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Introduction. All rings considered here are commutative with identity.
In this note, we give two examples of noetherian Hubert rings. The most famous
example of a noetherian Hubert domain is an affine domain over a field. Such
an integral domain is equicodimensional, i.e. its all maximal ideals have the same
height. Noetherian Hubert domains with maximal ideals of different height are
given in [1], [5], [6], [10] and [11]. KrulΓs example in [6] is obtained by a
localization of K\X, 7], where K is a countable, algebraically closed field.
Heinzer in [5] constructs a noetherian Hubert domain with maximal ideals of
preassigned height, and subsequently in [1] and [10] the same examples as
Heinzer's are constructed by making use of the following proposition in [4,
(10. 5. 8)]: Let A be a noetherian ring and let 5 be a non-nilpotent element
contained in rad(A). Then As is a Hubert ring.

By the way, in [6] and [11], two dimensional noetherian Hubert domains
with only a finite number of height one maximal ideals are constructed. How-
ever almost all noetherian Hubert domains already known have the following pro-
perty: Let 501 be a maximal ideal of a noetherian Hubert domain A. Then, if
n = /ιί(SOί)>2, A has infinitely many height n maximal ideals.

In Section 1, we show that if A is a noetherian ring containing an uncountable
field and if S is a multiplicative subset of A generated by countably many elements
of rad(X), then S~1A is a Hubert ring. In Section 2, we construct a noetherian
Hubert domain with a preassigned number of maximal ideals of preassinged
height by making use of a modification of KrulΓs method in [6, p. 371].

Notation. Let A be a ring. Then
Max (/I) = {φ e Spec (A); $ is a maximal ideal in A],

Htn(A) = {φ e Spec (A); ht(φ) = «},
radG4) = Π φeMax04)φ.

Let p be a prime ideal in a ring A. Then

I7(p) = OP e Spec (X); $=>p and Λί(φ/p) = 1}
C = the field of complex numbers.
N = the set of natural numbers.

1. We need some preliminary results.

LEMMA 1. Let A be a noetherian ring. Then A is a Hubert ring if and
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only if U(p} is an infinite set for any non-maximal prime ideal p in A.

PROOF. The assertion follows from Theorem 4 in [3].

LEMMA 2. Let A be a ring containing an uncountable set E such that a — b
is a unit of A for all a^b in E. Then the following statements hold.

(a) Let /, /„ (n = l, 2,...) be ideals in A. If I is finitely generated and if

* £Σ?=ιJιι> tnen I^In holds for some n.
(b} If A is noetherian, and if^β^p are prime ideals in A such that ht(9β/p)

>2, then U(pA^) is an uncountable set.

PROOF, (a) Let x lv.., xr be generators for I. Set H = {xί + ax2-l ----- h
aJ'~1Xj-i ----- hα r"1x r; aeE}. Since E is an uncountable set, there is an integer

n such that In contains r-elements x t H ----- \-(ai)
J'~1xj-\ ----- h(αί)

r"1xr (i = 1, 2,..., r)
of H, where a{Φa^ if iφj. As is well-known, the determinant of rxr-matrix

((flί)-7'"1) is Πi>/fli — αj) This is a unit in A by our assumption. Therefore In

contains x1?..., xr. Thus /£/„.

(b) Since A is noetherian, φ= U De^Q hold, where Pf={Qe(7(p); βcφ}.
Suppose that U(pA%) is countable. Then by (a) φ = Q for some Qe W. This
contradicts the assumption that

LEMMA 3. Let A be a ring satisfying the following conditions either (a)
or(b):

(a) A contains an uncountable field.
(b) A is a semi local ring such that A/9R is uncountable for each maximal

ideal 501 in A.
Then A contains an uncountable set E such that a — b is a unit in A for all a^b
in E.

PROOF. If A satisfies the condition (a), there is nothing to prove. Suppose
that A satisfies the condition (b). Let 50Ϊ1}..., 501,. be the maximal ideals in A.
Let J be a set such that card (J)= min {card (AjWl^ ι = l,..., r}, where card (*)
stands for the cardinality of *. Let St be a complete set of representatives for
the non-zero elements of A/Wl^ and let {α^ je J, a^aih if j^h} be a subset of
Sf. For each j, there exists a^ of A such that α/^α^ (mod SOI;) for ΐ = l,..., r.
Then E = {α;; j e J} is a desired set (cf. [8, p. 94]).

LEMMA 4. Let A be a noetherian ring and let S be a multiplicative subset
of A generated by countably many elements. Let p be a prime ideal such that
p Π S = φ. If U(p) is an uncountable set, then U(S~1p) is also an uncountable
set.

PROOF. Considering A/p, we may assume that A is an integral domain and
p=0. Let S be the multiplicative subset in A generated by sί9 s2,..., sn,... .
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For each sπ, there is only a finite number of height one prime ideals in A which
contain sn. Therefore Htί(S~1A) is uncountable.

We can now prove the following:

THEOREM 5. Let A be a noetherian ring satisfying the following con-
ditions either (a) or (b):

(a) A contains an uncountable field.

(b) A is a semi local ring such that A/Wl is uncountable for each maximal
ideal 9JI in A.

Then, if S is a multiplicative subset of A generated by countably many elements
ofrad(A\ S~ίA is a Hilbert ring.

PROOF. Let S~ίp be an arbitrary non-maximal prime ideal in S~1A9 and
let S"1^ be a maximal ideal containing S~1p, where p, ^8eSpec(v4). Since S
is a subset of rad(yl), φ is a non-maximal prime ideal in A. Hence dim(^4/p)>2.
Therefore by Lemma 3 and (b) of Lemma 2, t/(p) is uncountable, so 17(5"̂ )
is infinite by Lemma 4. Thus S~1A is a Hilbert ring by Lemma 1.

THEOREM 6. Let A be a noetherian Hilbert ring such that t/(p) is un-
countable for any non-maximal prime ideal p in A. Let S be a multiplicative

subset of A generated by countably many elements. Then S~1A is a Hilbert ring.

PROOF. Let 5-1p be a non-maximal prime ideal in S~M, where
peSpeφl). Since t/(p) is uncountable, £7(5"^) is infinite by Lemma 4.

Therefore S'1A is a Hilbert ring.

REMARK. Let Tbe the multiplicative subset of C[Jf] generated by {X-a\
αeC-N}, and let ^ = (T-1C[X])[7], where X, Y are indeterminates. Let
5 be the multiplicative subset in A generated by {X — n\ n = 2, 3,...}. Then A
contains an uncountable field and Max (A) is uncountable, but S~1A is not a

Hilbert ring.

2. We shall consider the following question: Let 9JI be a maximal ideal of
a noetherian Hilbert domain A, and let n = ht(M). Then, do there exist infinitely

many height n maximal ideals in AΊ
Krull [6, p. 371] and Roberts [11] constructed two dimensional noetherian

Hilbert domains with only a finite number of height one maximal ideals. Hence,

if n = l, the above question is not true. We begin with some affirmative cases.

PROPOSITION 7. (α) If A is α noetherian Hilbert domain, then the above

question is true for A[X], where X is an indeterminate.
(b) Let (A, SOί) be a noetherian local domain, and let s be a non-zero

element 0/9JI. Then the above question is true for As (As is a Hilbert domain by
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[4, (10. 5. 8)]).

For the proof of this proposition, we need the following lemmas.

LEMMA 8. (Theorem 1 in [7]). Let ty be a height n prime ideal in a

noetherian ring. Then almost all the prime ideals directly above ^β have

height n + l.

LEMMA 9. Let (A, $0ΐ) be a noetherian local domain. If there exists a

height one prime ideal q in A such that ht^R/q) = 1, then {p e Spec (A); SHIDp =>0
is saturated} is an infinite set.

PROOF. This is immediate from Proposition 1 in [7].

PROOF of Proposition 7. (a) Let 91 be a maximal ideal in A\X\. By
Theorem 5 in [3], 501 = 91 n A is a maximal ideal in A. Then it is easy to see
that there exist infinitely many maximal ideals 'wA[X]9 containing 3JL4[AΓ1,

of height hί(9ϊ) = ht(WΪ) + L
(b) Let pAs be a maximal ideal in AS9 where p e Spec (A). We see then

immediately that dim ( A / p ) = l . Let ΪWiDpiDp^ ^p„_!=>() be a saturated
chain of prime ideals in A, where n = ht(p). By applying Lemma 9 for A / p ί 9

we see that Wl = {qeSpec(A);l3R=>(\^p1, ftί(9K/q) = Λί(q/p1) = l} is an infinite
set. Hence W2 = {qe Wίι q^>s, hί(q) = n} is infinite by Lemma 8. Therefore
q^4s is a height n maximal ideal in As for each q e W2.

Our main aim in this note is to construct a noetherian Hubert domain with
a preassinged number of maximal ideals of preassigned height. For the con-
struction of this example we require several lemmas.

For the rest of this section we assume that k is an algebraically closed field

contained in the field of complex numbers C. We denote by kn(n>2) the
affine n-space over fe, and also donote by A = k[_Xί9...9 Xn~] the affine coordinate
ring of kn. For each pair of integers (r, m), where l<r<n — 1 and m>0, Ur>m

is the linear subvariety of kn defined as follows: I7r>0 = {(z1,..., z π )efe w ; zr+1

= ... = zn = 0} and l/Γjm = {(z1,...,z/I)e/c«; zr+ί = m-\ zr-+2 = - = zll = 0} if m^O.

It is clear that Uft0 =3 l/r_ ι,m.
Let Fbe a linear subvariety of kn. We say that an irreducible closed subset

L(in Zariski topology) of V is a hypersurface in Fif dim (L)= dim (7) — 1.

LEMMA 9. Let V and V0 be linear subvarieties of kn given by Xn — u and

Xn = § respectively, where we/c-{0}. I f L i s a hypersurface in V and βl5...,βs

are points of kn— V, then there is a hypersurface H in kn such that (ί) H n V=L9

O'Oβu j Qs&H and(iiϊ)Hn V0 does not meet the set E = {(zl5..., zn)ekn; zn = 0
and \ Z i \ < i f o r /=!,..., n-\}.
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PROOF. Since Lis a hypersurface in V, Lis defined by an irreducible pol-
ynomial/in k[X1,...9Xn_ί']. Let (α1?..., flw_l5 u) be a point of V-L. We

then put Ft(Xί9...9Xn) = (Xn-ut)^^f((Xn-utriu(ΐ-t)(Xί-aίt) + α1?...,
(Xn-ut)-ίu(l-t)(Xn.i-an^ίt)^-an_1t\ where tek. We first show that
S = {tekι Ft(Qi) = Q for some ί} is a finite set. Suppose that Ft(bl9..., bn) is zero
as a polynomial in t for some (bl5..., bjek". Since ^(f^,..., bn) = (bn — w)deg(/)

/(«!,..., #„_!), we must have bn = u. Therefore Ft(bl9..., bn) = (u — wί)deg(/)

/(&ι,..., fcπ-ι), and hence (6l9..., bn)eL. This shows that F^Q/) is not zero as a
polynomial in ί(/ = l,..., s). Thus S is a finite set. On the other hand, Ft is an
irreducible polynomial in A if tΦ\. Therefore it defines a hypersurface Ht in

k\ Since F ί(X1,...,Xπ_1,w) = (w-wOdeg(/)/(^ι,...,^n-ι), we have L=Htϊ\V.
Moreover Ht n F0 is defined by F ,̂..., A^, 0) = (-wOdeg(/)/(r1(ί-l)^ι
+ 01?..., Γ^ί—lpf,,-! + £„_!). Now choose a positive rational number ε so that

Σ?=ι |Zj — ^il2<ε implies/(z!,..., z,,^)7^0, and also choose tek — S(] {1} such

that l^ίCί-l)-1!2/!-1. Then Max {IzJ,..., Iz^J}^! implies Σ?=ί KrHί-l)^

+ aί)-aί\
2=Σ?=\ |Γ1(ί-l>ί|

2<|Γ1(ί-l)|2n<β, hence Ft(zl9...9 zn,ί9 0)/0.
This shows that Ht n E = φ. Therefore the proof is complete.

LEMMA 10. Let V be a linear subvarίety of kn, L a hypersurface in V.

Assume that dim(V}>\. If Qί9..., Qs£kn — V> then there is a hypersurface H
in kn such that (ί) H n V=Land (iί) Ql9...9 QS^H. Moreover assume that V is

defined by Xr+1 = - =Xn = Q (r>l). Then H can be chosen so that it does not
contain any linear subvarietίes given by Xq = v, Xq+ί = =Xn = Q where n>q

>r+l and vek.

PROOF. We may assume that V is defined by Xr+ί = -=Xn = Q (r>l).
Then Lis defined by an irreducible polynomial/in /c[X1?..., Xr~]. For each point
α = (£!,_,.) of kr<<n-r\l<i<r and r+l<7<n), we put G(α; Xί9..., XJ=f(X1

+ Σ"=r+ι t*ijXj9»-9 ^r+Σ"=r+ι arjXj)> Since / is also an irreducible pol-
ynomial in /c[Xl5..., XJ, so is G(α; ΛΊ,..., Xn), and therefore it defines a hyper-
surface HΛ in kn. It is obvious that HΛ n F=Land Qί9...9 Qs^Ha for a suitable
choice of αe/c r ( n~ r ). Finally assume that HΛ contains a linear subvariety given

by Xq = υ,Xq+ι = =Xn = Q(q'£r+l9υek). Then G(α; Xl9...9 Xr9 0,..., υ, 0,
...5 0)=f(X1 + alqv9..., Xr + arqv) = Q, which is impossible. This completes the

proof.

LEMMA 11. Assume that L is a hypersurface in UrιTn(m^G). Let Qί9

..., Qsekn-Urίm. Then there is a hypersurface H in kn such that (i) H n Ur>m

= L, (n) Q!,..., Qs^H and (Hi) H does not contain any l/Γ',m' (where r> = !,..., n — 1

and m' = Q, 1,...).

PROOF. It is clear that l/r>0, Uffmc: Ur+li0. We may assume that Ql5..., Qs
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eL/ r + l j 0 and βs' + ι,..., Qs&Ur+lt0. By Lemma 9, there is a hypersurface Hί

in I7r+1>o such that Hv Π C7ΓfIfI = L,'β1,..., βS'Φ#ι and l/^φtfi for r'<r and
m'>0. By Lemma 10, there is a hypersurface # in kn such that J ΐ f ϊ l/r+ι,o =

HI* &»•••> C?sΐ# and I7 rwφjff for r'>r and w'^0. It is now obvious that #
satisfies the above properties (i), (ii) and (iii).

Let Z be a subset of C". We denote by Z' and Z* the closures of Z with
respect to the Zariski topology and the usual topology on Cn respectively.

LEMMA 12. Let Z be an irreducible closed subυariety of kn. Then

Z' = Z* inC".

PROOF. See [12].

LEMMA 13. Let Hl9...,Hs be hypersurfaces in fc", and let Z be an irre-
ducible closed subυariety of k" with dim(Z)>l. Further let r be an integer
(l<r<rc-l). // Zφ(7r>m and Z^Ht for every m( = 0, 1,...) and i(=l,...,s),

then Z- \J%=o l/r>m U Hί u ••• U Hs is an infinite set.

PROOF. We may assume that fe = C. In fact, by Lemma 12, (W*=o ^r,m

U H, U - U HJ* = W£=0 E7*m U m U - U #s* = W£=0 U'r.m U H{ U - U H'B. There-
fore to prove that Z —W^=0 ^r,m U #ι U ••• U Hs is an infinite set, it is enough
to show that Z' — W£=0 U'r>m U H( u ••• U H's is an infinite set. Thus we may
assume that fc = C. If Zφ Ur+ί>0, then Zφ C/ r + l j 0 U H U ••• U //s. Consequently

Z- I7r+1>0 U H t U ••• U Hs is an infinite set and therefore so is Z-W^=0 ^r,m U H1

U ~ Ό Hs. We now consider the case Zcl/Γ + l f 0. Replacing /cn by (7r+lf0, we
may assume that r+1 = n. We then use induction on d= sim (Z). First suppose

that d=l. Since Z is uncountable and W£=0(
z Π ί/π_1>m) U (Z n #0 U ••• U (Z

Π /ίs) is countable, Z — WJ£=0 ^r,m U #ι U ••• U Hs is uncountable. Therefore the
assertion has been established for the case d=\. Suppose next that d>\. We
put ϊF=the set of all irreducible closed sub varieties W of Z with dim(PF) = d — 1.

ΪF is an uncountable set. Assume that Za W^=0 ^n-ι,m U ^i U ••• U#s; then
every element of W is contained in at least one of C/ r t_ι j O T or Ht by the induction

hypothesis. Therefore it is an irreducible component of some of Z n t/π-ι>m or
Z n Ht. Therefore W is a countable set. This is a contradiction. This shows

that Zφ \Jm=Q ^«-ι,m U /fi U ••• U #s. We can now choose an irreducible closed
subvariety Zv of Z so that dim(Z1) = l and Z x φ W£=0t/π-ι,m U Hλ U ••• U Hs.

Since Zx- W^=0 ^/i-i.m U #ι U ••• U #s is an infinite set, so is Z-U£=0 ^w-ιjW,
U H1 U ••• U #s. The lemma is thereby proved.

The following is a corollary to Lemma 13.

LEMMA 14. Let #1?..., Hs be hypersurfaces in k", and let Z an irreducible
closed subvariety of kn with dim(Z)>l. Further let V be a subset of {C/r>m; r
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= 1,..., n-1 and m = l, 2,...}. If Zφ V and ZφHJor every 7e V and /, then
Z-\JVeV V U #! U ••• U Hs is an infinite set.

PROOF. Choose a positive integer r such that Zφl/ r > 0 and Zcί/ r + 1 > 0.

Since Z f l 7=</> for every 7eF such that dim(7)>r+l, and since 7cl/r>0 for

every VE V such that dim (7)< r, it is sufficient to prove that Z- W£=0 t/r>m U //j
U ••• U Hs is an infinite set, but this is obvious by Lemma 13.

We now proceed to the construction of a noetherian Hubert domain with a
preassigned number of maximal ideals of preassigned height.

Assume that k is a countable, algebraically closed field contained in C. Let
I<r1< <rs<n be a sequence of positive integers, and let ml9...,ms be a
sequence of positive integers or oo. Choose a subset V of {Ur>mι r=l,..., n — 1,
m = l, 2, 3,...} so that the number of elements V of F with dim(7) = π —r f is

m f for each i = l,...,s. We now define P^the set of all irreducible closed
subvarieties of kn which are hypersurfaces in some elements of V, and P2 = the
product of N and the set of all irreducible closed subvarieties C of k" such that
dim (C)> 1 and Cφ \JVeV V. Since k is countable, so are Px and P2. Therefore
we can put P1 = {Pί; ΐ e N } and P2 = {fe, Q); ΐ e N } . We shall construct, in
succession, positive integers eί9 e2,..., points Qί9 Q2,... of kn and hypersurfaces

HI, H29... in kn as follows. We put e1 = ί. Let fiieC^-W^F 7, and let 7X

be an element of F in which P± is a hypersurface. By Lemma 11, there is a
hypersurface #x in /c" such that VΦH1 for every 7eF, #j n F1=P1 and Q1

^H1. For each positive integer ϊ(>l), we choose an element Vi of V in which

PI is a hypersurface. Suppose that we can choose positive integers eί9...9 e f _ 1 ?

points β lv. , βf-i of/c n and hypersurfaces Hl9..., Ht_ί in /CM such that QteCei —
\JVeVVUHιU •••U^ί_1, Q1,...,Qiς£Hi, FφH f for every Fe F and ^nF^P;
for ί = l,..., t — 1. Since {i; C = Q} is an infinite set for every irreducible closed
sub variety C fo kn such that dim(C)>l and Cφ WFeF 7, the set {i>e f_!; QΦ

jF/Ί U ••• UH f-ι} is not empty. Then we put ef = Min {i>et-ί; CiφH1 U ••• U

Ht-i}' βy Lemma 14, we can choose a point Qt of Cet- WKeF 7 U H1 U ••• U
Ht_ί9 Qt^Qi,--, Qt-i- Then by Lemma 11, there is a hypersurface Ht in /c"
such that 7φ//, for every 7e Γ, Ht n 7ί = Pί and Q l9..., Qtf£Ht. We shall now
prove that the above sequence Hl9 H2, . of hypersurfaces in kn has the following

properties:
(a) if 7 is an element of F, then every proper closed subvariety of 7 is

contained in some Ht'9
(b) 7 Φ #, for all t e N and 7e F;
(c) L—\J™=1 Ht is an infinite set for every positive dimensional irreducible

closed subvariety L of kn which is not contained in any 7e F and #r

In fact (a) and (b) are obvious by the construction of Ht. To prove (c), note

that {ί'eN; L=CJ is an infinite set. Suppose now that L=Q for some
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Then there is an integer j such that ej-ί<ί<ejf If i<ej9 then L= QcH 1 U U

Hj_ί from the definition of ej9 which is a contradiction. Therefore i — ef, hence

J = {ieN; L=Cej} is an infinite set. Since QjEL-\J?=iHt for jeJ, the as-

sertion (c) is proved.

Let now ft be a defining polynomial of Ht in ^4 = fc[A'1,..., XJ for each

t eN, and let S be a multiplicative subset of A generated by /ι,/2J We then

put R = S~1A.

THEOREM 15. .R is a notherίan Hilbert domain such that (i) dim (R) = n,

(ii) {/!,..., rs, n} = {/ιf(m); me Max (R)} and (Hi) mt is the number of maximal
ideals in R with height rtfor each i = l,..., s.

PROOF. First, (a) and (b) imply that p(V)R is a maximal ideal in R for every

Ve V, where p(V) is the prime ideal in A corresponding to V. Next, (c) implies

that if p is a prime ideal in R such that ht(p)<n and p^p(V)R for every Fe V,

then p is contained in infinitely many height n maximal ideals in R. Therefore the

proof is complete.

REMARK. By the above property (c), ht(p) + dim(R/p) = n for any non-
maximal prime ideal p in R, but R has a maximal ideal, of which height is less than

n. Therefore R is another counterexample with relation to Remark 2.6 in [9]:
If A is a noetherian ring such that /ιί(p) + dim G4/p) = dim (X) for any non-maximal

prime ideal p in A, then does A satisfy that /ιί(W) = dim (/I) or 1 for any maximal

ideal m in Aϊ (cf. [2], p. 478).
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