Supplement to "Holomorphic curves in algebraic varieties"*)

Junjiro Noguchi

(Received September 14, 1979)

Let V be a complex projective algebraic smooth variety of dimension n and Σ a hypersurface of V. Using the same notation and terminologies as in [1], we recall Main Theorem in [1, section 3]:

Assume that there exists a system $\left\{\omega_{i}\right\}_{i=1}^{n+1}$ of $n+1$ logarithmic 1-forms $\omega_{i} \in H^{0}\left(V, \Omega_{V}^{1}(\log \Sigma)\right)$ such that $\omega_{1} \wedge \cdots \wedge \check{\omega}_{i} \wedge \cdots \wedge \omega_{n+1}, 1 \leqq i \leqq n+1$, are linearly independent over \boldsymbol{C}. Let $f: \boldsymbol{C} \rightarrow V$ be a holomorphic curve such that $f(\boldsymbol{C}) \not \subset \Sigma$ and f is non-degenerate with respect to $\left\{\omega_{i}\right\}_{i=1}^{n+1}$. Then there is a positive constant κ such that

$$
\begin{equation*}
\kappa T_{f}(r)<\bar{N}_{f}(r, \Sigma)+S_{f}(r) . \tag{1}
\end{equation*}
$$

The purpose of this supplementary note is to show the existence of a positive κ which is independent of f (cf. [1, Remark 1, p. 846]). In the present note we shall use the same notation and terminologies as in [1].

Proposition (2). Under the same assumptions as in the above theorem, there is a positive constant κ independent of f such that (1) holds.

Proof. We take a finite affine covering $\left\{W_{\alpha}\right\}_{\alpha=1}^{L}$ of $\left\{x \in V-\Sigma ; \omega_{1} \wedge \cdots\right.$ $\left.\wedge \omega_{n}(x) \neq 0\right\}$. Then there is one W_{α} such that $f(\boldsymbol{C}) \cap W_{\alpha} \neq \phi$. In the sequel, we simply write W for the W_{α} and fix an embedding $W \subset \boldsymbol{C}^{N}$ with an affine coordinate system $\left\{T_{1}, \ldots, T_{N}\right\}$. Set $f^{*} \omega_{i}=\zeta_{i} d z$. By the method of the proof of (1) in [1, section 3], it suffices to show the lemma:

Lemma (3). Let the notation be as above. Then there are only finitely many polynomials depending only on $\left\{\omega_{i}\right\}_{i=1}^{n+1}$ and the T_{k} 's

$$
F\left(X_{i j} ; Y_{k}\right)=P_{0}\left(X_{i j}\right) Y_{k}^{d}+P_{1}\left(X_{i j}\right) Y_{k}^{d-1}+\cdots+P_{d}\left(X_{i j}\right),
$$

where $i=1, \ldots, n+1, j=0, \ldots, n-1$ and $k=1, \ldots, N$, such that for any $f: \boldsymbol{C} \rightarrow V$ non-degenerate with respect to $\left\{\omega_{i}\right\}_{i=1}^{n+1}$ whose image meets W, there is one $F\left(X_{i j}\right.$; Y_{k}) satisfying that $F\left(\zeta_{i}^{(j)} ; f^{*} T_{k}\right) \equiv 0$ and the leading coefficient $P_{0}\left(\zeta_{i}^{(j)}\right) \not \equiv 0$.

[^0]Proof. The proof of this lemma is done along the same line as in Ochiai [2, Theorem A], by using the elimination theorem (cf., e.g., [3, Chap. XI]). Let $J_{n}(W) \rightarrow W$ be the holomorphic n-th jet bundle of germs of holomorphic mappings $g:(\boldsymbol{C} ; 0) \rightarrow W$ from a neighborhood of the origin of \boldsymbol{C} into W. Let $j_{n}(g)$ denote the n-th jet of $g:(\boldsymbol{C} ; 0) \rightarrow W$ and set $g^{*} \omega_{i}=\xi_{i} d z$ for $g:(\boldsymbol{C} ; 0) \rightarrow W$. Then we have the following canonical mapping I attached to $\left\{\omega_{i}\right\}_{i=1}^{n+1}$ ([2, section 2])

$$
\begin{equation*}
I: J_{n}(W)=W \times \boldsymbol{C}^{n^{2}} \longrightarrow \boldsymbol{C}^{n^{2+n}} \tag{4}
\end{equation*}
$$

which is defined by

$$
I\left(\left(g(0),\left(\xi_{i}^{(j)}(0)\right)_{1 \leqq i \leqq n, 0 \leqq j \leqq n-1}\right)=\left(\xi_{i}^{(j)}(0)\right)_{1 \leqq i \leqq n+1,0 \leqq j \leqq n-1}=\left(X_{i j}\right)\right.
$$

for $j_{n}(g)=\left(g(0),\left(\xi_{i}^{(j)}(0)\right)\right.$, where $\left(X_{i j}\right)$ is the natural coordinate system of $\boldsymbol{C}^{n^{2+n}}$. By [2, Lemma 2.4] the locus S where the differential $d I$ is not regular is a proper subvariety of $W \times \boldsymbol{C}^{n^{2}}$ and $J_{n}(f)\left(f^{-1}(W)\right) \not \subset S$, where $J_{n}(f): \boldsymbol{C} \rightarrow J_{n}(V)$ is the n-th prolongation of f. We may assume that the projection, $W \ni\left(T_{1}, \ldots, T_{N}\right) \rightarrow$ $\left(T_{1}, \ldots, T_{n}\right) \in \boldsymbol{C}^{n}$, is a finite morphism. Let $\left\{A_{\alpha}\right\}_{\alpha=1}^{t}$ be a system of generators of the ideal $\left\{P \in \boldsymbol{C}\left[T_{1}, \ldots, T_{N}\right] ; P=0\right.$ on $\left.W\right\}$, where $\boldsymbol{C}\left[T_{1}, \ldots, T_{N}\right]$ denotes the ring of polynomials in the T_{i} 's with coefficients in \boldsymbol{C}. We may assume that the system $\left\{A_{\alpha}\right\}$ contains polynomials of the following form

$$
T_{k}^{d}+A_{k 1}\left(T_{1}, \ldots, T_{n}\right) T_{k}^{d-1}+\cdots+A_{k d}\left(T_{1}, \ldots, T_{n}\right)
$$

for $k=n+1, \ldots, N$. By the elimination theorem, it is sufficient to prove Lemma (3) for $k=1,2, \ldots, n$, say for $k=1$. From (4) and $\left\{A_{\alpha}\right\}$ we obtain algebraic equations

$$
\left\{\begin{array}{l}
I_{k}\left(T_{1}, \ldots, T_{N},\left(X_{i j}\right)_{1 \leqq i \leqq n, 0 \leqq j \leqq n-1}\right)-X_{n+1 k}=0, \quad 0 \leqq k \leqq n-1, \tag{5}\\
A_{\alpha}\left(T_{1}, \ldots, T_{N}\right)=0, \quad 1 \leqq \alpha \leqq t
\end{array}\right.
$$

where we put $I=\left(I_{i j}\right)$ and $I_{k}=I_{n+1 k}$. Using the elimination theorem, we eliminate T_{n+1}, \ldots, T_{N} in (5), and so we have

$$
\begin{equation*}
H_{\alpha}\left(T_{1}, \ldots, T_{n},\left(X_{i j}\right)\right)=0, \quad 1 \leqq \alpha \leqq t^{\prime} \tag{6}
\end{equation*}
$$

Put $H_{\alpha}\left(T_{1}, \ldots, T_{n},\left(X_{i j}\right)\right)=H_{\alpha 0}\left(T_{1}, \ldots, T_{n-1},\left(X_{i j}\right)\right) T_{n}^{h_{\alpha}}+\cdots+H_{\alpha h_{\alpha}}\left(T_{1}, \ldots, T_{n-1},\left(X_{i j}\right)\right)$ for every α. Then there is some $h_{\alpha}^{\prime}, 0 \leqq h_{\alpha}^{\prime} \leqq h_{\alpha}$, such that $T_{k} \circ f(z)$ and $X_{i j} \circ f(z)$ satisfy the equations

$$
\begin{equation*}
H_{\alpha 0}\left(T_{1}, \ldots, T_{n-1},\left(X_{i j}\right)\right)=\cdots=H_{\alpha h_{\alpha}-h_{\alpha}^{\prime}+1}\left(T_{1}, \ldots, T_{n-1},\left(X_{i j}\right)\right)=0 \tag{7}
\end{equation*}
$$

for all $z \in f^{-1}(W)$ and that $H_{\alpha h_{\alpha}-h_{\alpha}^{\prime}}\left(T_{1} \circ f(z), \ldots, T_{n-1} \circ f(z),\left(X_{i j} \circ f(z)\right) \not \equiv 0\right.$. If all $h_{\alpha}^{\prime}=0$, then $\operatorname{dim}_{J_{n}(f)(z)} I^{-1}\left(I\left(J_{n}(f)(z)\right)>0\right.$ for all $z \in f^{-1}(W)$. This is absurd,
so that one $h_{\alpha}^{\prime}>0$. We eliminate T_{n} in the equations

$$
\begin{equation*}
H_{\alpha h_{\alpha}-h_{\alpha}^{\prime}}\left(T_{1}, \ldots, T_{n-1},\left(X_{i j}\right)\right) T_{n}^{h_{\alpha}^{\prime}}+\cdots+H_{\alpha h_{\alpha}}\left(T_{1}, \ldots, T_{n-1},\left(X_{i j}\right)\right)=0 \tag{8}
\end{equation*}
$$

for those α with $h_{\alpha}^{\prime}>0$, so that we get

$$
\begin{equation*}
G_{a}^{\prime}\left(T_{1}, \ldots, T_{n-1},\left(X_{i j}\right)\right)=0, \quad 1 \leqq \alpha \leqq t^{\prime \prime} \tag{9}
\end{equation*}
$$

We gather equations (7) and (9) and rewrite them as

$$
\begin{equation*}
G_{\alpha}\left(T_{1}, \ldots, T_{n-1},\left(X_{i j}\right)\right)=0, \quad 1 \leqq \alpha \leqq t^{\prime \prime \prime} \tag{10}
\end{equation*}
$$

We eliminate T_{n-1} in (10) in the same way as above. Continuing this process of elimination, we finally have

$$
\begin{equation*}
F_{\alpha}\left(T_{1},\left(X_{i j}\right)\right)=F_{\alpha 0}\left(X_{i j}\right) T_{1}^{d_{\alpha}}+\cdots+F_{\alpha d_{\alpha}}\left(X_{i j}\right)=0, \quad 1 \leqq \alpha \leqq t^{\prime \prime \prime \prime} \tag{11}
\end{equation*}
$$

By the definition, $F_{\alpha}\left(T_{1} \circ f(z),\left(X_{i j} \circ f(z)\right) \equiv 0\right.$ for all α. Suppose that $F_{\alpha v}\left(X_{i j}{ }^{\circ}\right.$ $f(z)) \equiv 0$ for all α and v. Take $z \in \boldsymbol{C}$ so that $f(z) \in W, d I$ is regular at $J_{n}(f)(z)$, every leading coefficient in (8) does not vanish at ($T_{1} \circ f(z), \ldots, T_{n-1} \circ f(z)$, ($X_{i j} \circ$ $f(z))$) and the same holds in each step of the above process of elimination. Then for any v in a neighborhood of z, there are $T_{2}(v), \ldots, T_{N}(v)$ such that

$$
I_{k}\left(T_{1} \circ f(v), T_{2}(v), \ldots, T_{N}(v),\left(X_{i j} \circ f(z)\right)\right)-X_{n+1 k^{\circ}} f(z)=0
$$

for $k=1, \ldots, n$. It follows that the dimension of $I^{-1}\left(I\left(J_{n}(f)(z)\right)\right.$ at $J_{n}(f)(z)$ is positive. This is a contradiction. Thus one of $F_{\alpha \nu}\left(X_{i j^{\circ}} f(z)\right)$ does not vanish identically. By the construction we have a finite number of polynomials $F_{\alpha}\left(T_{1}\right.$, $\left(X_{i j}\right)$) with the required property.

References

[1] J. Noguchi, Holomorphic curves in algebraic varieties, Hiroshima Math. J. 7 (1977), 833-853.
[2] T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity, Invent. Math. 43 (1977), 83-96.
[3] van der Waerden, Modern Algebra II, Ungar, New York, 1950.

> Department of Mathematics, College of General Education, Osaka University

[^0]: *) Work supported in part by the Sakkokai Foundation.

