Exterior Functions and Strictly Continuous Homomorphisms in the Algebra of Bounded Analytic Functions

C. W. KENNEL and L. A. RUBEL¹⁾ (Received October 5, 1978)

Let G be a bounded region in the complex plane, and let $\beta(G)$ be the algebra of bounded analytic functions on G, in the strict topology. The strict topology was introduced by Buck (see [B]) — for a survey of this and related matters see [R]. Suffice it to say that the strict topology is the strongest topology on the bounded holomorphic functions for which a sequence is convergent if and only if it is uniformly bounded and pointwise convergent to its limit (see [RR], Corollary, p. 172). A function $f \in \beta(G)$ is called exterior (see [RS], p. 72) when the principal ideal generated by f is dense in $\beta(G)$. Examples can be found (we give one later) of bounded regions G with $0 \in \partial G$ such that f(z) = z is not exterior. On the other hand, if ∂G consisted of isolated Jordan curves, say, then this function z would certainly be exterior (see [RS], Theorem 5.17). In this paper, we consider $f(z) = z - \lambda$, $\lambda \in C$, and discuss the principal ideal that it generates. We prove that aside from the trivial case where $\lambda \in \overline{G}$, so that $(z - \lambda)$ is a unit in $\beta(G)$, there are exactly three possibilities. We conclude by proving that $(z - \lambda)$ is exterior if and only if there is no strictly continuous multiplicative linear functional in the fiber over λ . We rely heavily in our exposition on results in Gamelin and Garnett's paper [GG] which appeared at about the time our work in this area was being done.

DEFINITION. A point $\lambda \in \partial G$ is called an essential boundary point of G if there is an $f \in \beta(G)$ such that for no region W that contains λ does there exist an extension of f in $\beta(G \cup W)$. (See [RUD], p. 333.)

THEOREM. Let G be a bounded region, all of whose boundary points are essential. Let $\beta(G)$ be the algebra of all bounded analytic functions on G, in the strict topology. For $\lambda \in \overline{G}$, let

$$I(\lambda) = \{(z - \lambda)f : f \in \beta(G)\}.$$

Then exactly one of the following possibilities holds:

- 1) $I(\lambda)$ is dense in $\beta(G)$; that is $(z \lambda)$ is exterior.
- 2) $I(\lambda)$ is closed in $\beta(G)$ and has codimension 1 in $\beta(G)$.

¹⁾ The research of the second author was partially supported by a grant from the National Science Foundation.

3) $I(\lambda)$ is not closed in $\beta(G)$ and has codimension 1. Further, there exist a region G and three points $\lambda_1, \lambda_2, \lambda_3 \in \overline{G}$ for which possibility 1), 2), 3) holds, respectively. Finally, 2) holds if and only if $\lambda \in G$. In the remaining case ($\lambda \in G$), 1) holds if and only if the condition * of Proposition 1 holds.

REMARK 1. We have made the restriction $\lambda \in \overline{G}$ since otherwise $I(\lambda) = \beta(G)$.

PROOF OF THEOREM. First, if $\lambda \in G$, then $I(\lambda) = \{f \in \beta(G) : f(\lambda) = 0\}$, so that $I(\lambda)$ clearly has codimension 1, and is easily seen to be strictly closed. Hence if $\lambda \in G$, then 2) holds.

To handle the case $\lambda \in \partial G$, we first recall the definition of analytic capacity (see [Z], p. 11). The remainder of our proof will be presented in a series of separate results, which, when taken together, complete the proof of the theorem.

DEFINITION. Let K be a compact subset of C. The analytic capacity of K is denoted by $\gamma(K)$ and is defined by

$$\gamma(K) = \sup \{ |f'(\infty)| : f \in \beta(\widehat{C} \setminus K), |f(z)| \le 1 \text{ for all } z \in \widehat{C} \setminus K, \text{ and } f(\infty) = 0 \},\$$

where \hat{C} is the extended complex plane.

PROPOSITION 1. If $\lambda \in \partial G$ and 0 < a < 1, let

$$S(n, a, \lambda) = \{z : a^{n+1} \le |z - \lambda| \le a^n\}, \quad n = 1, 2, \dots$$

If

 $\sum a^{-n}\gamma(CG \cap S(n, a, \lambda)) = \infty,$

then $(z - \lambda)$ is exterior in $\beta(G)$.

PROOF. Following P. C. Curtis [C], Proof of Theorem 3.5, pp. 42-44, we choose a sequence $\{f_n\}$, n=1, 2,... in $\beta(G)$ with the following property: for each n, there is a simply-connected region W_n with $\lambda \in W_n$ and a function $f_n \in \beta(G \cup W_n)$ such that $f_n(\lambda) = 1$ for all n, sup $\{|f_n(z)| : z \in G \cup W_n\} \le 13$ for every n, and $\{f_n\}$ converges uniformly to zero on each compact subset of G.

Now let

$$g_n(z) = \frac{f_n(z) - f_n(\lambda)}{z - \lambda}$$

so that $g_n \in \beta(G \cup W_n)$ and $\sup \{ |(z-\lambda)g_n(z)| : z \in G \} \le 15$. If $z \in G$ then $\lim_{n \to \infty} (z - \lambda)g_n(z) = \lim_{n \to \infty} (f_n(z) - f_n(\lambda)) = -1$. By the above-mentioned property of the strict topology, $-(z-\lambda)g_n(z)$ converges strictly to 1 in G so that $(z-\lambda)$ is exterior, and the proposition is proved.

596

DEFINITION. If G is a bounded region and if $\lambda \in \partial G$, then the fiber over λ is defined as the family of all multiplicative linear functionals L on $\beta(G)$ for which $L(\hat{z}) = \lambda$, where \hat{z} is the identity function $\hat{z}(\zeta) = \zeta$ for all $\zeta \in G$.

The following is well-known and not hard to prove. A proof can be given using Corollary 2.2 on p. 458 of [GG].

REMARK 2. If $\lambda \in \partial G$ and if $f \in \beta(G)$ is such that $\lim_{n \to \infty} f(z_n) = a$ for each sequence $\{z_n\}$ in G with $\lim_{n \to \infty} z_n = \lambda$, then for any L in the fiber over λ , L(f) = a must hold.

In [RS], Theorem 3.4, p. 245, Rubel and Shields showed that the dual space of $\beta(G)$ may be represented as M'(G) = M(G)/N(G), where M(G) is the space of all complex Borel measures that live in G, and $N(G) = \{\mu \in M(G): \int_G f d\mu = 0 \text{ for}$ all $f \in \beta(G)\}$. For $\mu \in M(G)$ and $f \in \beta(G)$, set $L_{\mu}(f) = \int f d\mu$.

LEMMA 1. Suppose G is a bounded region and that the fiber over the point $\lambda \in \partial G$ contains a strictly continuous multiplicative linear functional L. If $\{\mu\}$ is chosen in M'(G) so that $L(f) = \int_G f d\mu$ for all $f \in \beta(G)$, then the closure of $I(\lambda)$ is equal to $I(\lambda)^- = \{f \in \beta(G): \int_C f d\mu = 0\}.$

PROOF. By the Hahn-Banach theorem, it is enough to show that if $\{v\} \in M'(G)$ has the property that if $\int_G f dv = 0$ for every $f \in I(\lambda)$ then $v = c\mu$ for some $c \in C$. Define H(G' | G) as the set of those $f \in \beta(G)$ that extend to lie in $\beta(G \cup W)$ for some region W that contains λ . Since H(G' | G) is strictly sequentially dense in $\beta(G)$ (see [GG], Corollary 2.2), we need only show that v and $c\mu$ have the same action on functions in H(G' | G).

Suppose now that $f \in \beta(G \cup W)$ for a region W that contains λ . By a result of Arens (see [A], Theorem 2.7, p. 646), we know that there exists a sequence $\{h_n\}$ in $\beta(G \cup W)$ such that the sequence $\{r_n\}$ has zero as its uniform limit on $G \cup W$, where $r_n(z) = f(z) - f(\lambda) - (z - \lambda)h_n(z)$. This implies that $\{r_n\}$ converges strictly to zero, so that

$$\int_{G} [f - f(\lambda)] dv = \lim_{n \to \infty} \int_{G} [(z - \lambda)h_n] dv = 0.$$

Hence $\int_G f d\nu = f(\lambda) \int_G 1 d\nu$ for all $f \in H(G' | G)$. But since $f(\lambda) = \int_G f d\mu$ for all such f, the result follows.

PROPOSITION 2. Suppose G is a bounded region with every point on ∂G an essential boundary point. If $\lambda \in \partial G$ and if $(z - \lambda)$ is not exterior on G, then $I(\lambda)$ is properly contained in $I(\lambda)^-$ and $I(\lambda)^-$ has codimension 1 in $\beta(G)$. **PROOF.** If $(z-\lambda)$ is not exterior on G, then Proposition 1 implies that $\sum a^{-n}\gamma(CG \cap S(n, a, \lambda)) < \infty$. By [GG, Theorem 3.2], we know that the fiber over λ contains a strictly continuous multiplicative linear functional. By Lemma 1, we conclude that $I(\lambda)^-$ has codimension 1 in $\beta(G)$.

Now suppose that for each $f \in \beta(G)$, there is a constant c and a function $h \in \beta(G)$ such that $f = c + (z - \lambda)h$. In this event, the cluster set of f at λ is just the singleton $\{c\}$. This contradicts a result of Rudin (see [RUD], Theorem 14) which says that if λ is an essential boundary point of G, then there is an $f \in \beta(G)$ whose cluster set at λ is the whole closed unit disk. Hence $I(\lambda) \neq I(\lambda)^-$ and the Proposition is proved. This completes the proof of the theorem, except for the example of G and $\lambda_1, \lambda_2, \lambda_3$. But to make 1) hold for $\lambda = \lambda_1$, we need only be sure that ∂G contains an isolated arc on which λ_1 lies. Then 2) holds for any $\lambda_2 \in G$. Finally to make 3) hold for $\lambda = \lambda_3 \in \partial G$, we need only further construct G so that * fails. Since $\lambda \in G$, we must then have either 1) or 3), and the failure of * rules out 1), so that 3) must hold for this λ . Such an example may be found in [Z], pp. 57–58, and consists of the unit disc with a sequence of small discs removed that converge to $\lambda = 0$.

REMARK 3. If G is a bounded simply-connected region and $\lambda \in \partial G$, then $(z - \lambda)$ is exterior on G.

PROOF. It is enough, by Proposition 1, to prove that * holds. Now ∂G is a continuum and so for all large j, $S(j, a, \lambda) \cap \partial G$ contains a continuum that meets both the inner and outer boundaries of the annulus $S(j, a, \lambda)$. Hence the diameter of $S(j, a, \lambda) \cap \partial G$ is no smaller than $a^j(1-a)$. Thus (see for example p. 13 of Zalcman's notes [Z]) for each such j,

$$\gamma(CG \cap S(j, a, \lambda)) \geq \gamma(\partial G \cap S(j, a, \lambda)) \geq \frac{a^j(1-a)}{4}$$
.

So the above series diverges, and the result is proved.

REMARK 4. The function $(z - \lambda)$ is exterior on G if and only if the fiber over λ contains no strictly continuous multiplicative linear functional.

PROOF. Compare our Theorem with the Theorem on p. 456 of [GG].

References

- [A] R. Arens, The maximal ideals of certain function algebras, Pacific J. Math. 8 (1958), 641-648.
- [B] R. C. Buck, Algebraic properties of classes of analytic functions, Seminars on Analytic Functions, Vol. 2, Princeton, N. J. (1957), 175–188.
- [C] P. C. Curtis, Peak points for algebras of analytic functions, J. Functional Analysis 3 (1969), 35-47.

598

Exterior Functions and Strictly Continuous Homomorphisms

- [GG] T. W. Gamelin and R. Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. 92 (1970), 455-474.
- [R] L. A. Rubel, Bounded convergence of analytic functions, Bull. Amer. Math. Soc. 77 (1971), 13-24.
- [RR] L. A. Rubel and J. V. Ryff, Bounded analytic functions and the bounded weak-star topology, J. Functional Analysis 5 (1970), 167–183.
- [RS] L. A. Rubel and A. L. Shields, The space of bounded analytic functions on a region, Ann. Inst. Fourier, Grenoble 16 (1966), 235–277.
- [RUD] W. Rudin, Some theorems on bounded analytic functions, Trans. Amer. Math. Soc. 78 (1955), 333-342.
- [Z] L. Zalcman, Analytic Capacity and Rational Approximation, Springer Lecture Notes \$50, Berlin 1968.

1103 Madeline El Paso, Texas 79902 and University of Illinois at Urbana-Champaign Urbana, Illinois 61801