Нігозніма Матн. J. 10 (1980), 365–368

Existence of non-tangential limits of solutions of non-linear Laplace equation

Yoshihiro MIZUTA (Received December 17, 1979)

Our aim in this note is to study the boundary behavior of (weak) solutions of the non-linear Laplace equation

(1)
$$-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(|\operatorname{grad} u|^{p-2} \frac{\partial u}{\partial x_{i}} \right) = 0 \quad \text{on} \quad \Omega,$$

where Ω is a domain in the *n*-dimensional Euclidean space \mathbb{R}^n .

We say that $\xi \in \partial \Omega$ satisfies the interior cone condition if there is an open truncated cone Γ in Ω with vertex at ξ . Let F be the set of all $\xi \in \partial \Omega$ satisfying the interior cone condition. We can show that F is an F_{σ} -set^{*}).

A function u on Ω is said to have a non-tangential limit at $\xi \in F$ if for any open truncated cone $\Gamma \subset \Omega$ with vertex at ξ ,

$$\lim_{x\to\xi,x\in\Gamma'}u(x)$$

exists and is finite whenever Γ' is a cone with vertex at ξ whose closure $\overline{\Gamma}'$ is included in $\Gamma \cup \{\xi\}$.

In this note let $1 and let <math>\rho(x)$ denote the distance of x from $\mathbb{R}^n - \Omega$.

THEOREM. Let 1 and let u be a function satisfying the following properties:

- i) u is continuous on Ω ;
- ii) u is p-precise^{**)} on any relatively compact open subset of Ω ;
- iii) u satisfies (1) in the weak sense (cf. [4]);
- iv) $\int_{\Omega} |\operatorname{grad} u(x)|^p \rho(x)^{\alpha} dx < \infty$ for $\alpha < p$.

Then there exists a set $E \subset \partial \Omega$ such that $B_{1-\alpha/p,p}(E) = 0$ and u has a non-tangential limit at each point of F - E.

Here $B_{1-\alpha/p,p}$ denotes the Bessel capacity of index $(1-\alpha/p, p)$ (see [1]). In case p=2, our theorem is shown in [3; Theorem 2'].

^{*)} This fact was pointed out by Professor Makoto Sakai.

^{**)} For the definition of p-precise functions, see Ziemer [5].

Yoshihiro MIZUTA

PROOF. Set

$$E' = \left\{ \xi \in \partial \Omega; \int_{B(\xi,1) \cap \Omega} |\xi - y|^{1-\alpha/p-n} [|\operatorname{grad} u(y)| \rho(y)^{\alpha/p}] dy = \infty \right\},$$

where, in general, $B(\xi, r)$ denotes the open ball with center at ξ and radius r. Let $\xi \in F - E'$ and let Γ , Γ' , Γ'' be cones with vertexes at ξ and $\overline{\Gamma'} - \{\xi\} \subset \Gamma'' \subset \overline{\Gamma''} - \{\xi\} \subset \Gamma \subset \Omega$. Then, since there exists c > 0 such that $c|y - \xi| \leq \rho(y) \leq |y - \xi|$ for all $y \in \Gamma'$,

$$\int_{\Gamma'} |\xi - y|^{1-n} |\operatorname{grad} u(y)| dy < \infty.$$

Hence as in the proof of [3; Lemma 4] we can find a line ℓ such that $\ell \cap \Gamma' \neq \emptyset$ and $\lim_{x \to \xi, x \in \ell} u(x)$ exists and is finite. Denote the limit by a.

On the other hand, we can find c', 0 < c' < 1, such that $B(x, c'|x - \xi|) \subset \Gamma''$ whenever $x \in \Gamma'$. For $x \in \Gamma'$, we set $r = |x - \xi|$, $\Gamma(r) = \{y \in \Gamma''; |y - \xi| < (1 + c')r\}$, and denote by $|\Gamma(r)|$ the *n*-dimensional measure of $\Gamma(r)$. By [4; Theorems 1 and 2], we have

$$\begin{aligned} \left| u(x) - \frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} u(y) dy \right| \\ &\leq C_1(c'r)^{-n/p} \left\{ \int_{B(x,c'r)} \left| u(z) - \frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} u(y) dy \right|^p dz \right\}^{1/p} \\ &\leq C_2 r^{-n/p} \left[\int_{\Gamma(r)} \left\{ \frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} \left| u(z) - u(y) \right| dy \right\}^p dz \right]^{1/p} \\ &\leq C_2 r^{-n(1+1/p)} \left[\int_{\Gamma(r)} \left\{ \int_{\Gamma(r)} \left(\int_0^1 |z-y| \left| \operatorname{grad} u(y+t(z-y)) \right| dt \right) dy \right\}^p dz \right]^{1/p}. \end{aligned}$$

By the change of variables and Hölder's inequality, we have

$$\begin{split} &\int_{\Gamma(r)} \left\{ \int_{0}^{1/2} |z - y| \left| \text{grad } u(y + t(z - y)) \right| dt \right\} dy \\ &= \int_{0}^{1/2} (1 - t)^{-n-1} \left\{ \int_{\Gamma(r)} |z - y| \left| \text{grad } u(y) \right| dy \right\} dt \\ &\leq C_3 r^{1+n-n/p} \left\{ \int_{\Gamma(r)} |\text{grad } u(y)|^p dy \right\}^{1/p}, \end{split}$$

and by using Minkowski's inequality, we obtain

$$\left[\int_{\Gamma(r)} \left\{ \int_{\Gamma(r)} \left(\int_{1/2}^{1} |z - y| |\operatorname{grad} u(y + t(z - y))| dt \right) dy \right\}^{p} dz \right]^{1/p}$$

$$\leq C_{4}r \int_{\Gamma(r)} \left\{ \int_{1/2}^{1} \left(\int_{\Gamma(r)} |\operatorname{grad} u(y + t(z - y))|^{p} dz \right)^{1/p} dt \right\} dy$$

366

Existence of non-tangential limits of solutions of non-linear Laplace equation

$$\leq C_5 r^{1+n} \left(\int_{\Gamma(r)} |\operatorname{grad} u(z)|^p dz \right)^{1/p}$$

Hence

$$\begin{aligned} \left| u(x) - \frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} u(y) dy \right| &\leq C_6 \left\{ r^{p-n} \int_{\Gamma(r)} |\operatorname{grad} u(y)|^p dy \right\}^{1/p} \\ &\leq C_7 \left\{ r^{p-\alpha-n} \int_{\Gamma(r)} |\operatorname{grad} u(y)|^p \rho(y)^\alpha dy \right\}^{1/p}. \end{aligned}$$

Here $C_1 \sim C_7$ are positive constants independent of $x \in \Gamma'$. Thus, denoting by $x^* \in \ell$ the point with $|x^* - \xi| = r$, we have established

$$|u(x) - u(x^*)| \leq 2C_7 \left\{ r^{p-\alpha-n} \int_{\Gamma(r)} |\operatorname{grad} u(y)|^p \rho(y)^\alpha dy \right\}^{1/p}.$$

Define a function f by

$$f(y) = \begin{cases} |\operatorname{grad} u(y)| \rho(y)^{\alpha/p}, & \text{if } y \in \Omega, \\ 0, & \text{otherwise.} \end{cases}$$

Then $f \in L^p(\mathbb{R}^n)$ by our assumption iv). If we set

$$E'' = \left\{ \xi \in \partial \Omega; \limsup_{t \downarrow 0} t^{p-\alpha-n} \int_{B(\xi,t)} f(y)^p dy > 0 \right\},$$

then $B_{1-\alpha/p,p}(E'')=0$ on account of [2; Theorem 1] (see also [3; Lemma 6]). If $\xi \in F - (E' \cup E'')$, then

$$\lim_{x\to\xi,x\in\Gamma'}|u(x)-u(x^*)|=0,$$

which implies that $\lim_{x \to \xi, x \in \Gamma'} u(x) = \lim_{x^* \to \xi, x^* \in \ell} u(x^*) = a$. Our theorem is now proved with $E = E' \cup E''$.

REMARK 1. The same conclusion as in the theorem holds for any u satisfying i), ii), iv) and

iii)'
$$|u(x) - a| \leq C \left\{ r^{-n} \int_{B(x,r)} |u(y) - a|^p dy \right\}^{1/p}$$

for all numbers a and r with $B(x, r) \subset \Gamma'$, where C is a positive constant independent of a, r and x.

Therefore, in view of [4; Theorems 1 and 2], we may replace the equation (1) by a more general equation of the form

(1)'
$$\operatorname{div} \mathbf{A}(x, \operatorname{grad} u) = 0,$$

367

where $\mathbf{A}(x, \eta)$ is an \mathbb{R}^n -valued (measurable) function on $\Omega \times \mathbb{R}^n$ such that $|\mathbf{A}(x, \eta)| \leq a|\eta|^{p-1}$ (a > 0: const.) and $(\mathbf{A}(x, \eta), \eta) \geq |\eta|^p$ for all $x \in \Omega$ and $\eta \in \mathbb{R}^n$.

REMARK 2. In case p > n, for any function u on Ω satisfying i), ii) and iv) in the theorem, the same conclusion as in the theorem holds.

In fact, with the same notation as in the proof, we can show

$$|u(x) - \frac{1}{|\Gamma(r)|} \int_{\Gamma(r)} u(y) dy| \leq C \left\{ r^{p-\alpha-n} \int_{\Gamma(r)} |\operatorname{grad} u(y)|^p \rho(y)^{\alpha} dy \right\}^{1/p},$$

which gives

$$|u(x) - u(x^*)| \leq 2C \left\{ r^{p-\alpha-n} \int_{\Gamma(r)} |\operatorname{grad} u(y)|^p \rho(y)^{\alpha} dy \right\}^{1/p}.$$

References

- N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
- [2] N.G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
- [3] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717-745.
- [4] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302.
- [5] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

368