On errors in the numerical solution of ordinary differential equations by step-by-step methods

Hisayoshi Shintani

(Received January 18, 1980)

1. Introduction

Consider the initial value problem

$$
\begin{align*}
& y^{\prime}=f(x, y) \quad(a \leqq x \leqq b), \tag{1.1}\\
& y(a)=y_{0} \tag{1.2}
\end{align*}
$$

where $f(x, y)$ is sufficiently smooth in $I \times R, I=[a, b]$ and $R=(-\infty, \infty)$. Denote by $y(x)$ the solution of this problem and for a positive constant h_{0} let

$$
\begin{equation*}
x_{j}=a+j h(j=0,1, \ldots, N), \quad h=(b-a) / N \leqq h_{0} . \tag{1.3}
\end{equation*}
$$

We consider the case where the approximate values y_{m} of $y\left(x_{m}\right)(m=k$, $k+1, \ldots, N$) are obtained by the k-step method [2]

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \Phi\left(x_{n}, y_{n}, \ldots, y_{n+k} ; h\right) \quad(n=0,1, \ldots, N-k), \tag{1.4}
\end{equation*}
$$

where $\alpha_{j}(j=0,1, \ldots, k)$ are real constants and $\alpha_{k}=1$. The method (1.4) includes one-step methods, linear multistep methods, hybrid methods, pseudo-RungeKutta methods and so on.

In Section 3 for sufficiently smooth $\Phi\left(x, u_{0}, \ldots, u_{k} ; v\right)$ we study the asymptotic behavior of errors

$$
\begin{equation*}
e_{j}=y_{j}-y\left(x_{j}\right) \quad(j=0,1, \ldots, N) \tag{1.5}
\end{equation*}
$$

as $h \rightarrow 0$. In Section 4 the local truncation error is approximated and Milne's device in the predictor-corrector method is justified under certain conditions. In Section 5 we are concerned with the approximate computation of errors and illustrate the method by numerical examples.

2. Preliminaries

2.1. Assumptions

For simplicity the dependence of Φ on f is not expressed explicitly. Let

$$
\begin{equation*}
\rho(\zeta)=\sum_{j=0}^{k} \alpha_{j} \zeta^{j}, \quad H=\left[0, h_{0}\right] \tag{2.1}
\end{equation*}
$$

and assume that the following conditions are satisfied.
Condition A: $\Phi\left(x, u_{0}, \ldots, u_{k} ; v\right)$ is sufficiently smooth in $I \times R^{k+1} \times H$.
Condition B: If $f \equiv 0$, then $\Phi \equiv 0$.
Condition R: The modulus of no zero of $\rho(\zeta)$ exceeds 1 and the zeros of modulus 1 are all simple.

For any solution $z(x)$ of (1.1) let
(2.2) $T(x, z(x) ; h)=\sum_{j=0}^{k} \alpha_{j} z(x+j h)-h \Phi(x, z(x), z(x+h), \ldots, z(x+k h) ; h)$ and suppose that the method (1.4) is of order $p(p \geqq 1)$ and that $y(x)$ exists over I. Then we have

$$
\begin{align*}
& \rho(1)=0, \quad \rho^{\prime}(1) \neq 0 \tag{2.3}\\
& \Phi(x, y, \ldots, y ; 0)=\rho^{\prime}(1) f(x, y) \tag{2.4}
\end{align*}
$$

and the method (1.4) is convergent if $e_{i} \rightarrow 0(i=0,1, \ldots, k-1)$ as $h \rightarrow 0[2, \mathrm{pp} .410-$ 417].

2.2. Two lemmas

Suppose that $T(x, y ; h)$ can be written as

$$
\begin{equation*}
T(x, y ; h)=h^{p+1} \sum_{j=0}^{2} h^{j} \varphi_{j}(x, y)+O\left(h^{p+4}\right) \tag{2.5}
\end{equation*}
$$

and let

$$
\Phi_{j}=\frac{\partial \Phi}{\partial u_{j}}, \quad \Phi_{i j}=\frac{\partial^{2} \Phi}{\partial u_{i} \partial u_{j}}, \quad \Phi_{v}=\frac{\partial \Phi}{\partial v}, \quad \Phi_{v i}=\frac{\partial^{2} \Phi}{\partial v \partial u_{i}} \quad(i, j=0,1, \ldots, k) .
$$

We write $\Phi(x, u, \ldots, u ; v), \Phi_{j}(x, u, \ldots, u ; v)$, etc. as $\Phi(x, u ; v), \Phi_{j}(x, u ; v)$, etc. respectively and denote by $\delta_{i j}$ Kronecker's delta. Let

$$
\begin{align*}
& f^{(j+1)}=f_{x}^{(j)}+f f_{y}^{(j)}(j=0,1, \ldots), \quad f^{(0)}=f \tag{2.6}\\
& \alpha=\rho^{\prime}(1), \quad \omega=\left(\sum_{j=0}^{k} j^{2} \alpha_{j}\right) / 2, \quad N_{1}=N-k . \tag{2.7}
\end{align*}
$$

Lemma 1.

(2.9) $\quad \sum_{i, j} \Phi_{j i}(x, y ; 0)=\alpha f_{y y}(x, y)$,

$$
\begin{align*}
\sum_{j} j \Phi_{j}(x, y ; 0) f(x, y)+ & \Phi_{v}(x, y ; 0)+\delta_{p 1} \varphi_{0}(x, y)=\omega f^{(1)}(x, y) \tag{2.10}\\
\sum_{i, j} j \Phi_{j i}(x, y ; 0) f(x, y) & +\sum_{j} j \Phi_{j}(x, y ; 0) f_{y}(x, y)+\sum_{i} \Phi_{v i}(x, y ; 0) \\
& +\delta_{p 1} \varphi_{0 y}(x, y)=\omega f_{y}^{(1)}(x, y)
\end{align*}
$$

where i and j range from 0 to k.
Proof. For any solution $z(x)$ of (1.1) we have

$$
\begin{aligned}
\sum_{j} \alpha_{j} z(x+j h)=\rho(1) z(x)+ & \alpha h z^{\prime}(x)+\omega h^{2} z^{\prime \prime}(x)+O\left(h^{3}\right), \\
\Phi(x, z(x), \ldots, z(x+k h) ; h)= & \Phi(x, z(x) ; 0)+h \sum_{j} j \Phi_{j}(x, z(x) ; 0) z^{\prime}(x) \\
& +h \Phi_{v}(x, z(x) ; 0)+O\left(h^{2}\right) .
\end{aligned}
$$

Using (2.3) and (2.4) and noting that

$$
\begin{aligned}
& z^{\prime}(x)=f(x, z(x)), \quad z^{\prime \prime}(x)=f^{(1)}(x, z(x)), \\
& T(x, z(x) ; h)=\delta_{p 1} h^{2} \varphi_{0}(x, z(x))+O\left(h^{3}\right)
\end{aligned}
$$

we have from (2.2)

$$
\begin{gathered}
\Sigma_{j} j \Phi_{j}(x, z(x) ; 0) f(x, z(x))+\Phi_{v}(x, z(x) ; 0)+\delta_{p 1} \varphi_{0}(x, z(x)) \\
=\omega f^{(1)}(x, z(x))
\end{gathered}
$$

Since $z(x)$ is an arbitrary solution, (2.10) is valid for any (x, y) in $I \times R$.
Calculating the partial derivatives of (2.4), (2.8) and (2.10) with respect to y, we find (2.8), (2.9) and (2.11) respectively, and the proof is complete.

Consider the difference equation

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} z_{n+j}=h \sum_{j=0}^{k} \beta_{j, n} z_{n+j}+\lambda_{n} \quad(n=0,1, \ldots, N-k), \tag{2.12}
\end{equation*}
$$

where $\alpha_{k}=1$. Then we have the following lemma [1, pp. 243-244].
Lemma 2. Under Condition R let B, β and Λ be the constants such that

$$
\begin{equation*}
\sum_{j=0}^{k}\left|\beta_{j, n}\right| \leqq B, \quad\left|\beta_{k, n}\right| \leqq \beta, \quad\left|\lambda_{n}\right| \leqq \Lambda \quad(n=0,1, \ldots, N-k) \tag{2.13}
\end{equation*}
$$

and let $\beta h<1$. Then every solution of (2.12) for which

$$
\begin{equation*}
\left|z_{i}\right| \leqq Z \quad(i=0,1, \ldots, k-1) \tag{2.14}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\left|z_{n}\right| \leqq K^{*} e^{n h L^{*}} \quad(n=0,1, \ldots, N) \tag{2.15}
\end{equation*}
$$

where
(2.16) $\quad K^{*}=\Gamma^{*}(N \Lambda+k A Z), \quad L^{*}=\Gamma^{*} B, \quad A=\sum_{j=0}^{k}\left|\alpha_{j}\right|, \Gamma^{*}=\Gamma /(1-\beta h)$
and Γ is a positive constant depending on $\alpha_{j}(j=0,1, \ldots, k)$.

2.3. Notation

Let $B_{M}=[-M, M](M>0)$, choose M large so that

$$
y(x) \in B_{M} \quad \text { for } \quad x \in I, y_{j} \in B_{M} \quad(j=0,1, \ldots, N) \quad \text { for } \quad h \leqq h_{0}
$$

and put $\Omega_{M}=I \times B_{M}^{k+1} \times H$. Let $b_{j}(j=0,1, \ldots, k)$ be the positive constants such that

$$
\left|\Phi_{j}\left(x, u_{0}, u_{1}, \ldots, u_{k} ; v\right)\right| \leqq b_{j} \quad(j=0,1, \ldots, k) \quad \text { on } \quad \Omega_{M}
$$

and put

$$
B=\sum_{j=0}^{k} b_{j}, \quad \beta=b_{k}, \quad h_{1}=\min \left(\beta^{-1}, h_{0}\right) .
$$

Let $x_{u}=a+u h(0 \leqq u \leqq N)$, denote by y_{u} the approximate value of $y\left(x_{u}\right)$ and put $f_{u}=f\left(x_{u}, y_{u}\right)$. We write $T(x, y(x) ; h), \varphi_{j}(x, y(x))$, etc. simply as $T(x ; h)$, $\varphi_{j}(x)$, etc. respectively. By (1.4) and (2.2) $e_{j}(j=0,1, \ldots, N)$ satisfy the equation

$$
\begin{align*}
& \sum_{j=0}^{k} \alpha_{j} e_{n+j}=h \Phi\left(x_{n}, y\left(x_{n}\right)+e_{n}, \ldots, y\left(x_{n+k}\right)+e_{n+k} ; h\right) \tag{2.17}\\
& \quad-h \Phi\left(x_{n}, y\left(x_{n}\right), \ldots, y\left(x_{n+k}\right) ; h\right)-T\left(x_{n} ; h\right) \quad\left(n=0,1, \ldots, N_{1}\right) .
\end{align*}
$$

Let

$$
\begin{align*}
& g_{j}(x)=f_{y}^{(j)}(x, y(x)) \quad(j=0,1, \ldots), g(x)=g_{0}(x), k(x)=f_{y y}(x, y(x)) / 2, \tag{2.18}\\
& \beta_{j, n}=\Phi_{j}\left(x_{n}, y\left(x_{n}\right), \ldots, y\left(x_{n+k}\right) ; h\right) \quad\left(j=0,1, \ldots, k ; n=0,1, \ldots, N_{1}\right), \tag{2.19}\\
& \gamma_{j, n}=\Phi_{j}\left(x_{n}, y\left(x_{n}\right) ; 0\right), \quad \gamma_{j}=\Phi_{j}\left(x_{0}, y_{0} ; 0\right), \\
& \phi(\zeta)=\sum_{j=0}^{k} \gamma_{j} \zeta^{j}, \quad \varphi(\zeta)=\rho(\zeta)-h \phi(\zeta), \\
& c=1 / \alpha, \quad a(x)=\sum_{j=0}^{k} j \Phi_{j}(x, y(x) ; 0) .
\end{align*}
$$

Let $e(x)$ and $v(x)$ be the solutions of the initial value problems

$$
\begin{align*}
& e^{\prime}=g(x) e-c \varphi_{0}(x), \quad e(a)=0, \tag{2.23}\\
& v^{\prime}=g(x) v-c t(x)-\delta_{p 1} b(x), \quad v(a)=0 \tag{2.24}
\end{align*}
$$

respectively, where

$$
\begin{align*}
& t(x)=\varphi_{1}(x)+c(a(x)-\omega g(x)) \varphi_{0}(x)-\omega c \varphi_{0}^{\prime}(x), \tag{2.25}\\
& b(x)=c \varphi_{0 y}(x) e(x)-k(x) e(x)^{2} . \tag{2.26}
\end{align*}
$$

Let $\zeta_{\mu}(\mu=1,2, \ldots, l)$ be all the zeros of $\rho(\zeta)$ of modulus 1 and let

$$
\begin{equation*}
\zeta_{1}=1, \zeta_{\mu}=e^{i \varphi_{\mu}} \quad(\mu=1,2, \ldots, l) \tag{2.27}
\end{equation*}
$$

Denote by $e_{\mu}(x)(\mu=1,2, \ldots, l)$ the solutions of the initial value problems

$$
\begin{equation*}
e_{\mu}^{\prime}=k_{\mu}(x) e_{\mu}, \quad e_{\mu}(a)=1 \quad(\mu=1,2, \ldots, l) \tag{2.28}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{\mu}(x)=\sum_{j=0}^{k} \zeta_{\mu}^{j} \Phi_{j}(x, y(x) ; 0) /\left(\zeta_{\mu} \rho^{\prime}\left(\zeta_{\mu}\right)\right) \quad(\mu=1,2, \ldots, l) \tag{2.29}
\end{equation*}
$$

3. Asymptotic formulas for errors

We introduce the following
Condition J: There exists a positive number q such that

$$
e_{i}=O\left(h^{q}\right) \quad(i=0,1, \ldots, k-1)
$$

Theorem 1. Under Condition J

$$
\begin{equation*}
e_{n}=O\left(h^{r}\right) \quad(n=0,1, \ldots, N) \tag{3.1}
\end{equation*}
$$

for sufficiently small h, where $r=\min (p, q)$.
Proof. By (2.17) we have

$$
\begin{array}{r}
\sum_{j=0}^{k} \alpha_{j} e_{n+j}=h \sum_{j=0}^{k} \Phi_{j}\left(x_{n}, y\left(x_{n}\right)+\theta e_{n}, \ldots, y\left(x_{n+k}\right)+\theta e_{n+k} ; h\right) e_{n+j}-T\left(x_{n} ; h\right) \\
(0<\theta<1)
\end{array}
$$

Let K and K_{1} be the constants such that

$$
\begin{aligned}
& |T(x ; h)| \leqq K h^{p+1} \quad \text { for } \quad x \in I, h<h_{1} \\
& \left|e_{i}\right| \leqq K_{1} h^{q} \quad(i=0,1, \ldots, k-1) \quad \text { for } \quad h<h_{1} .
\end{aligned}
$$

Then by Lemma 2 for $h<h_{1}$

$$
\left|e_{n}\right| \leqq\left[h^{p}(b-a) K+h^{q} k A K_{1}\right] \Gamma^{*} e^{(b-a) L^{*}} \quad(n=0,1, \ldots, N) .
$$

Theorem 2. Under Condition J

$$
\begin{equation*}
e_{n}=h^{p} e\left(x_{n}\right)+O\left(h^{s}\right) \quad(n=0,1, \ldots, N) \tag{3.2}
\end{equation*}
$$

for sufficiently small h, where $s=\min (p+1, q)$.
Proof. Put $e_{n}=h^{p} e\left(x_{n}\right)+v_{n}(n=0,1, \ldots, N)$. Then by (2.17), (3.1), (2.5), (2.8) and (2.23) we have

$$
\sum_{j=0}^{k} \alpha_{j} v_{n+j}=h \sum_{j=0}^{k} \beta_{j, n} v_{n+j}+O\left(h^{p+2}\right)+O\left(h^{2 r+1}\right) \quad\left(n=0,1, \ldots, N_{1}\right),
$$

where $r=\min (p, q)$. Since

$$
e\left(x_{i}\right)=i h \int_{0}^{1} e^{\prime}(a+i h t) d t \quad(i=0,1, \ldots, k-1)
$$

and $e^{\prime}(x)$ is bounded on [$a, a+k h_{0}$], it follows that

$$
v_{i}=e_{i}-h^{p} e\left(x_{i}\right)=O\left(h^{s}\right) \quad(i=0,1, \ldots, k-1)
$$

Hence by Lemma 2 we have $v_{n}=O\left(h^{s}\right)(n=0,1, \ldots, N)$, because min $(s, p+1,2 r)$ $=s$.

Corollary. Under Condition J

$$
\begin{equation*}
e_{n}=h^{p} e\left(x_{n}\right)+h^{p+1} v\left(x_{n}\right)+O\left(h^{s}\right) \quad(n=0,1, \ldots, N) \tag{3.3}
\end{equation*}
$$

for sufficiently small h, where $s=\min (p+1, q)$.
Now we introduce the following conditions.
Condition I: There exist constants $c_{i}(i=0,1, \ldots, k-1)$ and a positive integer q such that

$$
e_{i}=c_{i} h^{q}+O\left(h^{q+1}\right) \quad(i=0,1, \ldots, k-1)
$$

Condition H: The common factor $d(\zeta)$ of maximum degree of $\rho(\zeta)$ and $\phi(\zeta)$ has no common factor with $\rho(\zeta) / d(\zeta)$.

For instance Condition H is satisfied in the following cases:
Case $1^{\circ} . \Phi_{j}(x, y ; 0)=\beta_{j} f_{y}(x, y)(j=0,1, \ldots, k)$ and $\rho(\zeta)$ has no common factor with $\sigma(\zeta)=\sum_{j=0}^{k} \beta_{j} \zeta^{j}$.

Case 2°. Zeros of $\rho(\zeta)$ are all simple.
Let

$$
\begin{equation*}
r_{n}=h^{-s}\left[e_{n}-h^{p} e\left(x_{n}\right)-h^{p+1} v\left(x_{n}\right)\right] \quad(n=0,1, \ldots, N) \tag{3.4}
\end{equation*}
$$

Then by Condition I there exist constants $d_{i}(i=0,1, \ldots, k-1)$ such that

$$
\begin{equation*}
r_{i}=d_{i}+O(h) \quad(i=0,1, \ldots, k-1) \tag{3.5}
\end{equation*}
$$

Let

$$
\begin{array}{ll}
\rho(\zeta) /\left(\zeta-\zeta_{\mu}\right)=\sum_{j=0}^{k-1} \alpha_{\mu j} j^{j} & (\mu=1,2, \ldots, l), \\
A_{\mu}=\left(\sum_{j=0}^{k=1} \alpha_{\mu j} d_{j}\right) / \rho^{\prime}\left(\zeta_{\mu}\right) & (\mu=1,2, \ldots, l) . \tag{3.6}
\end{array}
$$

Then we have the following
Theorbm 3. Under Conditions I and H there exists a nonnegative integer J such that

$$
\begin{align*}
e_{n}=h^{p} e\left(x_{n}\right)+h^{p+1} v\left(x_{n}\right)+h^{s} \sum_{\mu=1}^{l} A_{\mu} e^{i n \varphi_{\mu}} e_{\mu}\left(x_{n}\right) & +O\left(h^{s+1}\right) \tag{3.7}\\
(& (n=J, J+1, \ldots, N)
\end{align*}
$$

for sufficiently small h, where $s=\min (p+1, q), J=0$ if $k=l, J=2 r-1$ if $k=$ $l+r$ and $\zeta=0$ is a zero of $\rho(\zeta)$ of multiplicity r, and $J=O(|\log h|)$ otherwise.

Proof. The proof of this theorem follows the line along which Henrici proved his theorem [1, pp. 249-255].

Let $\zeta_{j}(j=1,2, \ldots, k)$ be all the zeros of $\rho(\zeta)$ and let

$$
t=\left(1+\max _{l<j \leq k}\left|\zeta_{j}\right|\right) / 2, \quad \varphi(\zeta)=d(\zeta) \tilde{\varphi}(\zeta)
$$

Then there exists a positive number $h_{1}^{\prime}\left(h_{1}^{\prime}<h_{1}\right)$ such that for $h \leqq h_{1}^{\prime}$ the zeros of $\tilde{\varphi}(\zeta)$ are all distinct. Let $\tilde{\zeta}_{j}(j=1,2, \ldots, r)$ be all the distinct zeros of $\varphi(\zeta)$ for $h \leqq h_{1}^{\prime}$ and p_{j} be the multiplicity of $\tilde{\zeta}_{j}$. We may assume that $\tilde{\zeta}_{\mu} \rightarrow \zeta_{\mu}(\mu=1,2, \ldots, l)$ as $h \rightarrow 0$. Let $h_{2}\left(h_{2} \leqq h_{1}^{\prime}\right)$ be a positive number such that

$$
\left|\tilde{\zeta}_{j}\right| \leqq t \quad(j=l+1, l+2, \ldots, r) \quad \text { for } \quad h \leqq h_{2}
$$

Let $q(\zeta)$ be the $(N+1)$-vector defined by $q(\zeta)=\left(1, \zeta, \ldots, \zeta^{N}\right)^{T}$ and denote by

$$
z^{(\mu)}=\left(z_{0}^{(\mu)}, z_{1}^{(\mu)}, \ldots, z_{N}^{(\mu)}\right)^{T} \quad(\mu=1,2, \ldots, k)
$$

the vectors

$$
q\left(\tilde{\zeta}_{j}\right), q^{\prime}\left(\tilde{\zeta}_{j}\right), \ldots, q^{\left(p_{j}-1\right)}\left(\tilde{\zeta}_{j}\right) \quad(j=1,2, \ldots, r)
$$

where $q^{(i)}(\zeta)$ denotes the vector $q(\zeta)$ differentiated i-times.
By Lemma 1, (2.17), (2.5), (2.23) and (2.24) $r_{n}(n=0,1, \ldots, N)$ satisfy the difference equation

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} r_{n+j}=h \sum_{j=0}^{k} \beta_{j, n} r_{n+j}+h^{2} \lambda_{n} \quad\left(n=0,1, \ldots, N_{1}\right) \tag{3.8}
\end{equation*}
$$

where $\left|\lambda_{n}\right| \leqq \Lambda\left(n=0,1, \ldots, N_{1}\right)$ for some constant Λ. Corresponding to (3.8) we consider the homogeneous difference equation

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} u_{n+j}=h \sum_{j=0}^{k} \beta_{j, n} u_{n+j} \quad\left(n=0,1, \ldots, N_{1}\right) \tag{3.9}
\end{equation*}
$$

Let $e_{n}^{(\mu)}(n=0,1, \ldots, N ; \mu=1,2, \ldots, k)$ be the solutions of (3.9) satisfying the initial conditions

$$
\begin{equation*}
e_{i}^{(\mu)}=z_{i}^{(\mu)} \quad(i=0,1, \ldots, k-1 ; \mu=1,2, \ldots, k) . \tag{3.10}
\end{equation*}
$$

Since $e_{i}^{(\mu)}=O(1)(i=0,1, \ldots, k-1)$, by Lemma $2 e_{n}^{(\mu)}=O(1)(n=0,1, \ldots, N)$.
Let $u_{n}(n=0,1, \ldots, N)$ be the solution of (3.9) with $u_{i}=r_{i}(i=0,1, \ldots, k-1)$. Then we have

$$
\begin{equation*}
u_{n}=\sum_{\mu=1}^{k} B_{\mu} e_{n}^{(\mu)} \quad(n=0,1, \ldots, N), \tag{3.11}
\end{equation*}
$$

where $B_{\mu}(\mu=1,2, \ldots, k)$ satisfy

$$
\begin{equation*}
\sum_{\mu=1}^{k} z_{i}^{(\mu)} B_{\mu}=r_{i} \quad(i=0,1, \ldots, k-1) \tag{3.12}
\end{equation*}
$$

Put $w_{n}=r_{n}-u_{n}(n=0,1, \ldots, N)$. Then they satisfy (3.8) and $w_{i}=0(i=0$, $1, \ldots, k-1)$. By Lemma 2 we have $w_{n}=O(h)(n=0,1, \ldots, N)$, so that

$$
\begin{equation*}
r_{n}=u_{n}+O(h) \quad(n=0,1, \ldots, N) \tag{3.13}
\end{equation*}
$$

From (3.4), (3.11) and (3.13) it follows that

$$
\begin{equation*}
e_{n}=h^{p} e\left(x_{n}\right)+h^{p+1} v\left(x_{n}\right)+h^{s} \sum_{\mu=1}^{k} B_{\mu} e_{n}^{(\mu)}+O\left(h^{s+1}\right) \quad(n=0,1, \ldots, N) . \tag{3.14}
\end{equation*}
$$

Now we study the behavior of $B_{\mu} e_{n}^{(\mu)}$.
Case 1. $\mu \leqq l$.
Let

$$
\varphi_{\mu}(\zeta)=\varphi(\zeta) /\left(\zeta-\tilde{\zeta}_{\mu}\right)=\sum_{j=0}^{k-1} \tilde{\alpha}_{\mu j} \zeta^{j} \quad(\mu=1,2, \ldots, l)
$$

Then from (3.12) it follows that

$$
\begin{equation*}
B_{\mu}=\left(\sum_{j=0}^{k=1} \tilde{\alpha}_{\mu j} r_{j}\right) / \varphi_{\mu}\left(\tilde{\zeta}_{\mu}\right) \tag{3.15}
\end{equation*}
$$

Since

$$
\tilde{\zeta}_{\mu}=\zeta_{\mu}+h \phi\left(\zeta_{\mu}\right) / \rho^{\prime}\left(\zeta_{\mu}\right)+O\left(h^{2}\right)
$$

by (3.5) and (3.6)

$$
\begin{equation*}
B_{\mu}=A_{\mu}+O(h) \quad(\mu=1,2, \ldots, l) \tag{3.16}
\end{equation*}
$$

Put $f_{n}^{(\mu)}=\zeta_{\mu}^{-n} e_{n}^{(\mu)}(n=0,1, \ldots, N) . \quad$ Then they satisfy

$$
\begin{aligned}
& \sum_{j=0}^{k} \alpha_{j}^{(\mu)} f_{n+j}^{(\mu)}=h \sum_{j=0}^{k} \beta_{j, n}^{(\mu)} f_{n+j}^{(\mu)} \quad\left(n=0,1, \ldots, N_{1}\right), \\
& f_{i}^{(\mu)}=\left(\zeta_{\mu}^{-1} \tilde{\zeta}_{\mu}\right)^{i}=1+O(h) \quad(i=0,1, \ldots, k-1)
\end{aligned}
$$

where

$$
\begin{equation*}
\alpha_{j}^{(\mu)}=\alpha_{j} j_{\mu}^{j}, \quad \beta_{j, n}^{(\mu)}=\beta_{j, n} \zeta_{\mu}^{j} . \tag{3.17}
\end{equation*}
$$

By (2.28) and (2.29) we have

$$
\sum_{j=0}^{k} \alpha_{j}^{(\mu)} e_{\mu}\left(x_{n+j}\right)=h \sum_{j=0}^{k} \gamma_{j, n} \xi_{\mu}^{j} e_{\mu}\left(x_{n+j}\right)+O\left(h^{2}\right)
$$

Let $w_{n}^{(\mu)}=f_{n}^{(\mu)}-e_{\mu}\left(x_{n}\right)(n=0,1, \ldots, N)$. Then they satisfy

$$
\begin{aligned}
& \sum_{j=0}^{k} \alpha_{j}^{(\mu)} w_{n+j}^{(\mu)}=h \sum_{j=0}^{k} \beta_{j, n}^{(\mu)} w_{n+j}^{(\mu)}+O\left(h^{2}\right) \quad\left(n=0,1, \ldots, N_{1}\right), \\
& w_{i}^{(\mu)}=O(h) \quad(i=0,1, \ldots, k-1),
\end{aligned}
$$

because $\beta_{j, n}-\gamma_{j, n}=O(h)(j=0,1, \ldots, k)$. By Lemma $2 w_{n}^{(\mu)}=O(h)(n=0,1, \ldots$, N), so that

$$
e_{n}^{(\mu)}=\zeta_{\mu}^{n}\left[e_{\mu}\left(x_{n}\right)+O(h)\right] \quad(n=0,1, \ldots, N) .
$$

Combining this with (3.16) we have

$$
\begin{equation*}
B_{\mu} e_{n}^{(\mu)}=A_{\mu} e^{i n \varphi_{\mu}} e_{\mu}\left(x_{n}\right)+O(h) \quad(\mu=1,2, \ldots, l ; n=0,1, \ldots, N) \tag{3.18}
\end{equation*}
$$

Case 2. $\mu>l$.
(a) Case where $\tilde{\zeta}_{\mu}$ is not a zero of $d(\zeta)$.

Since $\tilde{\zeta}_{\mu}$ is a zero of $\tilde{\varphi}(\zeta)$, it is simple. Let $z^{(\mu)}=q\left(\tilde{\zeta}_{\mu}\right)$. Then we show that for any $\varepsilon(0<\varepsilon<1)$ and for sufficiently small h there exists a nonnegative integer J such that

$$
\begin{equation*}
e_{n}^{(\mu)}=O\left(h^{2-\varepsilon}\right) \quad(n=J, J+1, \ldots, N) . \tag{3.19}
\end{equation*}
$$

Let

$$
e_{n}^{(\mu)}=z_{n}^{(\mu)}+w_{n}^{(\mu)} \quad(n=0,1, \ldots, N) .
$$

Then $w_{n}^{(\mu)}(n=0,1, \ldots, N)$ satisfy

$$
\begin{gather*}
\sum_{j=0}^{k} \alpha_{j} w_{n+j}^{(\mu)}=h \sum_{j=0}^{k} \beta_{j, n} w_{n+j}^{(\mu)}+h \sigma_{n} \quad\left(n=0,1, \ldots, N_{1}\right) \tag{3.20}\\
w_{i}^{(\mu)}=0 \quad(i=0,1, \ldots, k-1) \tag{3.21}
\end{gather*}
$$

where

$$
\begin{equation*}
\sigma_{n}=\sum_{j=0}^{k}\left(\beta_{j, n}-\gamma_{j}\right) z_{n+j}^{(\mu)} \quad\left(n=0,1, \ldots, N_{1}\right) . \tag{3.22}
\end{equation*}
$$

Since there exists a constant K_{1} such that

$$
\left|\beta_{j, n}-\gamma_{j}\right| \leqq(n+k) K_{1} h \quad\left(j=0,1, \ldots, k ; n=0,1, \ldots, N_{1}\right) \quad \text { for } \quad h \leqq h_{2},
$$

we have

$$
\left|\sigma_{n}\right| \leqq(k+1) K_{1}(n+k) h t^{n} \quad\left(n=0,1, \ldots, N_{1}\right) .
$$

Let J be the integer such that $J \leqq 2|\log h / \log t|<J+1$ and let $h_{3}\left(0<h_{3} \leqq h_{2}\right)$ be a number less than 1 such that $J+k<N$ for $h \leqq h_{3}$. Then for some constants K_{2} and K_{3}

$$
\begin{aligned}
& \left|\sigma_{n}\right| \leqq K_{2}(J+k) h \quad(n=0,1, \ldots, J) \quad \text { for } \quad h \leqq h_{3}, \\
& J+k \leqq K_{3}|\log h| \quad \text { for } \quad h \leqq h_{3} .
\end{aligned}
$$

Applying Lemma 2 to (3.20) for $n \leqq J$, we have for some constant K_{4}

$$
\left|w_{n}^{(\mu)}\right| \leqq e^{n h L^{*}} \Gamma^{*} K_{2}(J+k)^{2} h^{2} \leqq K_{4}(h \log h)^{2} \quad(n=0,1, \ldots, J+k)
$$

for $h \leqq h_{3}$.
Since $t^{J} \geqq h^{2}>t^{J+1}$, there exists a constant K_{5} such that

$$
\left|z_{n}^{(\mu)}\right|=\left|\tilde{\zeta}_{\mu}^{n}\right| \leqq t^{n} \leqq K_{5} h^{2} \quad \text { for } \quad n \leqq J, h \leqq h_{3} .
$$

Hence for some constant C

$$
\begin{align*}
\left|e_{n}^{(\mu)}\right| & =\left|z_{n}^{(\mu)}+w_{n}^{(\mu)}\right| \leqq K_{5} h^{2}+K_{4}(h \log h)^{2} \tag{3.23}\\
& \leqq C h^{2-\varepsilon} \quad(n=J, J+1, \ldots, J+k) \quad \text { for } \quad h \leqq h_{3} .
\end{align*}
$$

Application of Lemma 2 to (3.9) for $n \geqq J$ with the estimate (3.23) yields (3.19).
Let $\tilde{\zeta}_{\mu} \rightarrow \eta$ as $h \rightarrow 0$ and let η be a zero of $\rho(\zeta)$ of multiplicity r. Then by Condition $\mathrm{H} \eta$ is not a zero of $d(\zeta)$,

$$
\tilde{\zeta}_{\mu}=\eta+\kappa h^{1 / r}+O\left(h^{2 / r}\right),
$$

and B_{μ} is given by (3.15), where κ is one of the r-th roots of $r!\phi(\eta) / \rho^{(r)}(\eta)$. Since

$$
\varphi_{\mu}\left(\tilde{\zeta}_{\mu}\right)=r \phi(\eta) h^{1-1 / r} / \kappa+O(h)
$$

it follows that $B_{\mu}=O\left(h^{-1+1 / r}\right)$. The choice $\varepsilon<1 / r$ yields

$$
\begin{equation*}
B_{\mu} e_{n}^{(\mu)}=O(h) \quad(n=J, J+1, \ldots, N) \tag{3.24}
\end{equation*}
$$

In the case $\eta=0$, let $e_{n}^{(\mu)}=\tilde{\zeta}_{\mu}^{n} v_{n}^{(\mu)}(n=0,1, \ldots, N)$. Then

$$
\begin{aligned}
& \sum_{j=0}^{k} \alpha_{j}^{(\mu)} v_{n+j}^{(\mu)}=h \sum_{j=0}^{k} \beta_{j, n}^{(\mu)} v_{n+j}^{(\mu)} \quad\left(n=0,1, \ldots, N_{1}\right), \\
& v_{i}^{(\mu)}=1 \quad(i=0,1, \ldots, k-1),
\end{aligned}
$$

where

$$
\alpha_{j}^{(\mu)}=\alpha_{j} \tilde{\zeta}_{\mu}^{j}, \quad \beta_{j, n}^{(\mu)}=\beta_{j, n} \tilde{\eta}_{\mu}^{j} \quad(j=0,1, \ldots, k) .
$$

By Lemma 2 we have $v_{n}^{(\mu)}=O(1)(n=0,1, \ldots, N)$, so that

$$
B_{\mu} e_{n}^{(\mu)}=O(h) \quad(n=2 r-1,2 r, \ldots, N) .
$$

(b) Case where $\tilde{\zeta}_{\mu}$ is a zero of $d(\zeta)$ of multiplicity r.

Since $\tilde{\zeta}_{\mu}$ is independent of h, we put $\tilde{\zeta}_{\mu}=\eta$. Let

$$
\begin{aligned}
& \phi_{i}(\zeta)=\varphi(\zeta) /(\zeta-\eta)^{i}=\sum_{j=0}^{k-i} \gamma_{j}^{(i)} \zeta^{j} \quad(i=1,2, \ldots, r), \\
& z^{(v+j)}=q^{(j)}(\eta), \quad C_{j}=B_{v+j} \quad(j=0,1, \ldots, r-1) .
\end{aligned}
$$

Then we have

$$
C_{r-i}=\left[\sum_{j=0}^{k-i} \gamma_{j}^{(i)} r_{j}-\sum_{j=1}^{i=1} \phi_{i}^{(r-j)}(\eta) C_{r-j}\right] / \phi_{i}^{(r-i)}(\eta) \quad(i=1,2, \ldots, r) .
$$

As $|\eta|<t$, there exists a constant K such that

$$
\left|j!\binom{n}{j} \eta^{n-j}\right| \leqq K t^{n} \quad(j=0,1, \ldots, r-1 ; n=j, j+1, \ldots, N)
$$

so that

$$
\left|z_{n}^{(\mu)}\right| \leqq K t^{n} \quad(n=0,1, \ldots, N ; \mu=v, v+1, \ldots, v+r-1) .
$$

By the same argument as in the case (a) we have (3.19).
Since η is not a zero of $\rho(\zeta) / d(\zeta)$ by Condition H,

$$
\phi_{i}^{(r-i)}(\eta)=(r-i)!\rho^{(r)}(\eta) / r!+O(h) \quad(i=1,2, \ldots, r),
$$

so that $C_{j}=O(1)(j=0,1, \ldots, r-1)$ and

$$
\begin{equation*}
B_{\mu} e_{n}^{(\mu)}=O\left(h^{2-\varepsilon}\right) \quad(\mu=v, v+1, \ldots, v+r-1 ; n=J, J+1, \ldots, N) \tag{3.25}
\end{equation*}
$$

In the case $\eta=0$, since $z_{n}^{(\nu+j)}=j!\delta_{j n}(n=0,1, \ldots, N ; j=0,1, \ldots, r-1)$, we have $\sigma_{n}=O(h)\left(n=0,1, \ldots, N_{1}\right) . \quad$ By Lemma $2 w_{n}^{(\mu)}=O(h)(n=0,1, \ldots, N)$, so that

$$
B_{\mu} e_{n}^{(\mu)}=O(h) \quad(n=r, r+1, \ldots, N)
$$

This completes the proof.
In the case $k=1$ let $w(x)$ be the solution of the initial value problem

$$
w^{\prime}=g(x) w-\varphi_{2}(x)-l(x), \quad w(a)=0,
$$

where

$$
\begin{align*}
& l(x)=\left(v^{\prime \prime}-g_{1} v\right) / 2+\left(e^{\prime \prime \prime}-g_{2} e\right) / 6+\Phi_{1}\left(\Phi_{1} \varphi_{0}+\varphi_{1}\right)+\left(\Phi_{11} f+\Phi_{v 1}\right) \varphi_{0} \tag{3.27}\\
&+\delta_{p 1} m+\delta_{p 2} b \\
& m(x)=\Phi_{1} b+\varphi_{1 y} e+\left(\varphi_{0 y}-f_{y y} e\right) v-f_{y y}^{(1)} e^{2} / 4-f_{y y y} e^{3} / 6 \tag{3.28}\\
&+\left(\Phi_{1} f_{y y}+\varphi_{0 y y}\right) e^{2} / 2+\left(\Phi_{10}+\Phi_{11}\right) e \varphi_{0}
\end{align*}
$$

and Φ_{1}, f, etc. denote $\Phi_{1}(x, y(x) ; 0), f(x, y(x))$, etc. respectively. Then we have the following

Corollary. For one-step methods

$$
\begin{equation*}
e_{n}=h^{p} e\left(x_{n}\right)+h^{p+1} v\left(x_{n}\right)+h^{p+2} w\left(x_{n}\right)+O\left(h^{p+3}\right) \quad(n=0,1, \ldots, N) \tag{3.29}
\end{equation*}
$$

for sufficiently small h.
For the two-step method of Adams type

$$
\begin{equation*}
y_{n+2}=y_{n+1}+h \Phi\left(x_{n}, y_{n}, y_{n+1}, y_{n+2} ; h\right), \tag{3.30}
\end{equation*}
$$

(3.7) is valid with $l=1$ and $J=1$.

4. Approximation of local truncation errors

In this section besides Conditions I and H we impose the following
Condition L: $\rho(\zeta)$ has only one zero of modulus 1 and $q \geqq p+1$. Hence e_{n} can be expressed as

$$
\begin{equation*}
e_{n}=h^{p} e\left(x_{n}\right)+h^{p+1} v\left(x_{n}\right)+A_{1} h^{p+1} e_{1}\left(x_{n}\right)+O\left(h^{p+2}\right) \quad(n=J, J+1, \ldots, N) . \tag{4.1}
\end{equation*}
$$

4.1. General results

Let $E\left(x, u_{0}, u_{1}, \ldots, u_{m} ; v\right)$ be a sufficiently smooth function in $I \times R^{m+1} \times H$ and suppose that for any solution $z(x)$ of (1.1)

$$
\begin{align*}
& E(x, z(x), z(x+h), \ldots, z(x+m h) ; h)=h^{p+1+\sigma}\left[\phi_{0}(x, z(x))+O(h)\right] \tag{4.2}\\
&(x+j h \in I ; j=0,1, \ldots, m ; m \geqq k),
\end{align*}
$$

where $\sigma=0$ if

$$
\begin{equation*}
\phi_{0}(x, y)=\gamma \varphi_{0}(x, y), \quad \gamma \neq 0, \quad 1+\gamma \neq 0 \tag{4.3}
\end{equation*}
$$

and $\sigma \geqq 1$ otherwise. Let

$$
E_{j}=\frac{\partial E}{\partial u_{j}}, \quad E_{v}=\frac{\partial E}{\partial v}, \quad E_{i j}=\frac{\partial^{2} E}{\partial u_{i} \partial u_{j}}, \quad E_{v i}=\frac{\partial^{2} E}{\partial v \partial u_{i}} \quad(i, j=0,1, \ldots, m)
$$

We write $E(x, u, \ldots, u ; v), E_{j}(x, u, \ldots, u ; v)$, etc. as $E(x, u ; v), E_{j}(x, u ; v)$, etc. respectively. We assume that

$$
\begin{equation*}
\sum_{j=0}^{m} j E_{j}(x, y ; 0)=-\alpha \quad \text { for } \quad(x, y) \in I \times R \tag{4.4}
\end{equation*}
$$

Lemma 3.

$$
\begin{array}{ll}
\text { (4.5) } & E(x, y ; 0)=0 \tag{4.5}\\
\text { (4.6) } & \sum_{j} j E_{j}(x, y ; 0) f(x, y)+E_{v}(x, y ; 0)=0 \\
\text { (4.7) } & \sum_{j} E_{j}(x, y ; 0)=0 \\
\text { (4.8) } & \sum_{i, j} j E_{j i}(x, y ; 0) f(x, y)+\sum_{j} j E_{j}(x, y ; 0) f_{y}(x, y)+\sum_{i} E_{v i}(x, y ; 0)=0
\end{array}
$$

where i and j range from 0 to m.
Proof. Expanding (4.2) into power series in h and equating to zero the coefficients of $h^{j}(j=0,1)$, we have (4.5) and (4.6). Calculation of the partial derivatives of (4.5) and (4.6) with respect to y yields (4.7) and (4.8). This completes the proof.

For simplicity let

$$
\begin{equation*}
E_{n}=E\left(x_{n}, y_{n}, y_{n+1}, \ldots, y_{n+m} ; h\right) \quad(n=0,1, \ldots, N-m) \tag{4.9}
\end{equation*}
$$

Lemma 4. Under Conditions I, H and L

$$
\begin{align*}
E_{n}=h^{p+1}\left[\varphi_{0}\left(x_{n}\right)+h \varphi_{1}\left(x_{n}\right)+h^{\sigma} \phi_{0}\left(x_{n}\right)+\right. & O(h)] \tag{4.10}\\
& (n=J, J+1, \ldots, N-m)
\end{align*}
$$

for sufficiently small h.
Proof. Substituting $y_{j}=y\left(x_{j}\right)+e_{j}(j=n, n+1, \ldots, n+m)$ and (4.1) into E_{n} and expanding it at $x=x_{n}$ into power series in h, we have (4.10) by Lemma 3, (4.4), (2.23) and (2.24).

By this lemma and (4.3) we obtain the following
Thborbm 4. Suppose that Conditions I, H and L are satisfied. Then

$$
\begin{equation*}
E_{n}=h^{p+1} \varphi_{0}\left(x_{n}\right)+O\left(h^{p+2}\right) \quad(n=J, J+1, \ldots, N-m) \tag{4.11}
\end{equation*}
$$

for $\sigma \geqq 1$, and

$$
\begin{equation*}
a E_{n}=h^{p+1} \varphi_{0}\left(x_{n}\right)+O\left(h^{p+2}\right) \quad(n=J, J+1, \ldots, N-m) \tag{4.12}
\end{equation*}
$$

for $\sigma=0$ and $a=1 /(1+\gamma)$.

4.2. Construction of the formulas

4.2.1. Formulas without interpolation

Let a_{j} and $b_{j}(j=0,1, \ldots, m)$ be the constants such that

$$
\begin{align*}
& \sum_{j=0}^{m} a_{j}=0, \quad \sum_{j=0}^{m} j a_{j}=-\alpha \tag{4.13}\\
& \sum_{j=0}^{m} j^{i} a_{j}=i \sum_{j=0}^{m} j^{i-1} b_{j} \quad(i=1,2, \ldots, p+\sigma) \tag{4.14}
\end{align*}
$$

and let

$$
\begin{equation*}
E_{n}=\sum_{j=0}^{m} a_{j} y_{n+j}-h \sum_{j=0}^{m} b_{j} f_{n+j} \tag{4.15}
\end{equation*}
$$

Then Theorem 4 is valid, and for $\sigma \geqq 1$

$$
\begin{align*}
& E_{n}=T\left(x_{n} ; h\right)-c\left(\omega+\sum_{j=0}^{m} j^{2} a_{j} / 2\right) h^{p+2} \varphi_{0}^{\prime}\left(x_{n}\right)+O\left(h^{p+2}\right) \tag{4.16}\\
&(n=J, J+1, \ldots, N-m)
\end{align*}
$$

For the two-step method (3.30), (4.16) is valid for $n \geqq 0$ if $a_{0}=0$ and $\sigma \geqq 1$.
For explicit one-step methods with $p \geqq 2$ and for $\sigma \geqq 2$

$$
\begin{align*}
E_{n}= & T\left(x_{n} ; h\right)-\left(1+\sum_{j=0}^{m} j^{2} a_{j}\right) h^{p+2} \varphi_{0}^{\prime}\left(x_{n}\right) / 2 \tag{4.17}\\
& -h^{p+2} g\left(x_{n}\right) \varphi_{0}\left(x_{n}\right) / 2+O\left(h^{p+3}\right) \quad(n=0,1, \ldots, N-m) .
\end{align*}
$$

Hence if

$$
\begin{equation*}
\sum_{j=0}^{m} j^{2} a_{j}=-2 r-1 \quad(r=0,1, \ldots, m-1), \tag{4.18}
\end{equation*}
$$

then

$$
\begin{equation*}
E_{n}=T\left(x_{n+r} ; h\right)-h^{p+2} g\left(x_{n}\right) \varphi_{0}\left(x_{n}\right) / 2+O\left(h^{p+3}\right) \quad(n=0,1, \ldots, N-m) \tag{4.19}
\end{equation*}
$$

and if

$$
\begin{equation*}
\sum_{j=0}^{m} j^{2} a_{j}=-m, \tag{4.20}
\end{equation*}
$$

then

$$
\begin{align*}
m E_{n}=\sum_{j=0}^{m-1} T\left(x_{n+j} ; h\right)-m h^{p+2} g\left(x_{n}\right) \varphi_{0}\left(x_{n}\right) / 2 & +O\left(h^{p+3}\right) \tag{4.21}\\
& (n=0,1, \ldots, N-m)
\end{align*}
$$

Example 1. If we impose the condition (4.20) and choose $m=4, \alpha=1$ and $p+\sigma=7$, we have

$$
\begin{align*}
& E_{n}=\left[5\left(y_{n}-y_{n+4}\right)+32\left(y_{n+1}-y_{n+3}\right)\right] / 84 \tag{4.22}\\
& \quad+h\left(f_{n}+16 f_{n+1}+36 f_{n+2}+16 f_{n+3}+f_{n+4}\right) / 70
\end{align*}
$$

There exist also formulas that use the values of f computed already other than $f_{n+j}(j=0,1, \ldots, m)[4]$.

4.2.2. Formulas with interpolation

Suppose that there exist constants $\lambda_{v}\left(m>\lambda_{v}>0\right)$ that are not integers, and constants $c_{v j}$ and $d_{v j}(v=1,2, \ldots, t ; j=0,1, \ldots, m)$ such that

$$
\begin{equation*}
\sum_{j=0}^{m} c_{v j}=1, \tag{4.23}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=0}^{m} j^{i} c_{v j}+i \sum_{j=0}^{m} j^{i-1} d_{v j}=\lambda_{v}^{i} \quad(i=1,2, \ldots, p+\delta) \tag{4.24}
\end{equation*}
$$

where δ is a nonnegative integer. Let

$$
\begin{equation*}
y_{n+\lambda_{v}}=\sum_{j=0}^{m} c_{v j} y_{n+j}+h \sum_{j=0}^{m} d_{v j} f_{n+j} \quad(v=1,2, \ldots, t) . \tag{4.25}
\end{equation*}
$$

Then we have
Lemma 5. If $q \geqq p+1$ and $\delta \geqq 0$, then

$$
\begin{equation*}
e_{n+\lambda_{v}}=h^{p} e\left(x_{n+\lambda_{v}}\right)+O\left(h^{p+1}\right) \quad(n=J, J+1, \ldots, N-m ; v=1,2, \ldots, t) . \tag{4.26}
\end{equation*}
$$

Under Conditions I, H and L if

$$
\begin{equation*}
\delta \geqq 1, \quad \sum_{j=0}^{m} d_{v j}=0, \tag{4.27}
\end{equation*}
$$

then

$$
\begin{align*}
& e_{n+\lambda_{v}}=h^{p} e\left(x_{n+\lambda_{v}}\right)+h^{p+1} v\left(x_{n+\lambda_{v}}\right)+A_{1} h^{p+1} e_{1}\left(x_{n+\lambda_{v}}\right)+O\left(h^{p+2}\right) \tag{4.28}\\
&(n=J, J+1, \ldots, N-m) .
\end{align*}
$$

Proof. Substituting (4.1) into

$$
e_{n+\lambda_{v}}=\sum_{j=0}^{m} c_{v j} e_{n+j}+h \sum_{j=0}^{m} d_{v j} g\left(x_{n+j}\right) e_{n+j}+O\left(h^{p+1+\delta}\right)+O\left(h^{2 p+1}\right)
$$

and expanding it at $x=x_{n}$ into power series in h, we have by (4.23), (4.24) and (2.23)

$$
\begin{aligned}
e_{n+\lambda_{v}}= & h^{p} e\left(x_{n+\lambda_{v}}\right)+h^{p+1} v\left(x_{n}\right)+A_{1} h^{p+1} e_{1}\left(x_{n}\right) \\
& +c\left(\sum_{j=0}^{m} d_{v j}\right) h^{p+1} \varphi_{0}\left(x_{n}\right)+O\left(h^{p+2}\right)+O\left(h^{p+1+\delta}\right)
\end{aligned}
$$

which completes the proof.
Let $a_{j}, b_{j}(j=0,1, \ldots, m)$ and $b_{m+v}(v=1,2, \ldots, t)$ be the constants such that

$$
\begin{align*}
& \sum_{j=0}^{m} a_{j}=0, \quad \sum_{j=0}^{m} j a_{j}=-\alpha, \tag{4.29}\\
& \sum_{j=0}^{m} j^{i} a_{j}=i\left(\sum_{j=0}^{m} j^{i-1} b_{j}+\sum_{v=1}^{t} \lambda_{v}^{i-1} b_{m+v}\right) \quad(i=1,2, \ldots, p+\sigma)
\end{align*}
$$

and let

$$
\begin{equation*}
E_{n}=\sum_{j=0}^{m} a_{j} y_{n+j}-h \sum_{j=0}^{m} b_{j} f_{n+j}-h \sum_{v=1}^{t} b_{m+v} f_{n+\lambda_{v}} . \tag{4.31}
\end{equation*}
$$

Then Theorem 4 is valid and (4.16) holds if $\sigma \geqq 1$ and (4.27) is satisfied.
For explicit one-step methods with $p \geqq 2$, (4.17) holds if $\sigma \geqq 2$ and (4.27) is satisfied. For the two-step method (3.30), (4.16) is valid for $n \geqq 0$ if $a_{0}=0, \sigma \geqq 1$ and (4.27) is satisfied.

We introduce the following notations:

$$
c_{v j}=C_{v j} / C_{v}, d_{v j}=D_{v j} / D_{v} \quad(v=1,2, \ldots, t ; j=0,1, \ldots, m)
$$

Example 2. The choice $m=2, t=1, p+\delta=5, \lambda_{1}=1+a / 3$ and $a=\sqrt{3}$ yields

$$
\begin{array}{lll}
C_{1}=18, & C_{10}=5-2 a, & C_{11}=8,
\end{array} C_{12}=5+2 a, ~ 子, ~ D_{11}=8 a, \quad D_{12}=-3-a . ~ \$
$$

The conditions $\alpha=1$ and $p+\sigma=6$ lead to

$$
\begin{align*}
E_{n}= & {\left[(15-8 a) y_{n}+16 a y_{n+1}-(15+8 a) y_{n+2}\right] / 30 } \tag{4.32}\\
& +h\left[(2-a) f_{n}+8 f_{n+1}+(2+a) f_{n+2}+18 f_{n+\lambda_{1}}\right] / 30 .
\end{align*}
$$

Example 3. If we impose the condition (4.27) and choose $m=t=2$ and $p+\delta=5$, we have

$$
\begin{aligned}
& \lambda_{1}=1-a / 3, \lambda_{2}=1+a / 3, a=\sqrt{6}, C_{1}=C_{2}=18, C_{10}=C_{22}=8+3 a, \\
& C_{11}=C_{21}=2, C_{12}=C_{20}=8-3 a, D_{1}=D_{2}=54, D_{10}=-D_{22}=3+a, \\
& D_{21}=-D_{11}=2 a, D_{20}=-D_{12}=3-a .
\end{aligned}
$$

The choice $\alpha=1$ and $p+\sigma=6$ yields
(4.33), $E_{n}=\left(y_{n}-y_{n+2}\right) / 2-h\left(f_{n}-14 f_{n+1}+f_{n+2}-9 f_{n+\lambda_{1}}-9 f_{n+\lambda_{2}}\right) / 30$, for which (4.20) is satisfied.

4.3. Milne's device

Let

$$
\begin{equation*}
\alpha_{k}^{*} y_{n+k}^{*}+\sum_{j=-r}^{k=1} \alpha_{j}^{*} y_{n+j}=h \Theta\left(x_{n}, y_{n-r}, \ldots, y_{n+k-1} ; h\right) \tag{4.34}
\end{equation*}
$$

be a predictor of order p which satisfies the conditions analogous to Conditions A, B and R, where $\alpha_{k}^{*}=1$ and $r \geqq 0$. Put $\tilde{\rho}(\zeta)=\sum_{j=-r}^{k} \alpha_{j}^{*} \zeta^{j}, \alpha^{*}=\tilde{\rho}^{\prime}(1)$, and for any solution $z(x)$ of (1.1) let

$$
\sum_{j=-r}^{k} \alpha_{j}^{*} z(x+j h)=h \Theta(x, z(x-r h), \ldots, z(x+(k-1) h) ; h)+T^{*}(x, z(x) ; h) .
$$

Assume that $T^{*}(x, y ; h)$ can be expressed as

$$
T^{*}(x, y ; h)=h^{p+1} \varphi_{0}^{*}(x, y)+O\left(h^{p+2}\right)
$$

Then we have the following

Thborem 5. Suppose that

$$
\begin{equation*}
\varphi_{0}^{*}(x, y)=\gamma \varphi_{0}(x, y), \quad \gamma \neq 0, \quad \alpha^{*} \neq \alpha \gamma . \tag{4.35}
\end{equation*}
$$

Then, for the predictor-corrector method (4.34)-(1.4), under Conditions I, H and L

$$
\begin{equation*}
C\left(y_{n+k}-y_{n+k}^{*}\right)=T\left(x_{n} ; h\right)+O\left(h^{p+2}\right) \quad(n=J+r, J+r+1, \ldots, N-k) \tag{4.36}
\end{equation*}
$$

for sufficiently small h, where

$$
\begin{equation*}
C=\alpha /\left(\alpha \gamma-\alpha^{*}\right) \tag{4.37}
\end{equation*}
$$

Proof. From (4.34) and the assumptions it follows that

$$
\begin{equation*}
\tilde{\rho}(1)=0, \quad \Theta(x, y ; 0)=\alpha^{*} f(x, y) \tag{4.38}
\end{equation*}
$$

By (1.4) and (4.34) we have

$$
\begin{aligned}
y_{n+k}-y_{n+k}^{*}= & \sum_{j=-r}^{k} \alpha_{j}^{*} y_{n+j}-h \Theta\left(x_{n}, y_{n-r}, \ldots, y_{n+k-1} ; h\right) \\
= & \sum_{j=-r}^{k} \alpha_{j}^{*} e_{n+j}-h \sum_{j=-r}^{k-1} \Theta_{j}\left(x_{n}, y\left(x_{n-r}\right), \ldots, y\left(x_{n+k-1}\right) ; h\right) e_{n+j} \\
& +h^{p+1} \varphi_{0}^{*}\left(x_{n}\right)+O\left(h^{p+2}\right) .
\end{aligned}
$$

Substituting (4.1) into the right side, expanding it at $x=x_{n}$ into power series in h and using (4.38), we have by (2.23)

$$
y_{n+k}-y_{n+k}^{*}=h^{p+1} \varphi_{0}^{*}\left(x_{n}\right)-\alpha^{*} c h^{p+1} \varphi_{0}\left(x_{n}\right)+O\left(h^{p+2}\right),
$$

from which (4.36) follows.
This theorem justifies Milne's device with C defined by (4.37) for sufficiently small h and large n.

Numerical examples

We use the following predictor and correctors:

$$
\begin{equation*}
y_{n+3}^{*}=9\left(y_{n+1}-y_{n+2}\right)+y_{n}+6 h\left(f_{n+2}+f_{n+1}\right), \tag{4.39}
\end{equation*}
$$

I. $y_{n+3}=y_{n+2}+h\left(9 f_{n+3}+19 f_{n+2}-5 f_{n+1}+f_{n}\right) / 24$,
II. $y_{n+3}=\left(2 y_{n+1}+y_{n}\right) / 3+h\left(25 f_{n+3}+91 f_{n+2}+43 f_{n+1}+9 f_{n}\right) / 72$,
III. $y_{n+3}=y_{n}+3 h\left(f_{n+3}+3 f_{n+2}+3 f_{n+1}+f_{n}\right) / 8$,
IV. $y_{n+3}=y_{n+1}+h\left(f_{n+3}+4 f_{n+2}+f_{n+1}\right) / 3$.

The following problems are solved by these formulas with $h=2^{-5}$.
Problem 1. $\quad y^{\prime}=2 y, \quad y(0)=1$.
Problem 2. $y^{\prime}=-y^{2}, \quad y(0)=1$.
Problem 3. $y^{\prime}=1-y^{2}, \quad y(0)=0$.
Problem 4. $\quad y^{\prime}=-5 y, \quad y(0)=1$.
Starting values are computed by the Runge-Kutta method. . The local truncation error T and the value M of (4.36) at the step where the approximate value of $y(3)$ is computed are listed in Table 1. It is to be noted that the correctors III and IV do not satisfy the first part of Condition L.

Table 1.

Prob	Form	I	II	III	IV
1	T	$-9.36-06$	$-7.05-06$	$-1.31-05$	$-4.02-06$
	M	$-8.90-06$	$-6.90-06$	$-1.31-05$	$-3.89-06$
2	T	$2.45-11$	$2.06-11$	$3.47-11$	$7.34-12$
	M	$2.87-11$	$2.38-11$	$-6.48-08$	$2.06-08$
3	T	$-1.24-10$	$-9.33-11$	$-1.89-10$	$-4.75-11$
	M	$-1.16-10$	$-8.80-11$	$1.43-08$	$-6.92-09$
4	T	$9.22-13$	$6.98-13$	$1.36-12$	$3.71-13$
	M	$1.05-12$	$7.23-13$	$-1.12-05$	$7.42-05$

Remark. For the linear method $\Phi=\sum_{j=0}^{k} \beta_{j} f\left(x_{n+j}, y_{n+j}\right)$ Condition H is satisfied if $\rho(\zeta)$ has no common factor with $\sigma(\zeta)=\sum_{j=0}^{k} \beta_{j}{ }^{j}$.

5. Approximate computation of errors

In this section we assume that

$$
\begin{equation*}
e_{0}=0, \quad e_{i}=O\left(h^{p+1}\right) \quad(i=1,2, \ldots, k-1) \tag{5.1}
\end{equation*}
$$

and approximate the errors $\boldsymbol{e}_{j m}(j=0,1, \ldots, P ; P m \leqq N)$ for a fixed positive integer m.

5.1. Method for approximation

Let $\Delta(x, y ; h)$ be the function such that for any solution $z(x)$ of (1.1)

$$
\begin{equation*}
z(x+h)=z(x)+h \Delta(x, z(x) ; h) . \tag{5.2}
\end{equation*}
$$

Then it can be written as

$$
\Delta(x, y ; h)=\sum_{j=0}^{r} h^{j} f^{(j)}(x, y) /(j+1)!+O\left(h^{r+1}\right) \quad(r \geqq p)
$$

From (2.6) and (2.18) it follows that

$$
g_{j+1}(x)=g_{j}^{\prime}(x)+g_{j}(x) g(x) \quad(j=0,1, \ldots)
$$

Hence $g_{j}(x)$ can be written as a sum of products of $g(x)$ and its derivatives in the form

$$
g_{j}(x)=\sum_{k=0}^{j} g_{j k}(x) \quad(j=0,1, \ldots) .
$$

For instance $g_{00}=g, g_{10}=g^{\prime}$ and $g_{11}=g^{2}$.
Lemma 6. For any integer $s(1 \leqq s \leqq p+1)$ there exist an integer $r(r \geqq m)$
and functions $A\left(x_{n}, y_{n}, \ldots, y_{n+r} ; h\right), A_{j k}\left(x_{n}, y_{n}, \ldots, y_{n+r} ; h\right)(j, k=0,1, \ldots, M)$ and $S\left(x_{n}, y_{n}, \ldots, y_{n+r} ; e_{n}, h\right)$ such that

$$
\begin{align*}
e_{n+m}= & e_{n}+m h\left[\Delta\left(x_{n}, y_{n} ; m h\right)-\Delta\left(x_{n}, y\left(x_{n}\right) ; m h\right)\right]+A \tag{5.3}\\
& +h \sum_{j=0}^{M} h^{j} \sum_{k=0}^{j} A_{j k} g_{j k}\left(x_{n}\right)+h^{p+s+1} S
\end{align*}
$$

where

$$
\begin{equation*}
A=O\left(h^{p+1}\right), \quad A_{j k}=O\left(h^{p+1}\right) \quad(j, k=0,1, \ldots, M ; M \geqq s-2) \tag{5.4}
\end{equation*}
$$

Proof. Let D be the differential operator and Δ be the forward difference operator. Then there exists an integer $r(r \geqq m)$ such that

$$
\begin{align*}
& y(x+j h)=y(x)+j\left[\sum_{k=0}^{r}(j h D)^{k} /(k+1)!\right] h y^{\prime}(x)+O\left(h^{p+s+\delta}\right) \tag{5.5}\\
&(j=1,2, \ldots, r),
\end{align*}
$$

where $\delta=\delta_{j m}$. Substituting

$$
h D=\log (1+\Delta)=\Delta-\Delta^{2} / 2+\Delta^{3} / 3-\cdots
$$

into (5.5), we have

$$
y(x+j h)=y(x)+h \sum_{k=0}^{r} \tilde{c}_{j k} \Delta^{k} y^{\prime}(x)+O\left(h^{p+s+\delta}\right)
$$

which can be rewritten as

$$
\begin{equation*}
y(x+j h)=y(x)+h \sum_{k=0}^{r} c_{j k} y^{\prime}(x+k h)+O\left(h^{p+s+\delta}\right) \quad(j=1,2, \ldots, r) \tag{5.6}
\end{equation*}
$$

Let $u(x)$ be the solution of (1.1) with $u\left(x_{n}\right)=y_{n}$ and let

$$
\begin{array}{ll}
u_{n+j}=u\left(x_{n+j}\right), \quad d_{n+j}=y_{n+j}-u_{n+j} & (j=0,1, \ldots, r), \\
w_{n+j}=y_{n+j}-y_{n}-h \sum_{k=0}^{r} c_{j k} f_{n+k} & (j=1,2, \ldots, r) . \tag{5.8}
\end{array}
$$

Since by (5.1) and Theorem 2

$$
\begin{equation*}
e_{n+j}=h^{p} e\left(x_{n+j}\right)+O\left(h^{p+1}\right) \quad(j=0,1, \ldots, r) \tag{5.9}
\end{equation*}
$$

and by Gronwall's inequality

$$
u_{n+j}-y\left(x_{n+j}\right)=e_{n}+O\left(h^{p+1}\right) \quad(j=0,1, \ldots, r)
$$

we have

$$
\begin{equation*}
d_{n+j}=e_{n+j}+y\left(x_{n+j}\right)-u_{n+j}=O\left(h^{p+1}\right) \quad(j=1,2, \ldots, r) \tag{5.10}
\end{equation*}
$$

By (5.6)-(5.10)

$$
\begin{equation*}
d_{n+j}=h \sum_{k=1}^{r} c_{j k} g\left(x_{n+k}\right) d_{n+k}+w_{n+j}+O\left(h^{p+s+\delta}\right) \quad(j=1,2, \ldots, r) \tag{5.11}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
w_{n+j}=O\left(h^{p+1}\right) \quad(j=1,2, \ldots, r) \tag{5.12}
\end{equation*}
$$

By (5.2) we have

$$
\begin{align*}
e_{n+m}= & e_{n}+m h\left[\Delta\left(x_{n}, y_{n} ; m h\right)-\Delta\left(x_{n}, y\left(x_{n}\right) ; m h\right)\right] \tag{5.13}\\
& +y_{n+m}-y_{n}-m h \Delta\left(x_{n}, u\left(x_{n}\right) ; m h\right)
\end{align*}
$$

From (5.6) it follows that

$$
\begin{aligned}
m h \Delta\left(x_{n}, u\left(x_{n}\right) ; m h\right) & =h \sum_{k=0}^{r} c_{m k} f\left(x_{n+k}, u\left(x_{n+k}\right)\right)+O\left(h^{p+s+1}\right) \\
& =h \sum_{k=0}^{r} c_{m k}\left[f_{n+k}-g\left(x_{n+k}\right) d_{n+k}\right]+O\left(h^{p+s+1}\right) .
\end{aligned}
$$

By this and (5.13)

$$
\begin{align*}
e_{n+m}= & e_{n}+m h\left[\Delta\left(x_{n}, y_{n} ; m h\right)-\Delta\left(x_{n}, y\left(x_{n}\right) ; m h\right)\right]+w_{n+m} \tag{5.14}\\
& +h \sum_{k=1}^{r} c_{m k} g\left(x_{n+k}\right) d_{n+k}+O\left(h^{p+s+1}\right)
\end{align*}
$$

Substituting (5.11) repeatedly into (5.14) and expanding the functions at $x=x_{n}$ into power series in h, we have (5.3) with

$$
\begin{align*}
& A=w_{n+m}, \quad A_{00}=\sum_{j=1}^{r} c_{m j} w_{n+j}, \quad A_{10}=\sum_{j=1}^{r} j c_{m j} w_{n+j}, \tag{5.15}\\
& A_{11}=\sum_{j=1}^{r} c_{m j} \sum_{i=1}^{r} c_{j i} w_{n+i}
\end{align*}
$$

and so on. From (5.12) and this (5.4) follows. Thus the proof is complete.
In some cases we may take $r=m$ by using the interpolation.
Suppose that there exist a method of explicit one-step type for approximating e_{n+m} and constants K_{1}, K_{2} and L such that

$$
\begin{array}{ll}
\text { (5.16) } & e_{n+m}=e_{n}+m h \Psi\left(x_{n}, y_{n}, \ldots, y_{n+r} ; e_{n}, h\right) \tag{5.16}\\
& +h^{p+d+1} R\left(x_{n}, y_{n}, \ldots, y_{n+r} ; e_{n}, h\right)+h^{p+s+1} S\left(x_{n}, y_{n}, \ldots, y_{n+r} ; e_{n}, h\right), \\
\text { (5.17) } & \left|R\left(x, u_{0}, \ldots, u_{r} ; w, v\right)\right| \leqq K_{1}, \\
\text { (5.18) } & \left|S\left(x, u_{0}, \ldots, u_{r} ; w, v\right)\right| \leqq K_{2} \\
\text { (5.19) } & \left|\Psi\left(x, u_{0}, \ldots, u_{r} ; w, v\right)-\Psi\left(x, u_{0}, \ldots, u_{r} ; \tilde{w}, v\right)\right| \leqq L|w-\tilde{w}| \\
& \text { for } v \in H, x, x+r h \in I, u_{i}, u_{i}-w, u_{i}-\tilde{w} \in B_{M} \quad(i=0,1, \ldots, r) .
\end{array}
$$

Let P be an integer such that $(P-1) m+r \leqq N$ and define $\tilde{e}_{j m}(j=0,1, \ldots, P)$ by

$$
\begin{equation*}
\tilde{e}_{n+m}=\tilde{e}_{n}+m h \Psi\left(x_{n}, y_{n}, \ldots, y_{n+r} ; \tilde{e}_{n}, h\right)(n=j m ; j=0,1, \ldots, P), \tilde{e}_{0}=0 \tag{5.20}
\end{equation*}
$$

Then we have the following
Theorem 6. Under the condition (5.1) suppose that there exist functions Ψ, R and S satisfying (5.16)-(5.19) and let $\tilde{e}_{j m}(j=0,1, \ldots, P)$ be defined by (5.20). Then

$$
\begin{equation*}
e_{j m}=\tilde{e}_{j m}+O\left(h^{p+t}\right) \quad(j=0,1, \ldots, P) \tag{5.21}
\end{equation*}
$$

for sufficiently small h, where $t=\min (s, d)$.
Proof. Let $v_{k}=e_{k}-\tilde{e}_{k}(k=j m ; j=0,1, \ldots, P)$. Then for $n=j m(0 \leqq j \leqq$ $P-1$) we have

$$
\begin{aligned}
v_{n+m}=v_{n} & +m h\left[\Psi\left(x_{n}, y_{n}, \ldots, y_{n+r} ; e_{n}, h\right)-\Psi\left(x_{n}, y_{n}, \ldots, y_{n+r} ; \tilde{e}_{n}, h\right)\right] \\
& +h^{p+d+1} R+h^{p+s+1} S .
\end{aligned}
$$

Let $u=1+m L h$ and K be a constant such that

$$
K_{1} h^{d}+K_{2} h^{s} \leqq K h^{t} \quad \text { for } \quad h \in H .
$$

Then

$$
\left|v_{n+m}\right| \leqq u\left|v_{n}\right|+h^{p+t+1} K
$$

so that

$$
\begin{aligned}
\left|v_{j m}\right| & \leqq\left(1+u+\cdots+u^{j-1}\right) K h^{p+t+1} \leqq j h e^{L(j-1) m h} K h^{p+t} \\
& \leqq m^{-1}(b-a) e^{L(b-a)} K h^{p+t} \quad(j=0,1, \ldots, P) .
\end{aligned}
$$

This completes the proof.
In the case of variable stepsize where

$$
x_{(j+1) m}=x_{j m}+m h_{j} \quad(j=0,1, \ldots, P-1), \quad x_{P m}+(r-m) h_{P-1} \leqq b,
$$

if $y_{n+i}(i=0,1, \ldots, r)$ in (5.16) denote the approximate values of $y\left(x_{n}+i h_{j}\right)(n=$ $j m$), then (5.21) is valid with $h=\max _{0 \leqq j<P} h_{j}$.

5.2. Examples

In this subsection we consider the case $m=4$.

5.2.1. Formulas (5.6)

We use the notation $c_{j k}=C_{j k} / C_{j}(j=1,2, \ldots, r ; k=0,1, \ldots, r)$.
Example 4. In the case $r=4$ we have $p+s=6$ and

$$
\begin{equation*}
C_{1}=720, C_{10}=251, C_{11}=646, C_{12}=-264, C_{13}=106, C_{14}=-19 ; \tag{5.22}
\end{equation*}
$$

$$
\begin{aligned}
& C_{2}=90, C_{20}=29, C_{21}=124, C_{22}=24, C_{23}=4, C_{24}=-1 ; \\
& C_{3}=80, C_{30}=27, C_{31}=102, C_{32}=72, C_{33}=42, C_{34}=-3 ; \\
& C_{4}=90, C_{40}=C_{44}=28, C_{41}=C_{43}=128, C_{42}=48 .
\end{aligned}
$$

Example 5. In the case $r=6$ we have $p+s=7$ and

$$
\begin{align*}
& C_{1}=60480, C_{10}=19087, C_{11}=65112, C_{12}=-46461, C_{13}=37504, \tag{5.23}\\
& C_{14}=-20211, C_{15}=6312, C_{16}=-863 ; C_{2}=3780, C_{20}=1139, \\
& C_{21}=5640, C_{22}=33, C_{23}=1328, C_{24}=-807, C_{25}=264, C_{26}=-37 ; \\
& C_{3}=2240, C_{30}=685, C_{31}=3240, C_{32}=1161, C_{33}=2176, \\
& C_{34}=-729, C_{35}=216, C_{36}=-29 ; C_{4}=945, C_{40}=286, C_{41}=1392, \\
& C_{42}=384, C_{43}=1504, C_{44}=174, C_{45}=48, C_{46}=-8 ; C_{5}=12096, \\
& C_{50}=3715, C_{51}=17400, C_{52}=6375, C_{53}=16000, C_{54}=11625, \\
& C_{55}=5640, C_{56}=-275 ; C_{6}=140, C_{60}=C_{66}=41, C_{61}=C_{65}=216, \\
& C_{62}=C_{64}=27, C_{63}=272 .
\end{align*}
$$

5.2.2. Formulas (5.16)

Let

$$
\begin{equation*}
F(x, y, u)=f(x, y)-f(x, y-u) \tag{5.24}
\end{equation*}
$$

Example 6. In the case $s=2$ and $M=0$ let

$$
F_{1}=F\left(x_{n}, y_{n}, e_{n}\right), F_{2}=F\left(x_{n+2}, y_{n+2}, e_{n}+2 h F_{1}+b\right), b=A_{00} / 4 .
$$

Then we have

$$
\begin{align*}
& e_{n+4}=e_{n}+A+4 h F_{2}+O\left(h^{p+3}\right) \tag{5.25}\\
& e_{n+4}=e_{n}+A+2 h\left(F_{1}+4 F_{2}+F_{3}\right) / 3+O\left(h^{p+3}\right) \tag{5.26}
\end{align*}
$$

where

$$
F_{3}=F\left(x_{n+4}, y_{n+4}, e_{n}-4 h F_{1}+8 h F_{2}+2 b\right) .
$$

There exists a 4-stage method

$$
\begin{equation*}
e_{n+4}=e_{n}+A+2 h\left(F_{1}+2 F_{2}+2 F_{3}+F_{4}\right) / 3+O\left(h^{p+3}\right), \tag{5.27}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{3}=F\left(x_{n+2}, y_{n+2}, e_{n}+2 h F_{2}+b\right), \\
& F_{4}=F\left(x_{n+4}, y_{n+4}, e_{n}+4 h F_{3}+2 b\right) .
\end{aligned}
$$

Example 7. In the case $s \geqq 2$ we have

$$
\begin{equation*}
e_{n+4}=e_{n}+A+2 h\left(F_{1}+F_{2}\right)+O\left(h^{p+t+1}\right), \tag{5.28}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}=F\left(x_{n}, y_{n}, e_{n}+b_{1}\right), \quad F_{2}=F\left(x_{n+3}, y_{n+3}, e_{n}+4 h F_{1}+b_{2}\right), \\
& b_{1}=\left(3 A_{00}-A_{10}\right) / 4, \quad b_{2}=\left(A_{10}-A_{00}\right) / 4, \quad t=\min (2, s) .
\end{aligned}
$$

There is also a 3-stage method

$$
\begin{equation*}
e_{n+4}=e_{n}+A+4 h\left(2 F_{1}+3 F_{2}+4 F_{3}\right) / 9+O\left(h^{p+t+1}\right), \tag{5.29}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}=F\left(x_{n}, y_{n}, e_{n}+b_{1}\right), \quad F_{2}=F\left(x_{n+2}, y_{n+2}, e_{n}+2 h F_{1}+b_{2}\right), \\
& F_{3}=F\left(x_{n+3}, y_{n+3}, e_{n}+3 h F_{2}+b_{3}\right), \quad b_{1}=\left(12 A_{00}-4 A_{10}-A_{11}\right) / 8, \\
& b_{2}=\left(A_{10}+A_{11}-3 A_{00}\right) / 4, \quad b_{3}=\left(6 A_{00}+A_{10}-2 A_{11}\right) / 16, \quad t=\min (3, s) .
\end{aligned}
$$

5.2.3. Numerical examples

The predictor (4.39) and correctors I-IV are used to solve Problem 3 and the following problems with $h=2^{-5}$.

Table 2.

Prob		Form	I	II	III
3	e	$1.96-09$	$6.34-10$	$1.21-08$	$-6.21-09$
	\bar{e}	$1.97-09$	$6.36-10$	$1.21-08$	$-6.20-09$
	\hat{e}	$1.97-09$	$6.35-10$	$1.21-08$	$-6.12-09$
5	e	$3.38-05$	$1.14-05$	$1.75-05$	$6.99-06$
	\bar{e}	$3.33-05$	$1.10-05$	$1.70-05$	$6.54-06$
	\hat{e}	$3.37-05$	$1.13-05$	$1.74-05$	$6.91-06$
6	e	$1.34+00$	$4.92-01$	$7.33-01$	$3.28-01$
	\bar{e}	$1.32+00$	$5.01-01$	$7.36-01$	$3.41-01$
	\hat{e}	$1.30+00$	$4.81-01$	$7.16-01$	$3.21-01$
7	e	$1.02-10$	$2.56-11$	$1.21-05$	$-7.49-05$
	\bar{e}	$9.52-11$	$2.42-11$	$1.20-05$	$-7.46-05$
	\hat{e}	$9.45-11$	$2.34-11$	$1.18-05$	$-6.77-05$

Problem 5. $\quad y^{\prime}=y-2 x / y, \quad y(0)=1$.
Problem 6. $y^{\prime}=2 x y, \quad y(0)=1$.
Problem 7. $\quad y^{\prime}=5(1-y), \quad y(0)=0$.
Starting values are computed by the Runge-Kutta method. Formula (5.29) is used with quantities in (5.15) whose coefficients are given by (5.22) and (5.23). The error e at $x=3$ and the values \bar{e} and \hat{e} obtained respectively by using (5.22) and (5.23) are listed in Table 2.

For \bar{e} we have $r=4, s=t=2$ and $M=1>s-2$, while for \hat{e} we have $r=6, s=t$ $=3$ and $M=1=s-2$.

5.3 Explicit one-step methods

We show the following
Theorem 7. Let E_{n} be given by (4.15) or by (4.31) satisfying (4.27) and suppose that $\sigma \geqq 2$ and (4.20) is satisfied. Then for explicit one-step methods with $p \geqq 2$

$$
\begin{equation*}
A=-m E_{n}, \quad A_{00}=-m^{2} E_{n} / 2, \quad s=2 . \tag{5.30}
\end{equation*}
$$

Proof. Let u_{n+j} and $d_{n+j}(j=0,1, \ldots, m)$ be defined by (5.7). Since

$$
\begin{align*}
& u_{n+j+1}=u_{n+j}+h \Delta\left(x_{n+j}, u_{n+j} ; h\right) \quad(j=0,1, \ldots, m-1), \\
& y_{n+j+1}=y_{n+j}+h \Delta\left(x_{n+j}, y_{n+j} ; h\right)-T\left(x_{n+j}, y_{n+j} ; h\right), \tag{5.31}
\end{align*}
$$

by (5.10) we have $d_{n}=0$,

$$
d_{n+j+1}=d_{n+j}-h^{p+1} \varphi_{0}\left(x_{n}\right)+O\left(h^{p+2}\right) \quad(j=0,1, \ldots, m-1) .
$$

From this it follows that

$$
\begin{equation*}
d_{n+j}=-j h^{p+1} \varphi_{0}\left(x_{n}\right)+O\left(h^{p+2}\right) \quad(j=0,1, \ldots, m) \tag{5.32}
\end{equation*}
$$

By (5.31)

$$
\begin{align*}
e_{n+j+1}= & e_{n+j}+h\left[\Delta\left(x_{n+j}, u\left(x_{n+j}\right) ; h\right)-\Delta\left(x_{n+j}, y\left(x_{n+j}\right) ; h\right)\right] \tag{5.33}\\
& +h \Delta_{y}\left(x_{n+j}, y_{n+j} ; h\right) d_{n+j}-T\left(x_{n+j} ; h\right)+O\left(h^{2 p+1}\right) \\
& \quad(j=0,1, \ldots, m-1) .
\end{align*}
$$

Since for any solution $z(x)$ of (1.1)

$$
h \sum_{j=0}^{m-1} \Delta\left(x_{n+j}, z\left(x_{n+j}\right) ; h\right)=m h \Delta\left(x_{n}, z\left(x_{n}\right) ; m h\right),
$$

by (5.32) and (5.33) we have

$$
\begin{aligned}
e_{n+m}= & e_{n}+m h\left[\Delta\left(x_{n}, y_{n} ; m h\right)-\Delta\left(x_{n}, y\left(x_{n}\right) ; m h\right)\right]-\sum_{j=0}^{m-1} T\left(x_{n+j} ; h\right) \\
& -m(m-1) h^{p+2} g\left(x_{n}\right) \varphi_{0}\left(x_{n}\right) / 2+O\left(h^{p+3}\right) .
\end{aligned}
$$

Substitution of (4.21) into this yields (5.30).

Numerical examples

Problem 5 and the following problem are solved by the Runge-Kutta method and Kutta's method for $m=4$.

Problem 8. $y^{\prime}=2 x e^{4 x^{2}} / y^{3}, \quad y(0)=1$.
E_{n} is computed by means of (4.22). Formulas (5.26) and (5.27) are used when $p=3$ and 4 respectively.

The same problems are solved by the Runge-Kutta method for $m=2$ with the aid of (4.33) and the formula

$$
\begin{equation*}
e_{n+2}=e_{n}-2 E_{n}+h\left(F_{1}+F_{2}\right)+O\left(h^{p+3}\right), \tag{5.34}
\end{equation*}
$$

where
$F_{1}=F\left(x_{n}, y_{n}, e_{n}-b\right), \quad F_{2}=F\left(x_{n+2}, y_{n+2}, e_{n}+2 h F_{1}-2 b\right), \quad b=2 E_{n} / 3$.
Computation is carried out by the following program:
(1) Compute $y_{i}(i=1,2, \ldots, m)$ and \tilde{e}_{m}.
(2) If $\left|m E_{0}\right|>10^{-8} \max \left(\left|y_{m}\right|, 1\right)$, halve the stepsize and go to (1). (Initially $h=2^{-3}$.)
(3) Replace x_{0}, y_{0} and \tilde{e}_{0} by x_{m}, y_{m} and \tilde{e}_{m} respectively.

The error e and the computed value \tilde{e} are listed in Table 3.

Table 3.

Formula		(5.26)		(5.27)		(5.34)	
Prob	x	\tilde{e}	e	\tilde{e}	e	\tilde{e}	e
5	3.0	$5.90-06$	$5.85-06$	$1.96-06$	$1.97-06$	$2.15-06$	$2.18-06$
	4.0	$3.85-05$	$3.82-05$	$1.29-05$	$1.30-05$	$1.40-05$	$1.43-05$
	5.0	$2.57-04$	$2.55-04$	$8.65-05$	$8.71-05$	$9.20-05$	$9.59-05$
8	3.0	$-1.60-04$	$-1.58-04$	$3.70-05$	$3.83-05$	$2.49-04$	$2.49-04$
	4.0	$-4.07-01$	$-4.06-01$	$5.14-02$	$5.26-02$	$5.24-02$	$5.26-02$
	5.0	$-8.15+02$	$-7.96+02$	$1.03+03$	$1.05+03$	$1.05+03$	$1.05+03$

References

[1] P. Henrici, Discrete variable methods in ordinary differential equations, John Wiley and Sons, New York, 1962.
[2] E. Isaacson and H. B. Keller, Analysis of numerical methods, John Wiley and Sons, New York, 1966.
[3] H. Shintani, Approximate computation of errors in numerical integration of ordinary differential equations by one-step methods, J. Sci. Hiroshima Univ., Ser. A-I, 29 (1965), 97-120.
[4] H. Shintani, On one-step methods for ordinary differential equations, Hiroshima Math. J., 7 (1977), 769-786.

Department of Mathematics, Faculty of School Education, Hiroshima University

