Нікозніма Матн. J. 10 (1980), 375–379

Z-transforms and noetherian pairs

Shiroh Ітон

(Received December 24, 1979)

Let A be a noetherian ring, and let Z be a subset of Spec (A) which is stable under specialization. Assume that every element of Z is a regular prime ideal. Let M be an A-module such that every A-regular element is M-regular. The Z-transform T(Z, M) of M is a subset of $M \bigotimes_A Q(A)$ defined as follows:

$$T(Z, M) = \{x \in M \otimes_A Q(A) \mid V(M:_A x) \subseteq Z\},\$$

where Q(A) is the total quotient ring of A, $M:_A x = \{a \in A \mid ax \in M\}$, and $V(M:_A x)$ is the set of prime ideals of A containing $M:_A x$. Since $A:_A (x+y)$ and $A:_A xy$ contain $(A:_A x)(A:_A y)$ for every x and y in Q(A), T(Z, A) is a subring of Q(A)which contains A. It is easy to see that T(Z, M) is a T(Z, A)-module. Note that $T(Z, M) = \Gamma(X, \mathscr{H}^0_{X/Z}(\tilde{M}))$ where $X = \operatorname{Spec}(A)$ and \tilde{M} is a quasi-coherent \mathcal{O}_X module associated to M (cf. [2], Chap. IV, (5.9)).

In this paper, we shall give necessary and sufficient conditions on A so that (A, T(Z, A)) is a noetherian pair. For noetherian rings R and S with $R \subseteq S$, we say that (R, S) is a noetherian pair if every ring $T, R \subseteq T \subseteq S$, is noetherian. If Z is the set of all regular maximal ideals of A, then T(Z, A) is the global transform A^{g} of A introduced by Matijevic in [3]. He proved that (A, A^{g}) is a noetherian pair if A is reduced.

Let B = A/I where I is an ideal of A. Assume that $Ass_A(B) \subseteq Ass_A(A)$. Let $Z' = \{\mathfrak{p}/I \mid \mathfrak{p} \in Z \text{ and } \mathfrak{p} \supseteq I\}$. Then it is clear that every element of Z' is a regular prime ideal of B and T(Z, B) = T(Z', B). Moreover we have a natural ring homomorphism $\phi: T(Z, A) \rightarrow T(Z, B)$ whose kernel is $T(Z, I) = T(Z, A) \cap IQ(A)$. It should be remarked that $\phi(x)z = xz$ for every $x \in T(Z, A)$ and $z \in T(Z, B)$. In the case that Z is the set of all regular maximal ideals of A, T(Z, B) is not the global transform of B in general. However if every maximal ideal of A is regular, then $T(Z, B) = B^g$.

Our main result is the following

THEOREM. Let A be a noetherian ring, and let Z be a subset of Spec(A) which is stable under specialization. Assume that every element of Z is a regular prime ideal. Then the following conditions on A are equivalent.

(1) (A, T(Z, A)) is a noetherian pair.

(2) (a) $T(Z, A|\mathfrak{p})$ is a finite $A|\mathfrak{p}$ -module for every $\mathfrak{p} \in Ass_A(A)$ such that $A_\mathfrak{p}$ is not reduced, and

(b) $(A/\mathfrak{p}, T(Z, A/\mathfrak{p}))$ is a noetherian pair for every $\mathfrak{p} \in Ass_A(A)$.

If $A_{\mathfrak{p}}$ are not reduced for all associated prime ideal \mathfrak{p} of A, then the above conditions are equivalent to the following:

(3) T(Z, A) is finite over A.

If $(A|\mathfrak{p})'$ (= the derived normal domain of $A|\mathfrak{p}$) is finite over $A|\mathfrak{p}$ for every $\mathfrak{p} \in \text{Spec}(A)$, then the conditions (1) and (2) are also equivalent to the following:

(4) (a) If \mathfrak{p} is an associated prime ideal of A such that A is not reduced, then $(A/\mathfrak{p})'$ has no maximal ideals \mathfrak{m} of height one such that $\mathfrak{m} \cap (A/\mathfrak{p}) \in \mathbb{Z}$ $\cap \operatorname{Spec} (A/\mathfrak{p})$, and

(b) $(A/\mathfrak{p}, T(\mathbb{Z}, A/\mathfrak{p}))$ is a noetherian pair for every $\mathfrak{p} \in Ass_A(A)$.

If Z is the set of all regular maximal ideals of A, then $(A/\mathfrak{p}, T(Z, A/\mathfrak{p}))$ is a noetherian pair for every $\mathfrak{p} \in \operatorname{Ass}_A(A)$, because $A/\mathfrak{p} \subseteq T(Z, A/\mathfrak{p}) \subseteq (A/\mathfrak{p})^g$ and $(A/\mathfrak{p}, (A/\mathfrak{p})^g)$ is a noetherian pair.

COROLLARY. Let A be a noetherian ring such that every maximal ideal of A is regular. Then (A, A^g) is a noetherian pair if and only if $(A|\mathfrak{p})^g$ is a finite $A|\mathfrak{p}$ -module for every $\mathfrak{p} \in \operatorname{Ass}_A(A)$ such that $A_\mathfrak{p}$ is not reduced.

In [1], D. D. Anderson proved that, for a noetherian ring A, if A_m is reduced for every regular maximal ideal m of A, then (A, A^g) is a noetherian pair. The above theorem gives us another proof of his result. In fact, let Z be the set of all regular maximal ideals of A. If p is an associated prime ideal of A such that A_p is not reduced, then $V(p) \cap Z = \phi$; hence T(Z, A/p) = A/p. This shows that the condition (2) in Theorem is satisfied. Therefore (A, A^g) is a noetherian pair.

To prove the theorem, we need several lemmas. The first one is a variance of [2], Chap. IV, (5.11.1.1).

LEMMA 1. Let A be a noetherian ring, and let $\{p_1,..., p_r\}$ be the set of minimal prime ideals p of A such that A_p is not reduced. Then we have the following statements.

(1) There is a chain of nilpotent ideals $M_n \supset \cdots \supset M_0 = 0$ of A with the following properties:

(a) For each j $(0 \le j < n)$ there exists a \mathfrak{p}_i $(1 \le i \le r)$ such that $\mathfrak{p}_i M_{j+1} \subseteq M_j$ and M_{j+1}/M_j is isomorphic to an ideal of A/\mathfrak{p}_i as A-modules.

(b) $Ass_A(A) = Ass_A(A/M_i)$ for j = 0, ..., n.

(c) $(A/M_n)_{\mathfrak{p}}$ is reduced for every minimal prime ideal \mathfrak{p} of A.

(2) For each $\mathfrak{p}_i (1 \leq i \leq r)$, there is a non-zero nilpotent ideal N_i of A such that $\operatorname{Ass}_A(A) = \operatorname{Ass}_A(A/N_i)$, $\mathfrak{p}_i N_i = 0$ and N_i is isomorphic to an ideal of A/\mathfrak{p}_i as A-modules.

PROOF. (1): Let $(0) = q_1 \cap \cdots \cap q_m$ be an irredundant primary decomposi-

376

tion of (0) in A. We may assume that $\sqrt{q_i} = p_i$ for i = 1, ..., r. We put $p_j = \sqrt{q_j}$ for j = r+1, ..., m. We may also assume that Min $(A) = \{p_1, ..., p_n\}$ for some n with $r \le n \le m$. We put $Q = q_{n+1} \cap \cdots \cap q_m$. For each $p_i (1 \le i \le r)$, there is a chain of nilpotent ideals $p_i A_{p_i} = J_{i0} \supset \cdots \supset J_{ie_i} = 0$ of A_{p_i} such that $p_i J_{ij} \subseteq J_{ij+1}$ and $J_{ij}/J_{ij+1} = Q(A/p_i)$. Let I_{ij} be the inverse image of J_{ij} by the map $A \to A_{p_i}$. Then I_{ij} is a p_i -primary ideal of A, $q_i \subseteq I_{ij} \subseteq p_i$ and $q_i = I_{ie_i}$. Moreover $I_{ij} \supset I_{ij+1}$, $p_i I_{ij} \subseteq I_{ij+1}$ and I_{ij}/I_{ij+1} is isomorphic to an ideal of A/p_i as A-modules. We now put $M_{ij} = q_1 \cap \cdots \cap q_{i-1} \cap I_{ij} \cap p_{i+1} \cap \cdots \cap p_n \cap Q$ ($1 \le i \le r, 1 \le j \le e_i$). In this way we have a chain of nilpotent ideals $p_1 \cap \cdots \cap p_n \cap Q = M_{10} \supset \cdots \supset M_{1e_1} = M_{20} \supset \cdots \supset M_{re_r} = 0$. It is now easy to see that the above chain of ideals satisfies the properties (a), (b) and (c).

(2): For each \mathfrak{p}_i $(1 \leq i \leq r)$, $N_i = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_{i-1} \cap I_{ie_i-1} \cap \mathfrak{q}_{i+1} \cap \cdots \cap \mathfrak{q}_m$ is a required nilpotent ideal.

LEMMA 2. With the same A and Z as in Theorem, let \mathfrak{p} be a minimal prime ideal of A. If N is a non-zero nilpotent ideal of A such that $\mathfrak{p}N=0$ and N is isomorphic to an ideal of A/\mathfrak{p} as A-modules, then T(Z, N) is isomorphic to an ideal of $T(Z, A/\mathfrak{p})$ as T(Z, A)-modules.

PROOF. Let $f: N \to A/\mathfrak{p}$ be an injective homomorphism of A-modules such that f(N) is an ideal of A/\mathfrak{p} . It is clear that T(Z, N) is isomorphic to T(Z, f(N)) as T(Z, A)-modules and T(Z, f(N)) is an ideal of $T(Z, A/\mathfrak{p})$.

The following lemma is essentially proved in the proof of [2], Chap. IV, (5.11.2).

LEMMA 3. Let A be a noetherian domain such that A' is finite over A. Let Z be a proper subset of Spec(A) which is stable under specialization. Then the following conditions on A are equivalent.

- (1) T(Z, A) is finite over A.
- (2) If \mathfrak{P} is a prime ideal of A' such that $\mathfrak{P} \cap A \in \mathbb{Z}$, then ht $(\mathfrak{P}) \ge 2$.

PROOF. (2)=(1): Let U = Spec(A) - Z, and let V be the set of height one prime ideals of A'. Since $\mathfrak{Q} \cap A \notin Z$ for every $\mathfrak{Q} \in V$, we have $T(Z, A) = \bigcap_{\mathfrak{p} \in U} A_{\mathfrak{p}} \subseteq \bigcap_{\mathfrak{Q} \in V} A'_{\mathfrak{Q}} = A'$.

 $(1)\Rightarrow(2)$: Since A' is finite over A, there is a non-zero element t of A such that $tA'\subseteq A$. It is easy to see that $tT(Z, A')\subseteq T(Z, A)$. Therefore T(Z, A') is finite over A, and hence A'=T(Z, A'). Let $Z'=\{\mathbb{Q}\in \operatorname{Spec}(A')\mid \mathbb{Q}\cap A\in Z\}$. Then it is also easy to see that T(Z, A')=T(Z', A'). Suppose that there exists a prime ideal p of A' such that $\operatorname{ht}(p)=1$ and $p\in Z'$. Then there exist $s \ (\neq 0)$ and a in A' such that $p=sA':_{A'}a$. In particular $a/s\notin A'$. On the other hand, $a/s\in T(Z', A')=A'$ because $p\in Z'$ and $(a/s)p\subseteq A'$. This is a contradiction.

LEMMA 4. Let A, B and C be domains with the same field of fractions such that (A, B) is a noetherian pair and C is finite over B. Then (A, C) is a noetherian pair.

PROOF. Let R be a ring such that $A \subseteq R \subseteq C$, and let t be a non-zero element of B such that $tC \subseteq B$. Since Q(A) = Q(B), we may assume that t is an element of A. Then $tR \subseteq B \cap R$, and $B \cap R$ is noetherian; hence R is a finite $B \cap R$ -module. Therefore R is noetherian.

LEMMA 5. Let (A, B) be a noetherian pair. Then every nilpotent ideal of B is a finite A-module.

PROOF. Let J be a nilpotent ideal of B. Since A[J] is noetherian, $J = \sum_{i=1}^{e} A[J]x_i = \sum_{i=1}^{e} Ax_i + J \sum_{i=1}^{e} Ax_i$. Therefore J is a finite A-module, because J is a nilpotent ideal.

We now prove the theorem: Let $(0) = q_1 \cap \cdots \cap q_m$ be an irredundant primary decomposition of (0) in A. Assume that $Min(A) = \{\sqrt{q_1}, \dots, \sqrt{q_s}\}$. We put $I = q_1 \cap \cdots \cap q_s$ and $J = T(Z, A) \cap IQ(A)$. It is easy to see that J is the kernel of the homomorphism $T(Z, A) \rightarrow T(Z, A/I)$. We first show that (1) is equivalent to the following:

(2') J is a finite A-module and $T(Z, A|\mathfrak{p})$ is finite over $A|\mathfrak{p}$ for every minimal prime ideal \mathfrak{p} of A such that $A_{\mathfrak{p}}$ is not reduced. Moreover $(A|\mathfrak{p}, T(Z, A|\mathfrak{p}))$ is a noetherian pair for every $\mathfrak{p} \in Ass_A(A)$.

(1)=(2'): By Lemma 5, J is a finite A-module. Let p be an associated prime ideal of A. Then A/p is isomorphic to an ideal of A as A-modules; hence T(Z, A/p) is isomorphic to an ideal of T(Z, A) as T(Z, A)-modules. Therefore T(Z, A/p) is a finite T(Z, A)-module. This shows that the ring homomorphism $\phi: T(Z, A) \rightarrow T(Z, A/p)$ is finite, because $\phi(x)z = xz$ for every $x \in T(Z, A)$ and $z \in T(Z, A/p)$. On the other hand, since (A, T(Z, A)) is a noetherian pair, so is $(A/p, \operatorname{Im}(\phi))$. Therefore, by Lemma 4, (A/p, T(Z, A/p)) is a noetherian pair. Let now p be a minimal prime ideal of A such that A_p is not reduced. By Lemma 1, there is a non-zero nilpotent ideal K of A such that pK=0, $\operatorname{Ass}_A(A) = \operatorname{Ass}_A(A/K)$ and K is isomorphic to an ideal of A/p. We put $K' = T(Z, A) \cap KQ(A) (= T(Z, K))$. Then, by Lemma 5, K' is a finite A-module and, by Lemma 2, we may consider that K' is an ideal of T(Z, A/p). Since $tT(Z, A/p) \subseteq K'$ for every $t \in K'$ and $T(Z, A/p) \cong tT(Z, A/p)$ if $t \neq 0$, T(Z, A/p) is a finite A-module.

 $(2') \Rightarrow (1)$: It is clear that $A/I \subseteq T(Z, A)/J \subseteq T(Z, A/I)$. Let R be a ring such that $A \subseteq R \subseteq T(Z, A)$. Since $J \cap R$ is a finite A-module, it is a finitely generated nilpotent ideal of R. Thus R is noetherian if and only if so is $R/(J \cap R)$ by the theorem of Cohen. Therefore it is sufficient to show that (A/I, T(Z, A/I)) is a noetherian pair; hence we may assume that $Min(A) = Ass_A(A)$. Let $\{p_1, ..., p_r\}$

= Min (A). Then the canonical embedding $A_{red} \rightarrow A/\mathfrak{p}_1 \times \cdots \times A/\mathfrak{p}_r$ induces an embedding $T(Z, A_{red}) \rightarrow T(Z, A/\mathfrak{p}_1) \times \cdots \times T(Z, A/\mathfrak{p}_r)$. Since each $(A/\mathfrak{p}_i, T(Z, A/\mathfrak{p}_r))$ A/\mathfrak{p}_i) is a noetherian pair, by Eakin-Nagata's theorem, $(A_{red}, T(Z, A_{red}))$ is also a noetherian pair. There exists a chain of nilpotent ideals $M_n \supset \cdots \supset M_0 = 0$ of A which satisfies the properties (a), (b) and (c) of Lemma 1 (1). We use induction on n in order to show that (A, T(Z, A)) is a noetherian pair. If n=0, then $A = A_{red}$. This case is proved already. We then assume that $n \ge 1$ and $(A/M_1, M_2)$ $T(Z, A/M_1)$ is a noetherian pair. Let $N = T(Z, A) \cap M_1Q(A)$ $(= T(Z, M_1))$. Let p be a minimal prime ideal of A such that A_{p} is not reduced, $pM_{1}=0$ and M_1 is isomorphic to an ideal of A/p as A-modules. By Lemma 2, N is isomorphic to an ideal of $T(Z, A|\mathfrak{p})$ as T(Z, A)-modules. Therefore N is a finite A-module. Let now R be a ring such that $A \subseteq R \subseteq T(Z, A)$. Since $(A/M_1, T(Z, A/M_1))$ is a noetherian pair and $A/M_1 \subseteq R/(N \cap R) \subseteq T(Z, A/M_1)$, $R/(N \cap R)$ is noetherian. On the other hand, $N \cap R$ is a nilpotent ideal of R and is a finite A-module. Therefore every prime ideal of R is finitely generated; hence, by the theorem of Cohen, R is noetherian. This shows that (A, T(Z, A)) is a noetherian pair.

(2) \Leftrightarrow (2'): Note that $\operatorname{Ass}_{A}(I) = \operatorname{Ass}_{A}(A) - \operatorname{Min}(A)$ and J = T(Z, I). Then by [2], Chap. IV (5.11.1), J is a finite A-module if and only if $T(Z, A/\mathfrak{p})$ is a finite A/\mathfrak{p} -module for every $\mathfrak{p} \in \operatorname{Ass}_{A}(I)$. Therefore the assertion is clear.

If $A_{\mathfrak{p}}$ is not reduced for every $\mathfrak{p} \in \operatorname{Ass}_{A}(A)$, then the equivalence between (2) and (3) follows from [2], Chap. IV (5.11.1).

If $(A/\mathfrak{p})'$ is finite over A/\mathfrak{p} for every $\mathfrak{p} \in \text{Spec}(A)$, then the equivalence between (2) and (4) follows easily from Lemma 3.

References

- D. D. Anderson, Global transforms and noetherian pairs, Hiroshima Math. J. 10 (1980), 69-74.
- [2] A. Grothendieck, Eléments de Géométrie Algébrique IV (Troisième Partie), Publ. Math. IHES. 28 (1966).
- [3] J. R. Matijevic, Maximal ideal transforms of noetherian rings, Proc. Amer. Math. Soc. 54 (1976), 49-52.

Department of Mathematics, Faculty of Science, Hiroshima University