0) =

0

This fact implies that the origin f = 0 is a regular singular point of (2.5). We can

then find a holomorphic solution, which corresponds to the characteristic ex-

ponent 0, of the form

where

μo(0 = Σ α0(m)r,
m=0

α0(0) = (l,0 0). (2.8)

Next we shall seek a holomorphic solution μ£t) of (2.6). For that purpose,
we have to investigate the nonhomogeneous term of (2.6). We put

(2.9)

and

(v = l,2,...,τO, J

G/f, μ, fi) = (gγ\t, μ, fi), ^^2>(ί, μ, 5),..., "̂>(ί, μ, 6)).

Then the nonhomogeneous term of (2.6) can be written as

F^(t) = (Γji\ + /iflfj^, Γίi\ + ffίi>lf..., Γjή + fffc^)

According to the theory of a regular singularity, if
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(v = 2, (2.10)

are satisfied, together with the assumption (2.7), then we can find a solution
μ;(ί) of (2.6) which is holomorphic at ί=0. In order that the conditions (2.10)
are satisfied, we may only choose 6 t>(_ι(f) (fe=l, 2,..., w-1) as polynomials of
degree at most q — 2, i.e.,

m=0
(2.11)

In fact, we assume that we have already obtained holomorphic solutions
μ2(ί),.. , μι-ι(t\ determining bkt0(f), bktl(t\..., ί?M_2(0 (fc=l, 2,..., n-1) as such
polynomials as (2.11). Then g^\(t9μ, δ) (v = l, 2,..., n) are known functions
which are holomorphic at ί = 0. On the other hand, from (2.9) we have

m=l
,

m=0

+ Λi.wωM^W +-+ ii.oWMiUO + 0(t«)

/Ji,i-i(0) + {j»ι f ί-ι(l) + α^WA.^O))}/ +-

+ ί/»ι.ι-ι(ί - 2) + α^υ/fi.i-ito- 3) + -

+ - + +

From this it is easily seen that we can determine the constants βιtί-ι(m) (m = 0,
1,..., q-2) successively so that /i5.\(0 = 0(ίβ~1). Since b l f ί _ ί ( t ) has been
determined, y^]-! becomes a known holomorphic function. We can then
determine ί?2,i-ι(0 as a polynomial of the form (2.11) so that /^)

1(0 = 0(ί«~1).
Continuing this process, we at last obtain (2.10) by means of determining &M_ι(ί)
(fc=l, 2,..., π — 1) as appropriate polynomials of the form (2.11). We have thus
derived a desired formal reduction. Lastly, we remark that from (2.2) and (2.8)
there holds

',0)
= /.

I Λ(0, 0) j

We summarize the above results in the following
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THEOREM!. Let us denote the matrix Al(t) = (aik(f)\ i, k=\, 2,..., ri).
Under the assumption that aik(t) = 0(tq~l) (k<i; i, k=l, 2,..., n), we can find a
formal transformation

where the coefficient matrices Pί(ί)(i = 0, 1,...) are holomorphic for \t\^t0 and
jy //V

in particular, P0(0) = l, which reduces ε^-=A(t,ε)X to ε^- = B(t9 ε)Y with
at at

where

B(t, ε) =

\ bβ, ε)

0 1

/, ε)
1
o /

m=0

m=0
(fc = 2, 3,..., n - 1),

(fe = 1, 2,..., n - 1; m = 0, 1,..., g - 2).

As a matter of course, if g = l, then 5(ί, ε) = A0(t). Considering the first

component of the column vector Y and putting z = tε~ϊ+q9 we easily see that the

reduced system of linear differential equations is closely related to a single linear
differential equation of the form

dzn

+ z +
m=0

3. Analytic reduction

Hereafter we shall consider the system of linear differential equations (1.1),
where n = 2N (N^l) and q = l. Although an analytic reduction theorem for
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such a system of linear differential equations has been established in the paper

[6], in this section we give a simple proof quite similar to that in the case n=2

[7] by using an extended Airy function of the first kind.

To begin with, we shall explain the extended Airy function of the first kind

Ai(z) (see [1]), which is a particular solution of the linear differential equation

(3.1)
1Λ4

and is defined by

Ai(z) = y (- iy(n + l ) " , , - , ^ ) ,

where

' (n + 1)-)-

l,2,...,n)

and the real constants γ and ηj (j = 1, 2,..., n) are given by

-l/ π\
= (f

ηn-, = (x

Ai(z) has several properties entirely analogous to the classical Airy function of

the first kind. We state its properties needed later in the following

LEMMA 1. (i) Let fcf (i = l, 2,..., n) be mutually distinct integers modulo

(n + 1). Then Ai(ωkiz) (ί = l, 2,..., n) form a fundamental set of solutions of

(3.1) and the Wronskian of them is calculated as follows:

),...9 Ai(ωk»z): z]

Π Γsin (kj "" f i π) exp \(kj + f i + 4-^41 »Ky^iiL \ Λ + 1 / ^ l\ Λ + 1 2/ J J '

w/ierβ ω= exp(-^y-i) and c^yί-iyίn+l)^^"^^.^^

(ii) T/ier^ /zoWs ί/ie connection formula

Ai(z) + ± βkAi(ω~kz) = 0,
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where

(*• = 1,2,...,«).

(iii) ^4i(z) /ιαs the following asymptotic behaviors:

_
+ O(z

n+1

2n 0(z
n±L

— 2π :g argz < — π),

- π g arg z < π),

(π ^ arg z < 2π),( „ M + l \ -M~l f -H+

- ^ .j, ^ " ω'Mz 2» j l + O(z »

vv/iβre ωn= exp( -^-i), di = expf^"" πf ) and Uί is the complex conjugate of d±.
\ n / \ n /

We here put

Λ/(ωvz)
ωvAi(ωvz)

( v = 0 , ±1,...) (3.2)

and

(k = l,2,...,/ι + 1). (3.3)

From Lemma 1 it follows that for all v (v= — fe+1, —fc + 2,..., n — k)

( n π+1 \ j. n-l jγκ+l\ ... n-ll
--^-rz w ω;)z» 2" [(~l) /ωv^ « ^J 2« / .

W + 1 /

(;=0, !,...,«-1)

ω

as z-κχ) in the sector

- π + - 1) 4- ̂  arg z < - π + 1) - δ, (3.4)

δ being an arbitrarily small positive number. Combining this with the definition

(3.2-3), we immediately obtain
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LEMMA 2. If we put

Uk(z) = (z)<"*>βo#t(z)expO>(z)Ω} ) (k = 1, 2,..., n + 1),

n n+ΐ

where p(z)=—r^rz n such that p(z)>0/or z>0,

f 0 for \z\ < z0,
σ(z) =

I 1 for \z\ ̂  z0,

z0 being a sufficiently large positive number,

/ n- I 0
2/ι

!__ n~ l

n 2n

\ o /i- 1 / i- 1

and

0 ϊ

0n 2n I

then Uk(z) as well as its inverse are uniformly bounded in the sector (3.4).

The uniform boundedness of Uk(z)~l is seen form Lemma 1 (i) and the fact

that C7fc(oo) = ((-iXωvί(^)7'~^};7 = 0, 1,..., n- l , v = - / c + l , -fc+2,...,

n — k) is nonsingular.

All preparations having done, we now return to the problem of an analytic

reduction. In the preceding section we have proved that there exists a power

series P(t, ε) which formally satisfies the system of linear differential equations

(3.5)

We shall now show that we can find an actual solution of (3.5) which is holo-

morphic in a certain sectorial domain and there admits the formal power series

P(ί, ε) as its asymptotic expansion as ε->0. For that purpose, taking account of

Borel-Ritt's theorem which guarantees the existence of a holomorphic function

P*(ί,c) such that P*(f,ε)~P(ί,ε) as ε->0, we first put P= FF+P*(ί,ε) and change
(3.5) into

= A0(t)W~ WA0(t) + G(t, ε, W), (3.6)

where

G(ί, ε, W) = W(AQ(t) - A(t, ε)) + F(ί, ε),



Full Uniform Simplification 757

F(t, ε) = - A0(t)P* - P*A(t,ε) .

We then have only to seek a holomorphic solution W(t,ε) of (3.6) such that
W(ί,ε)~0asε-»0.

Putting z=te~sΊΓ~ in (3.3), we can easily verify that each

0

Uk(ί, ε) = Uk(ίε (3.7)

(fc = 1, 2,..., n + 1)

forms a fundamental matrix of solutions of (2.1), i.e.,

dϋ

Let

Π = -1

1

1 1

-i

0

with det77 = (— 1)N, and then Π~ί = Π*=—Π, where here and below the sub-
script * denotes the transposition of a matrix. A direct calculation shows that
each Vk(t9έ) = ΠUk(t9έ) (fc=l, 2,..., n + 1) forms a fundamental matrix of solu-
tions of the system of linear differential equations

Then from [7; Lemma 30.1], we can immediately convert (3.6) into an integral

equation of the Volterra type as follows :

W(ft ε)

= Ut(t, ε) [( Uk(τ, ε)~1 , ε, W(τ, ε)) (Vk(τ, ε)*)-1^] Vk(ί, ε)*

(fc = 1,2,. ..,« + !), (3.8)
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where I(t) denotes a set of n2 paths of integration ending at ί, which correspond
to n2 entries in the integrand matrix. Moreover, putting

%, β) = Vk(t, ε) exp ( - Xz)Ω*) (z = fcT^r)

and

*"*(', ε) = Oto *)W(t, έ)Vk(t, ε);1 (k = 1, 2,..., n + 1), (3.9)

we rewrite (3.8) in the form

*" (/, ε) = f exp {(p(z) - P(ξ))Ωk

1}iΓ(τ9 ε)Mk(τ, ε)
J/ω

x exp {(p(z) -p(ξ))Ω\}dτ + Hk(t, ε)

= L4[*r| +#*(/, β) . (ξ = τε-7ίτr)5 (3.10)

where

M,(/, ε) = fk(/, e),,e-1(^oW - Λ(*. ε)) ffc(/, ε);1,

Jϊk(/f ε) = ί exp {(/ (z) - p(ξ))ΩΪ}Uk(τ, εΓl^F(τ9 ε) ffc(τ, ε);1

Ji(t)

xexp{(p(z)-p(ξ))Ω\}dτ.

Since in the domain D(f0,ε0, Θ0) the norms of the matrices <fzΩ° and ^~1z~Ω°
are estimated as follows :

j 2J-(n-ί) n-l 27-(n-l)
\\#zΩ°\\ ^ max { max (ε«+1z0 2» ), max (ε2(»+1)/0 2« )}9

n-l -2. __

maχ (ε »+ι/0 2/1 )9 maχ (ε w+

we observe, taking account of Lemma 2, that each pair Uk(t, ε) and Ffc(ί, ε)

(/c = l, 2,..., n + 1) as well as their inverses are 0(ε~^π~) uniformly for |ί|^ί0 i
n

the sector

- π + ~r\(k - 1) + δ< arg (/β-ϊΪT) < - π + ̂ [(̂  + ί) - «

(k = l,2,...,n + l). (3.11)

This implies from (3.9) that JF(f,ε)~0 whenever 7r(f,ε)~0. We therefore have
only to seek a solution of (3.10) which is holomorphic in a sectorial domain
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defined by (3.11) and \t\£t0 and there ->r(ί,ε)~0 as ε-»0 in |argε|<^00.
For each k (fc=l, 2,..., n + 1), in the sectorial domain stated above we have

where C is a constant independent of ε. We now choose the set of paths of
integration 7(ί) lying in that sectorial domain so that along I(t) the exponential
factors in the integral (3.10) are bounded as ε->0. Then we can prove the
following

LEMMA 3. Let S^t^ε^θ^ (fc = l, 2,..., n + 1) be the intersection of (3.11)
and D(t^εl9θ^9 where 0<ί1gί0, 0<ε1gε0 and Q<Θ1^Θ0, tv and εt being
appropriately small. //(ί,ε)e5k(ί1,ε1,01) (fc=l, 2,..., n + 1), ί/iβn we have

Hk(t, ε) ~ 0 0s ε - > 0

and

w/iere K is a constant and supremum is taken in the sectorial domain defined

by (3.11) and |ί|^ίlβ

The proof of Lemma 3 is also quite similar to that in the case n = 2 (see [7
Lemma 30.6]). From Lemma 3 the usual method of successive approximation
leads to the required result.

We have thus obtained the following theorem of analytic reductions.

THEOREM 2. In each S^t^ε^θ^ (fc = l, 2,..., n + 1) there exists a holo-
morphic matrix Pk(t, ε) (fc=l, 2,..., w + 1), which admits the uniform asymptotic
expansion Pk(t,έ)~P(t,έ) as ε->0, such that the linear transformation Y

= Pk(t9ε)X changes ε~- = A(t, e)X into ε^- = A0(ί)Y.

Lastly we remark that n + 1 sectorial domains S^t^ε^θ^ S2(t1,ε1,θ1),...,

ι,θι) cover the full neighborhood of the turning point |ί|^ί lβ

4. Uniform simplification in a full neighborhood of the turning point

This section deals with the construction of a matrix β(ί,ε) such that 7=
Q(t,s)X reduces (1.1) to (2.1) and the uniform asymptotic expansion Q(ί,ε)~

P(t,ε) as ε->0 holds in a full neighborhood |ί|^ίi. For such a construction
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we only follow W. Wasow's idea.

In this section, for simplicity, we assume that argε = 0, which is not an

essential restriction. From Lemma 1 it is easily seen that

yj(*> β) = βj

I

0

1
gιι + 1

• n-1
g n + 1

ω~JA't(ω~Jz)
(4.1)

(z = ίε-^+r, β0 = 1; j = 0, 1,..., n)

are solutions of (2.1) and they satisfy the connection formula

:)+...+ yn(t, ε) = 0. (4.2)

Since Pfc(0,ε)->/ as ε->0, Pfc(ί, ε)"1 (k=l, 2,..., rc + 1) are well-defined and holo-
morphic in S fc(ί l9ε l90) (fc = l, 2,..., n + 1) for sufficiently small t1 and εx. Theo-

rem 2 implies that each Pk(t9 ε)"1^/^ ε) (j = 0, 1,..., n; fc = l, 2,..., n-fl) is a

holomorphic and asymptotically known solution of (1.1) in Sk(ti9sί9Q). Those

solutions can be analytically continued in the full domain D(il9 ε l90) and will

be denoted by the same notation in the below.

We shall now prove two lemmas.

LEMMA 4. There exist scalar functions α}(ε) (v = l, 2,..., n;y=0, 1,..., n)

of ε, which admit asymptotic behaviors

α](ε) ~ 1 as ε

such that there hold

7=0
= 0 (v = 1, 2,..., n) .

Here and below all subscripts and superscripts are to be interpreted modulo

n + 1.

PROOF. For each v (v = l, 2,..., π),
= 0, 1,..., n) must satisfy some linear relation

solutions ε) (j

Setting ί = 0, we solve c}(ε) by the Cramer rule and then obtain
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cj(β) = det [Py+v+1(0, eΓlyJ+ί(Q, ε), P;+v+2(0, ε)-lyj+2(0, ε),...,

P;+v+w(0, β)-'^+II(0,e)] 0 = 0, 1,..., n).

Since for all v, Pj/+v(0,ε)-1-P(0,ε)-1 as ε-»0 and det P(0, ε)~l + 0 for sufficiently
small ε, it follows that

c}(ε) ~ det [P(0, ε)"1] det [yj+1(09 ε), yj+2(0, ε),..., yj+n(Q, ε)]

(7 = 0, l,...,n)

as ε-»0. From Lemma 1 and (4.1) we easily see that

det [yy+1(0, ε), yj + 2(0, ε),..., yj+n(Q, ε)] ^0 (j = 0, 1,..., n)

for ε 7^0 and moreover, we can prove that for any j and/ (Ogj, j'^n)

det Lyy+1(0, ε), ̂  +2(0, ε),..., yJ+n(Q, ε)]

= det [yr + 1(0, ε), yr+2(0, ε),..., ^+,(0, ε)]

holds. In fact, let j and / be two distinct integers between 0 and n such that

/ =; 4- k (1 g k g n). Then, using the connection formula >7 {0, ε) = — Σ ^/+j(0, ε),
/ = !

we have

, ε), yj+k+2(Q, ε),..., ^+M(0,ε), j;/0,ε),..., ̂ +^^0, ε)]

= det Ly/+ k + 1(0, ε), yj+k+2(Q, ε),..., yj+n(Q, ε),

-^y+*(0, ε), ̂  +1(0, ε),..., yj+k-^Q, ε)]

= (- l)(--*+D* det |>y+1(0, ε), 3-+2(0, ε),..., yy+ll(0, ε)] ,

which is the required result since the integer (n — k+ l)k is always even. We here

put

α](ε) = cj(e)/det [P(0, ε)-1] det ίyj+1(0, ε), y;+2(0, ε),..., yJ+a(Q, ε)]

and thus the proof of Lemma 4 is completed.

Now we put

x}(f, ε) = α}(ε)P,.+v(ί, ε)-1 ,̂ ε) ( = 0, 1,..., n; v = 0, 1,..., n),

where α5(ε) = l. As is easily seen, for each v (v = l, 2,..., n), any n functions of
x](ί, ε)(j = 0, 1,..., w) are linearly independent solutions of (1.1) and Lemma 4

implies that just the same connection formula as (4.2)
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jcj(f, ε) + xftt, ε) +-+ xϊ(f, ε) = 0 (v = 1, 2,..., n)

is satisfied.
Before we state the next lemma, we make some preparations. Hereafter,

for abbreviation, denote Sk(tί9εί90) only by Sk and also consider Sk as a sectorial
domain in the complex /-plane.

Put

7 = 0 , 1
/I- I A O

and define

f r\

, ε), π g argi < π +
<0 H (4.3)

ε), - π ^arg/ < π,

ϊy(/,β), - π + ^-jy ^ a r g / < π + ̂ ~,

(4.4)

ί,_!(/, ε), - π g arg / < - π + " ,7

Moreover, let us define the functions j>/f, ε) by

j>/ί, ε) = >'/ί, ε) exp (<?/ί, ε)) ( j = 0, 1,..., n)

for — π^argί<πH — ̂ -. Then from Lemma 1 and the definition (4.1) we

observe that the functions j>/ί,ε) O' = 0, 1,..., n) are uniformly bounded for

^ε1 and ίeSj. U 52 U ••• US Λ + 1 .

We are now in a position to state the following important lemma.

LEMMA 5. Let us define the functions £}(ί, ε) (v, 7 = 0, 1,..., ή) by

&](t, ε) = xj(ί, ε) exp (̂ (ί, ε)) (4.5)

for teSi U S2 U -•• U SΛ + 1. 77ίέ>n w^ Λαt?e

jc}+1(ί, ε) - £}(ί, ε) ^ 0 as ε - » 0

uniformly in teS1 U 52 U ••• U Sn+1, |ί|^ί2<ίι» αn^ hence for any v and μ

a J(ί, ε) - jί5(ί, ε) - 0 as ε - > 0

uniformly in teS1 U S2 U ••• U5M + 1, \t\^t2<t1.
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PROOF. Since Pj+v+1(t, e)-l~P(t,*r* in Sj+v+1 and PJ+v(t, e)-i~P(t, ε)~l

in Sj+v and α}(ε)~l as ε-»0, we see that

Xvj+l(t, ε) - *}(*, ε) - 0 as ε - > 0 in SJ+V Γl Sy+v+1.

Putting y}(f,ε) = x}+1(ί,ε) - x)(ί,ε) and defining τ?}(t,ε) in a similar manner to
*>

(4.5), we investigate the behavior of y J(f, ε).

Let ί move from the sector Sj+vΓ\Sj+v+ί in the positive direction and lie in
Sj+v+l. The solution y*J(ί,e) of (1.1) can be expressed in terms of a linear
combination of n solutions of the xj

k

+v+1~k(t,έ) (k = Q, 1,..., n), excluding one
solution which has its Stokes line in Sj+v+ί9 as follows:

o

 v+1-H', ε)
kϊj+v+l

with the coefficients Ak(ε) depending on ε alone, whence it yields that

? J(ί, ε) = Σ Ak(ε)*ί+^-*(t9 ε) exp %(ί, ε) - q£9 ε)) . (4.6)

Here we point out that all the functions xj

k

+v+1~k(t9 ε) are asymptotically known
and bounded in Sj+v+1. Let τ be an arbitrary point in Sj+v n Sj+v+1. Setting
t = τ in (4.6), we seek the coefficients Ak(ε) by the usual Cramer rule. For that
purpose, we need to calculate the determinant

A](τ) = det [*έ+v+1(τ, ε), *{+*(τ, ε),..., j+v+1(τ, ε),..., xJ

n

+^-»(τ, ε)]

= det [xέ+v+1(τ, ε), x{+*(τ, ε),..., ίj+v+1(τ, ε),..., xί+v+1-"(τ, ε)]

x exp (
fc=0

where the symbol V on a vector indicates that the vector is to be omitted. Taking
account of the definition (4.3-4), we have

Σ ί* (τ, ε) = JΣqk(τ, ε) + £ ^(τ, ε)
k=0 fc=0 k=j+v+2
k*j+v+l

«, 1 fi+1 j+v n= T+ϊ Tτ~(Σω;Λ+ Σ ω;*+1)
72 + A ε k=Q k=j+v+2

= 0.

We therefore obtain
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4 f W = Π
fc=0

yj+V+l-kf

x det Oo(τ, e), .ViO. <0, .,

Π αj(+'+1-*(β)

τ> ε),..., jπ(τ, ε)]

x det [j0(0, ε), yι(0, ε),..., yj+v+1(0, ε),..., yn(Q, ε)]

W

= Π «ί+'+1- det |P.

x W[Ai(z), ^/ "z): z]

where X(ε) is bounded away from zero for 0<ε^εj. Since /)P'}(τ,ε)^0 as ε-»0,
we consequently obtain

Ak(e) = exp (- g/τ, ε)

Άk(τ, ε) ^ 0 as ε - > 0

(fe = 0, l,...,n;

, ε),

v + 1).

(4.7)

(4.8)

We have to pay attention to the fact that the relations (4.8) hold for every τ in
S;+v n S/+v+ι The substitution of (4.7) into (4.6) yields

4

, ε)- qk(t,e) - (?/τ, (4.9)

in SJ+v+ί.
Now, if necessary, we divide the sectorial domain Sj+v+ί — (Sj+v n Sj+v+l)

into a finite number of subsectorial domains, i.e., Ύ1 U T2 U ••• U Ύp = Sj+v+1

— (Sj+v U 5y+v+1), such that in each Tμ (μ=l, 2,..., p) there always hold

(i) Re ($/*, ε) - ?k(ί, ε)) ^ 0 or (ii) Re (£/*, ε) - qk(t, ε)) > 0

for all /c (fc = 0, 1,..., n; fc^j + v + 1). Let ί move from S7 + v n5 7 +v+1 to the
neighboring sectorial domain Tj. For k for which (i) holds, we take τ = 0 in (4.9),
and for k for which (ii) holds, we take as τ in (4.9) a point which is lying in Sj+v

Π Sj + v + i and is close to the ray of boundary of T1? i.e.,
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τ = ί1 exp {(- π + ̂ (j + v + 1) -δ - c5')ί} ,

<5' being an arbitrarily small positive number, to obtain Re^/τ, ε) — gfc(τ,ε))>0.
Then it follows that the exponential factors in (4.9) remain bounded as ε-»0 for

t e T!, |ί| 5; t( < ίA . Here, taking account of the boundedness of the άj[+v+1~*(f, ε)
and (4.8), we can conclude that

}̂(ί, ε) - 0 as ε - > 0 (4.10)

uniformly in ίeT1 ? |ί|^ίi Next, if t lies in T2, then using the relation (4.10)
just derived, we can prove by means of entirely the same argument stated above

that -5T)(ί,ε)~0 as ε-»0 uniformly in ίeT2, \t\^t'ί<t'1. We continue this

process in T3, T4,...,Tp to obtain the required result in Sj+v+l. Similarly in
other sectorial domains we have only to follow the above argument. Thus we
have completed the proof of Lemma 5.

From the above two lemmas we now derive the main theorem of this paper.

THEOREMS. There exists a matrix function β(ί,ε), which admits an

asymptotic expansion

ρ(ί,ε)~P(ί,ε) as ε - » 0

uniformly in | f |^ί 2, — π4 <5^argίgπ + — T^T — δ, δ being a sufficiently small

positive number, such that the linear transformation Y=Q(t,έ)X changes

ε = A(t9ε)X into e - =

PROOF. Let an integer v be taken from 1, 2,..., n and be fixed. We put

a\(f,e) = [xϊ(f, ε), χj(ί, ε),..., jcj(f, ε),..., x; + 1(ί, ε)]

&k(t,ε) = |>ι(ί, ε), y2(t, ε),..., yjt, ε),..., yn+l(t, ε)]

where xv

n + ί(t9 e) = xg(ί,ε) and yn+1(t, e) = y0(l, ε). It is easily seen that the ma-
trices #k(f, ε) and <&k(t, ε) (fc=l, 2,..., n + 1) are fundamental matrix solutions of

(1.1) and (2.1), respectively. We now define the matrices Qk(t, ε) (fc=l, 2,...,
by

)-1. (4.11)

This definition implies that for each fixed k we have

Qk(t, ε)xj(ί, ε) = yj(t, ε) 0 = 1, 2,..., n + 1; j ^ fe).
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But, considering the relation proved in Lemma 4

n+l
-y Vff rt\ ^Γ1 -vVff o\ (yV it C\ Y M f P l lXk(jy ε/ — — z^ Λy^ί, &) \xn + ι(i9 ε) — XQ\J> t))

together with

yk(t, ε) = — Σ yj(t, ε) i

we also have

n+l
, ε) = - ~~
' j-ι

Hence we can conclude that all n + l linear transformations Qk(t,s) (fc=l, 2,...,

n + l) are identical from the fact that each Qk(ί, ε) is a linear transformation from

the n-dimensional vector space of solutions of (1.1) onto the n-dimensional vector

space of solutions of (2.1) in the same coordinate system. We put

β(ί, ε) = βk(ί, ε) (/c= 1,2,..., n + l).

We now need only to prove that

β(ί, ε) ~ Pk(ί, ε) as ε - > 0 in Sk.

From (4.11) it immediately follows that

β*(*> ε) = [j)L(ί, ε), j>2(ί, ε),..., Λ(ί, ε),..., j>,+ 1(f, ε)]

x [*ϊ(f, ε), Λj(ί, ε),..., *l(ί, ε),..., ί J + 1(ί, ε)]'1. (4.12)

On the other hand, an application of Lemma 5 yields that

[*ϊ(/, ε), *j(/, ε),..., ί*(/, ε),..., ί;+1(/f ε)]'1

- [^ΓHΛ ε), ̂ Γ2(/, ε), ..., *2(/f ε),..., Jί*;i-+1)(/f ε)]"1

/, ε), j>2(/, ε),..., }fc(/, ε),..., j>Λ+1(/, ε)^Pk(ί. ε)

as ε->0 in Sk. Combining this with (4.12), we consequently obtain
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Qk(t, ε) - Pk(t9 ε) as ε > 0 in Sk (k = 1, 2,..., n + 1).

Thus the proof of our main theorem has been completed.
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