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1. Introduction

Our main purpose in this paper is to study the equation

1' +
and present a necessary and sufficient condition so that all oscillatory solutions

of equation (1) converge to zero asymptotically.
In [2, 3], this author showed that subject to

(2) tn-2\a(t)\dt«x>

(3)

and boundedness of (tn~k)/r(t\ 0</c<l for ίe[T, oo), T>0 all oscillatory

solutions approach zero as t-+ao. There are examples given in [2] to show that

condition on r(t) cannot be weakened. This restriction on r(i) eliminates a very
Γ°°

important class of equations of type (1) that requires \ l/r(i)dt= oo. We find a

set of conditions in Theorem 3.2 which essentially ensure that all oscillatory
Γ°°

solutions of (1) eventually vanish while retaining \ l/r(i)dt=ao. We, then,

use this theorem to find a necessary and sufficient condition to accomplish the

stated goal of this work in section 4.

2. Definition and assumptions

Unless otherwise stated, following assumptions apply throughout this work :

( i ) 0(0, r(0, a(t\ f ( i ) and h(f) are R-+R and continuous, R being the

real line;
(ii) r(0>0, r'(t)>Q for t>t0 where f 0 >0 will be assumed fixed;

(iii) ί/ι(ί)>0, 1 7^0 and there exists an m>0 such that ̂ - <m for
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(iv) ί°° l/r(t)dt = oo.
Jfo

(v) 0<g(i)<t and g(i)-> oo as f-»oo.
We call a function Q(t) e C[ί0, oo) oscillatory if Q(i) has arbitrarily large

zeros in [ί0, oo); otherwise Q(f) is nonoscillatory.
Conditions (i), (ii), (iii) and (v) guarantee that all solutions of (1) can be

continuously extended on all of [ί0> oo). In fact following the proof of our
Theorem 3.1 in [4] with minor changes we obtain the following theorem with
regard to the extendability of the solutions of equation (1).

THEOREM 2.1. The continuity of a(t\ r(t\f(t\ h(t) andg(t)for t>t0 is suffi-
cient to allow any solution of equation (1) to be continued indefinitely to the
right of Tfor some T>tQ.

From now on, the term "solution" only applies to a solution of an equation
in the spirit of Theorem 2.1.

3. Main result

THEOREM 3.1. Suppose

(4) t»-1\a(i)\dt<ao

and

(5) p/(f)|Λ<oo.

Let y(f) be a solution of equation (1). Then y(g(t)) = 0(tn~1).

PROOF. Let S0 be large enough positive number so that for ί>50, g(f)>t0.
Integrating equation (1) (n — 1) times between ί0 and t where we choose ί>S0

we get

(6) r(0/(0 = C, + C2(t - ίo) + ... + Cn^(t - ίo)"-2

Γ
~

)

t (i _ γΛn-2 f t d _ vΛ«-2(t x) f(x)dx
ί0 (n — 2)1

where

-i -- , . _ ^i

Dividing by r(t) and integrating between ί0 and g(f) for ί>S0 we have

= y(g(ί0)) + C, \"W-^ ds + -. + CB_t \
βW (s - <o)"2

 ds
J t o r\ύJ J t o Γ\ΛJ
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- xY-2a(x)h(y(g(x)))dxds
(1-2)1

C w 1 f s (s - x)"~2f(x)dxds
),„ r(s)).0 («-2)!

Since r'(t)>0, ί Ξ> g(f) i> Ό for ί^S0 we have from above

(7) IX,(/))| < 10,1 + |Ct| (I - /o) + - + '

, m f (ι -
\ —7 >

, _J_Γ' (/ - s)^\
K<o)3«o (»-!!

where we have set Xί0) = C0. Dividing (7) by ί""1 we get

*

where

and

K > m

1 " K/o) '

The conclusion of the theorem now follows by GronwalΓs inequality. The
proof is complete.

The following lemma is given in a remark in [3]

LEMMA 3.1. Iftl<t2<t3< <tn, then

I f *2 Ct3 Ctn

I J f l JS3 JSn °

$
00 r oo
.,$„•

for any function aQ(x)eC[ti9 oo).

THEOREM 3.2. Assume that

(9) (°°ί2l| 2|έi(0|Λ<oo
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and

(10) Γ tn~1\f(t)\dt<^.

Let y(i) be an oscillatory solution of equation (1). Then y(t)-*Q as ί-»oo.

PROOF. Suppose to the contrary that

(11) limsup|XOI>2d>0
ί-»oo

for some number d. By Theorem 3.1 there are numbers C>0 and T>ί0 such
that g(t) > t0 and

(12) < C

for t > T. Let T^ > T be such that

and

for all t>T±. (13) and (14) are possible in view of (9), (10) and the fact that
r'(ί)^0. Since (11) holds, let ίt and t2, tι<t2 be consecutive zeros of y(t) such
that tί>Tί and

(15) M =

for ίe[ί l9 ί2]. Let T0e[ί1? ί2] be such that M=|XΓ0)|. Since (K0/(0)(l~υ,
i = l, 2,..., n — 1, are oscillatory, choose Pι<p2<P3<" <Pn-ι as zeros of
(r(0/(0), (K0/(θy,.-, (K0^'(0)(""2) respectively such that Pi>t2.

On repeated integration from equation (1) we get

(16) ± y'(t) + v - ~ ' a(x)h(y(g(x)))dxdsn-ι ds2
r(t) Jt Js2 Js3 Jsn-1

] CPl CP2 CP3 (Pn-ί.
= τAr " Ax)dxdsn^ ds2r(l) Jt Jsi JS3 Jsπ-l

Integrating (16) between ίt and T0 we get

(17) + M+ Γ°-47VΓ' Γ - (P"'la(x)h(y(g(x)))dXdsn_i-ds2di
Jtl r\l) Jt Js2 JSn-ί

(To 1 ΓPi ΓP2 CPn-l

= τAτ\ '" fJti r(l) J t JS2 Jsn-ι
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By Lemma 3.1, (17) yields

(18) M< 1 ΓΓT ...Γ \a(x)\\h(y(g(x)))\dXdsn_2.. ds2dl
r\ll) Jti Jt JS2 JSn-i

I ( ao r<x> r oo r oo
+ 7fΠ\ \ -\ \r(*l) Jtl Jt JS2 Jsn-l

(18) gives

From (12) and (19) and the fact that M>d we have

(13), (14) and (20) yield a contradiction. The proof is now complete.

REMARK. The requirement that r'(ί)>0 can be improved. The same

proof with hardly any change gives us the following

COROLLARY 3.1. Suppose (i), (iii), (iv), (v) hold. Let r(ί)>α>0,

(21) Γ l/r(s)Γ x2"-3|α(x)| dxds < oo

and

(22) j* 1/φ)^ x"-2|/(x)| dxds < oo.

Then oscillatory solutions of equation (1) approach zero as t-+co.

The following example shows that given the conditions on r(ί) and /(ί), the

condition on a(t) cannot be violated.

EXAMPLE 3.1. The equation

(23) /'W +

has the oscillatory solution ^/Tsin (lnί)+ — -. Only the condition on α(ί) is
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violated.

EXAMPLE 3.2. The equation

(24) yW(t) + e-'XVΓ) = - 4e~< sin t

for f>0 satisfies the conditions and conclusion of Theorem 3.2. It has y(t) =

e~t sin t as an oscillatory solution converging to zero as f-»oo.

4. Necessary and sufficient condition

Γ°°
THEOREM 4.1. Suppose a(t)>0 and\ t2tt-2a(t)dt<oo for t>t0. Further

suppose that f(f)l(tn~la(t)) approaches a limit as ί->oo. Then a necessary and
sufficient condition for all oscillatory solutions of equation (1) to approach zero
asymptotically is that

PROOF. (Sufficiency). Suppose (25) holds. Then tn'i\f(t)\<t2H'2a(t)

for sufficiently large ί. Since \°° t2n~2a(i)dt<ao, we have \C°ί"~1 |/(OIΛ< oo

and the conclusion follows by theorem 3.2.
(Necessity). Let y(t) be an oscillatory solution of equation (1) approaching zero
as f->oo. Suppose that

Dividing equation (1) by (tn~ίa(t)) and taking the limit as ί->oo we find that

(Kθ3;'(0)(π"1) has one sign to the right of sufficiently large t. This forces y'(t)
to eventually assume a constant sign which contradicts the fact that y(t) is oscilla-
tory. The proof is, now, complete.

EXAMPLE 4.1. Consider the equation

(26) /'(*) + β-'XVO = -2e~* cos * + e-'-^sin G/0

for ί>0. Since conditions of Theorem 4.1. hold, all oscillatory solutions of
(25) approach zero. y(f) = e~t sin t is one such solution.

REMARK. Our next theorem is recapitulation of Theorem 3.2 in terms of
the ratio f(t)/a(t) for α(ί)>0.

Γ°°
THEOREM 4.2. Suppose \ t2n~2a(t)dt<ao and (/(OAn~XO) is bounded.

Then all oscillatory solutions of equation (1) tend to zero as t-+ao.
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PROOF. As was observed in the sufficiency part of Theorem 4.1. we have

\*t2n-2a(t)dt«X) and \*t*-1\f(i)\dt«x). Theorem 3.2 applies and the proof

is complete.

EXAMPLE 4.2. The equation

(27) y"(i) + te~'XO = e~* sin t2 - Me'1 cos t2 + 2*?-' cos t2

- 4t2e~* sin t2 + te~2ί sin t2

has X0 = £~ ί sm*2 as an oscillatory solution. We notice that (f(t)/ta(t)) is
bounded. We also notice that this ratio does not approach a limit as ί-»oo.
Thus equation (27) satisfies conditions and conclusion of Theorem 4.2 but not of
Theorem 4.1.

THEOREM 4.3. Suppose for t>tQ, a(t)>Q9 the ratio (f(i)/tn"ia(f)) is
bounded, and g'(t)>0. Further suppose n is even and

(28) /">(0 + t»-ia(t)h(y(gm = 0

has a bounded nonoscillatory solution. Then all oscillatory solutions of equation
(1) approach zero as ί-»oo.

PROOF. By a well known result (see this author [5]) we must have

Since all the conditions of Theorem 4.2 now hold, the proof follows.

THEOREM 4.4. Suppose a(t)>0for t>t0 and lim inf " ' >0. Let y(i)
ί-»oo a(t)

be an oscillatory solution of equation (1). Then lim sup |XOI>0
f-*00

PROOF. Suppose to the contrary that Xf)-*Ό as f-»oo. Dividing equation
(1) by a(t) and taking limit we get (r(f)/(0)(n~1) has same sign eventually.
But this forces y(t) to be nonoscillatory. This contradiction completes the proof

of this theorem.

EXAMPLE 4.3. Consider the equation

(29) y"(i) + y(t -2π) = ±-

U m i n fJ/WL 1
ί-*<x> a(t) 2
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all oscillatory solutions of (29) satisfy the conclusion of Theorem 4.4. In fact

y(t)= y + sin t is one such solution.

REMARK. Notice that none of the conditions of previous theorems are

needed here.

Γ°°
THEOREM 4.5. Suppose a(t)>Qfor t>tQΛ t2n~2a(t)dt<co,

is bounded and lim inf—*i^ γ >0. Then all solutions of equation (1) are
f-χjo / Q(t)

nonoscillatory.

PROOF. Suppose to the contrary that a solution y(i) of equation (1) is os-
cillatory. Since conditions of Theorem 4.2 hold y(t)^Q as f-> oo. We also
observe that

lim inf -î i- > lim inf ^-i λ > 0.

By Theorem 4.4, the conclusion is obvious.

EXAMPLE 4.4. All solutions of equation

(30) y"(ί) + ψ y(f) = j$-

are nonoscillatory. In fact y(t) = t is one such solution. Here all conditions

of Theorem 4.5 hold.

5. Discussion

Kusano and Onose [1, Theo.5] showed that all oscillatory solutions of

(r(t)y\t)y + a(t)h(y(g(t)))==f(t) approach zero asymptotically subject to the
conditions:

°° t\a(t)\dt< oo and \°° t\f(t)\dt< oo.

Λoo

This seems to suggest that the condition \ t2n~2\a(f)\dt< oo could possibly
Γoo J

be weakened to \ tn~1\a(t)\dt<co. However we have not been able to prove

or disprove it. From proof of Theorem 3.2 in inequality (19), it follows that

this later conclusion is true for bounded solutions of (1). We state this as a
theorem.
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Λoo roc

THEOREM 5.1. Suppose \ tn~1\a(t)\dt<oo and \ tn~1\f(t)\dt<o3 then

bounded oscillatory solutions of equation 1 approach zero at ί->oo.

REMARK. This theorem extends our Theorem 3.1 in [6].
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