Existence of non-tangential limits of solutions
 of non-linear Laplace equation

Yoshihiro Mizuta

(Received December 17, 1979)

Our aim in this note is to study the boundary behavior of (weak) solutions of the non-linear Laplace equation

$$
\begin{equation*}
-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(|\operatorname{grad} u|^{p-2} \frac{\partial u}{\partial x_{i}}\right)=0 \quad \text { on } \quad \Omega, \tag{1}
\end{equation*}
$$

where Ω is a domain in the n-dimensional Euclidean space R^{n}.
We say that $\xi \in \partial \Omega$ satisfies the interior cone condition if there is an open truncated cone Γ in Ω with vertex at ξ. Let F be the set of all $\xi \in \partial \Omega$ satisfying the interior cone condition. We can show that F is an F_{σ}-set*).

A function u on Ω is said to have a non-tangential limit at $\xi \in F$ if for any open truncated cone $\Gamma \subset \Omega$ with vertex at ξ,

$$
\lim _{x \rightarrow \xi, x \in \Gamma^{\prime}} u(x)
$$

exists and is finite whenever Γ^{\prime} is a cone with vertex at ξ whose closure $\bar{\Gamma}^{\prime}$ is included in $\Gamma \cup\{\xi\}$.

In this note let $1<p<\infty$ and let $\rho(x)$ denote the distance of x from $R^{n}-\Omega$.
Theorem. Let $1<p \leqq n$ and let u be a function satisfying the following properties:
i) u is continuous on Ω;
ii) u is p-precise ${ }^{* *)}$ on any relatively compact open subset of Ω;
iii) u satisfies (1) in the weak sense (cf. [4]);
iv) $\int_{\Omega}|\operatorname{grad} u(x)|^{p} \rho(x)^{\alpha} d x<\infty$ for $\alpha<p$.

Then there exists a set $E \subset \partial \Omega$ such that $B_{1-\alpha / p, p}(E)=0$ and u has a non-tangential limit at each point of $F-E$.

Here $B_{1-\alpha / p, p}$ denotes the Bessel capacity of index $(1-\alpha / p, p)$ (see [1]). In case $p=2$, our theorem is shown in [3; Theorem $\left.2^{\prime}\right]$.
*) This fact was pointed out by Professor Makoto Sakai.
**) For the definition of p-precise functions, see Ziemer [5].

Proof. Set

$$
E^{\prime}=\left\{\xi \in \partial \Omega ; \int_{B(\xi, 1) \cap \Omega}|\xi-y|^{1-\alpha / p-n}\left[|\operatorname{grad} u(y)| \rho(y)^{\alpha / p}\right] d y=\infty\right\},
$$

where, in general, $B(\xi, r)$ denotes the open ball with center at ξ and radius r. Let $\xi \in F-E^{\prime}$ and let $\Gamma, \Gamma^{\prime}, \Gamma^{\prime \prime}$ be cones with vertexes at ξ and $\bar{\Gamma}^{\prime}-\{\xi\} \subset \Gamma^{\prime \prime}$ $\subset \bar{\Gamma}^{\prime \prime}-\{\xi\} \subset \Gamma \subset \Omega$. Then, since there exists $c>0$ such that $c|y-\xi| \leqq \rho(y) \leqq|y-\xi|$ for all $y \in \Gamma^{\prime}$,

$$
\int_{\Gamma^{\prime}}|\xi-y|^{1-n}|\operatorname{grad} u(y)| d y<\infty
$$

Hence as in the proof of [3; Lemma 4] we can find a line ℓ such that $\ell \cap \Gamma^{\prime} \neq \emptyset$ and $\lim _{x \rightarrow \xi, x \in \ell} u(x)$ exists and is finite. Denote the limit by a.

On the other hand, we can find $c^{\prime}, 0<c^{\prime}<1$, such that $B\left(x, c^{\prime}|x-\xi|\right) \subset \Gamma^{\prime \prime}$ whenever $x \in \Gamma^{\prime}$. For $x \in \Gamma^{\prime}$, we set $r=|x-\xi|, \Gamma(r)=\left\{y \in \Gamma^{\prime \prime} ;|y-\xi|<\left(1+c^{\prime}\right) r\right\}$, and denote by $|\Gamma(r)|$ the n-dimensional measure of $\Gamma(r)$. By [4; Theorems 1 and 2], we have

$$
\begin{aligned}
& \left|u(x)-\frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} u(y) d y\right| \\
& \quad \leqq C_{1}\left(c^{\prime} r\right)^{-n / p}\left\{\int_{B\left(x, c^{\prime} r\right)}\left|u(z)-\frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} u(y) d y\right|^{p} d z\right\}^{1 / p} \\
& \quad \leqq C_{2} r^{-n / p}\left[\int_{\Gamma(r)}\left\{\frac{1}{|\Gamma(r)|} \int_{\Gamma(r)}|u(z)-u(y)| d y\right\}^{p} d z\right]^{1 / p} \\
& \quad \leqq C_{2} r^{-n(1+1 / p)}\left[\int_{\Gamma(r)}\left\{\int_{\Gamma(r)}\left(\int_{0}^{1}|z-y||\operatorname{grad} u(y+t(z-y))| d t\right) d y\right\}^{p} d z\right]^{1 / p}
\end{aligned}
$$

By the change of variables and Hölder's inequality, we have

$$
\begin{aligned}
& \int_{\Gamma(r)}\left\{\int_{0}^{1 / 2}|z-y||\operatorname{grad} u(y+t(z-y))| d t\right\} d y \\
& \quad=\int_{0}^{1 / 2}(1-t)^{-n-1}\left\{\int_{\Gamma(r)}|z-y||\operatorname{grad} u(y)| d y\right\} d t \\
& \quad \leqq C_{3} r^{1+n-n / p}\left\{\int_{\Gamma(r)}|\operatorname{grad} u(y)|^{p} d y\right\}^{1 / p},
\end{aligned}
$$

and by using Minkowski's inequality, we obtain

$$
\begin{aligned}
& {\left[\int_{\Gamma(r)}\left\{\int_{\Gamma(r)}\left(\int_{1 / 2}^{1}|z-y||\operatorname{grad} u(y+t(z-y))| d t\right) d y\right\}^{p} d z\right]^{1 / p}} \\
& \quad \leqq C_{4} r \int_{\Gamma(r)}\left\{\int_{1 / 2}^{1}\left(\int_{\Gamma(r)}|\operatorname{grad} u(y+t(z-y))|^{p} d z\right)^{1 / p} d t\right\} d y
\end{aligned}
$$

$$
\leqq C_{5} r^{1+n}\left(\int_{\Gamma(r)}|\operatorname{grad} u(z)|^{p} d z\right)^{1 / p}
$$

Hence

$$
\begin{aligned}
\left|u(x)-\frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} u(y) d y\right| & \leqq C_{6}\left\{r^{p-n} \int_{\Gamma(r)}|\operatorname{grad} u(y)|^{p} d y\right\}^{1 / p} \\
& \leqq C_{7}\left\{r^{p-\alpha-n} \int_{\Gamma(r)}|\operatorname{grad} u(y)|^{p} \rho(y)^{\alpha} d y\right\}^{1 / p}
\end{aligned}
$$

Here $C_{1} \sim C_{7}$ are positive constants independent of $x \in \Gamma^{\prime}$. Thus, denoting by $x^{*} \in \ell$ the point with $\left|x^{*}-\xi\right|=r$, we have established

$$
\left|u(x)-u\left(x^{*}\right)\right| \leqq 2 C_{7}\left\{r^{p-\alpha-n} \int_{\Gamma(r)}|\operatorname{grad} u(y)|^{p} \rho(y)^{\alpha} d y\right\}^{1 / p}
$$

Define a function f by

$$
f(y)= \begin{cases}|\operatorname{grad} u(y)| \rho(y)^{\alpha / p}, & \text { if } y \in \Omega \\ 0, & \text { otherwise }\end{cases}
$$

Then $f \in L^{p}\left(R^{n}\right)$ by our assumption iv). If we set

$$
E^{\prime \prime}=\left\{\xi \in \partial \Omega ; \limsup _{t \downarrow 0} t^{p-\alpha-n} \int_{B(\xi, t)} f(y)^{p} d y>0\right\}
$$

then $B_{1-\alpha / p, p}\left(E^{\prime \prime}\right)=0$ on account of [2; Theorem 1] (see also [3; Lemma 6]). If $\xi \in F-\left(E^{\prime} \cup E^{\prime \prime}\right)$, then

$$
\lim _{x \rightarrow \xi, x \in \Gamma^{\prime}}\left|u(x)-u\left(x^{*}\right)\right|=0
$$

which implies that $\lim _{x \rightarrow \xi, x \in \Gamma^{\prime}} u(x)=\lim _{x^{*} \rightarrow \xi, x^{*} \in \ell} u\left(x^{*}\right)=a$. Our theorem is now proved with $E=E^{\prime} \cup E^{\prime \prime}$.

REmARK 1. The same conclusion as in the theorem holds for any u satisfying i), ii), iv) and
iii) $\quad|u(x)-a| \leqq C\left\{r^{-n} \int_{B(x, r)}|u(y)-a|^{p} d y\right\}^{1 / p}$
for all numbers a and r with $B(x, r) \subset \Gamma^{\prime}$, where C is a positive constant independent of a, r and x.

Therefore, in view of $[4$; Theorems 1 and 2$]$, we may replace the equation (1) by a more general equation of the form

$$
\begin{equation*}
\operatorname{div} \mathbf{A}(x, \operatorname{grad} u)=0 \tag{1}
\end{equation*}
$$

where $\mathbf{A}(x, \eta)$ is an R^{n}-valued (measurable) function on $\Omega \times R^{n}$ such that $|\mathbf{A}(x, \eta)| \leqq a|\eta|^{p-1}\left(a>0\right.$: const.) and $(\mathbf{A}(x, \eta), \eta) \geqq|\eta|^{p}$ for all $x \in \Omega$ and $\eta \in R^{n}$.

Remark 2. In case $p>n$, for any function u on Ω satisfying i), ii) and iv) in the theorem, the same conclusion as in the theorem holds.

In fact, with the same notation as in the proof, we can show

$$
\left|u(x)-\frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} u(y) d y\right| \leqq C\left\{r^{p-\alpha-n} \int_{\Gamma(r)}|\operatorname{lgrad} u(y)|^{p} \rho(y)^{\alpha} d y\right\}^{1 / p}
$$

which gives

$$
\left|u(x)-u\left(x^{*}\right)\right| \leqq 2 C\left\{r^{p-\alpha-n} \int_{\Gamma(r)}|\operatorname{grad} u(y)|^{p} \rho(y)^{\alpha} d y\right\}^{1 / p}
$$

References

[1] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[2] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
[3] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717-745.
[4] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302.
[5] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128.

> Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

