Нікозніма Матн. J. 10 (1980), 323–327

Scalar curvatures of left invariant metrics on some Lie groups

Kagumi UESU (Received November 9, 1979)

In [1], J. Milnor gave many facts concerning curvatures of left invariant metrics on Lie groups. About scalar curvatures, he showed that

(1) if a Lie group G is solvable, then every left invariant metric on G is either flat, or else has strictly negative scalar curvature, and

(2) every left invariant metric on $SL(2, \mathbf{R})$ has strictly negative scalar curvature.

And he conjectured that if the universal covering group of a Lie group G is homeomorphic to Euclidean space then the conclusion of (1) holds. In this note we shall show that this conjecture is affirmative, that is, we have the following

THEOREM. Let G be a Lie group such that the universal covering group of G is homeomorphic to Euclidean space. Then every left invariant metric on G is either flat or else has strictly negative scalar curvature.

Let G be a Lie group with a left invariant metric \langle , \rangle and H a closed normal subgroup. In this note, we always consider the left invariant metrics \langle , \rangle_H on H and $\langle , \rangle_{G/H}$ on G/H obtained from the metric of G naturally, so that the natural embedding from H into G is an isometry and the natural projection π from G to G/H is a submersion. We denote the sectional curvatures of G, G/H and H by κ , κ_* and $\bar{\kappa}$, and the scalar curvatures by $\rho(G)$, $\rho(G/H)$ and $\rho(H)$ respectively.

LEMMA 1. Let G be a Lie group whose universal covering group is homeomorphic to Euclidean space and g its Lie algebra. If G is not solvable, then $g=s_1+g_0$ (direct sum) where s_1 is a Lie subalgebra of g isomorphic to $\mathfrak{sl}(2, \mathbb{R})$ and g_0 is an ideal of g such that the connected simply connected Lie group whose Lie algebra is isomorphic to g_0 is homeomorphic to Euclidean space.

PROOF. Let g=s+r (direct sum) be a Levi decomposition, where s is a semisimple Lie subalgebra of g and r is the radical of g. By the assumption, $s \neq 0$ and the connected simply connected Lie group whose Lie algebra is isomorphic to s is homeomorphic to Euclidean space. Because of the fact that a connected simply connected simple Lie group homeomorphic to Euclidean space is locally

Kagumi UESU

isomorphic to $SL(2, \mathbf{R})$, we have $\mathfrak{s} = \mathfrak{s}_1 + \cdots + \mathfrak{s}_l$ where \mathfrak{s}_l (i = 1, ..., l) are ideals of \mathfrak{s} isomorphic to $\mathfrak{sl}(2, \mathbf{R})$. We put $\mathfrak{g}_0 = \mathfrak{s}_2 + \cdots + \mathfrak{s}_l + \mathfrak{r}$. Then \mathfrak{g}_0 is an ideal of \mathfrak{g} and the corresponding connected simply connected Lie group is homeomorphic to Euclidean space. Q.E.D.

LEMMA 2. Let G be a Lie group with a left invariant metric and H a closed normal subgroup. Let g and h be the Lie algebras of G and H respectively. Let $\{e_1,...,e_n\}$ be an orthonormal base of g such that e_{α} ($\alpha = r+1,...,n$) are in h where r is the dimension of G/H. Then for $1 \leq s$, $t \leq r$,

$$\kappa(e_s, e_t) = \kappa_*(\pi_*(e_s), \pi_*(e_t)) - \frac{3}{4} \| [e_s, e_t]_{\mathfrak{h}} \|^2,$$

where $[e_s, e_t]_{\mathfrak{h}}$ is the \mathfrak{h} -component of $[e_s, e_t]$.

PROOF. See Corollary 1 in [2].

LEMMA 3. Let G be a Lie group with a left invariant metric \langle , \rangle and g its Lie algebra. If $g = s_1 + g_1$ (direct sum) where s_1 is a subalgebra of g isomorphic to $sl(2, \mathbf{R})$ and g_1 is an ideal of g. Then there is an orthonormal base $\{e_1, \ldots, e_n\}$ of g such that e_{α} ($4 \le \alpha \le n$) are in g_1 and $\langle [e_t, e_s], e_s \rangle = 0$ for $1 \le s, t \le 3$.

PROOF. Let p be the orthogonal complement of g_1 in g. By (4.2) in [1], there is an orthonormal base $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ of g/g_1 such that $\langle [\bar{e}_t, \bar{e}_s], \bar{e}_s \rangle_{G/G_1} = 0$ for $1 \leq s, t \leq 3$. The restriction of π_* to p is an isometry. So we can choose an orthonormal base $\{e_1, e_2, e_3\}$ of p, with $\pi_*e_s = \bar{e}_s$. Let $\{e_4, \dots, e_n\}$ be an orthonormal base of g_1 . Then $\{e_1, \dots, e_n\}$ is an orthonormal base of g and $\langle [e_t, e_s], e_s \rangle$ = 0 for $1 \leq s, t \leq 3$. Q. E. D.

PROOF OF THEOREM. Let G be a Lie group homeomorphic to Euclidean space, and g its Lie algebra. If G is solvable, then the theorem was proved by J. Milnor ([1]). Assume G is not solvable. Then, by Lemma 1, $g = s_1 + g_0$ (direct sum) where s_1 is a Lie subalgebra of g isomorphic to $sl(2, \mathbf{R})$ and g_0 is an ideal of g. Let G_0 be the analytic subgroup of G whose Lie algebra is g_0 . Then G_0 is a closed normal subgroup of G and homeomorphic to Euclidean space. We give a left invariant metric on G, and choose the left invariant metrics on G/G_0 and G_0 described before. By Lemma 3, let $\{e_1, \ldots, e_n\}$ be an orthonormal base of g such that e_x ($4 \le \alpha \le n$) are in g_0 and $\langle [e_t, e_s], e_s \rangle = 0$ for $1 \le s, t \le 3$. Let L_i denote the linear transformation ad (e_i) on g, so that $L_i x = [e_i, x]$ for x in g. Let L_i^* denote the adjoint transformation of L_i . Then using the equations

$$\kappa(e_i, e_j) = \langle \mathcal{V}_{[e_i, e_j]} e_i - \mathcal{V}_{e_i} \mathcal{V}_{e_j} e_i + \mathcal{V}_{e_j} \mathcal{V}_{e_i} e_i, e_j \rangle,$$

$$\langle \mathcal{V}_x y, z \rangle = \frac{1}{2} (\langle [x, y], z \rangle - \langle [y, z], x \rangle + \langle [z, x], y \rangle),$$

324

we get the following equation:

$$\kappa(e_i, e_j) = -\frac{3}{4} \langle L_i e_j, L_i e_j \rangle - \frac{1}{2} \langle L_i e_j, L_i^* e_j \rangle - \frac{1}{2} \langle L_j e_i, L_j^* e_i \rangle$$
$$+ \frac{1}{4} \langle L_i^* e_j + L_j^* e_i, L_i^* e_j + L_j^* e_i \rangle - \langle L_i^* e_i, L_j^* e_j \rangle.$$

Hence, for $4 \leq \alpha$, $\beta \leq n$ ($\alpha \neq \beta$),

.

.

$$\begin{split} \kappa(e_{\alpha}, e_{\beta}) \\ &= -\frac{3}{4} \langle L_{\alpha}e_{\beta}, L_{\alpha}e_{\beta} \rangle - \frac{1}{2} \langle L_{\alpha}e_{\beta}, L_{\alpha}^{*}e_{\beta} \rangle - \frac{1}{2} \langle L_{\beta}e_{\alpha}, L_{\beta}^{*}e_{\alpha} \rangle \\ &+ \frac{1}{4} \langle L_{\alpha}^{*}e_{\beta} + L_{\beta}^{*}e_{\alpha}, L_{\alpha}^{*}e_{\beta} + L_{\beta}^{*}e_{\alpha} \rangle - \langle L_{\alpha}^{*}e_{\alpha}, L_{\beta}^{*}e_{\beta} \rangle \\ &= -\frac{3}{4} \langle L_{\alpha}e_{\beta}, L_{\alpha}e_{\beta} \rangle_{G_{0}} - \frac{1}{2} \langle L_{\alpha}e_{\beta}, L_{\alpha}^{*}e_{\beta} \rangle_{G_{0}} - \frac{1}{2} \langle L_{\beta}e_{\alpha}, L_{\beta}^{*}e_{\alpha} \rangle_{G_{0}} \\ &+ \frac{1}{4} \langle L_{\alpha}^{*}e_{\beta} + L_{\beta}^{*}e_{\alpha}, L_{\alpha}^{*}e_{\beta} + L_{\beta}^{*}e_{\alpha} \rangle_{G_{0}} - \langle L_{\alpha}^{*}e_{\alpha}, L_{\beta}^{*}e_{\beta} \rangle_{G_{0}} \\ &+ \frac{1}{4} \sum_{s=1}^{3} \langle L_{\alpha}^{*}e_{\beta} + L_{\beta}^{*}e_{\alpha}, e_{s} \rangle^{2} - \sum_{s=1}^{3} \langle L_{\alpha}^{*}e_{\alpha}, e_{s} \rangle \langle L_{\beta}^{*}e_{\beta}, e_{s} \rangle \\ &= \bar{\kappa}(e_{\alpha}, e_{\beta}) + \frac{1}{4} \sum_{s=1}^{3} \langle L_{\alpha}^{*}e_{\beta} + L_{\beta}^{*}e_{\alpha}, e_{s} \rangle^{2} - \sum_{s=1}^{3} \langle L_{\alpha}^{*}e_{\alpha}, e_{s} \rangle \langle L_{\beta}^{*}e_{\beta}, e_{s} \rangle , \end{split}$$

and, for $1 \leq s \leq 3$ and $4 \leq \alpha \leq n$,

$$\begin{aligned} \kappa(e_s, e_{\alpha}) &= -\frac{3}{4} \langle \overline{L}_s e_{\alpha}, \overline{L}_s e_{\alpha} \rangle_{G_0} - \frac{1}{2} \langle \overline{L}_s e_{\alpha}, \overline{L}_s^* e_{\alpha} \rangle_{G_0} + \frac{1}{4} \langle \overline{L}_s^* e_{\alpha}, \overline{L}_s^* e_{\alpha} \rangle_{G_0} \\ &+ \frac{1}{4} \langle L_s^* e_{\alpha} + L_{\alpha}^* e_s, e_s \rangle^2 + \frac{1}{4} \sum_{i=1, i \neq s}^3 \langle L_s^* e_{\alpha} + L_{\alpha}^* e_s, e_i \rangle^2 \\ &- \sum_{i=1, i \neq s}^3 \langle L_s^* e_s, e_i \rangle \langle L_{\alpha}^* e_{\alpha}, e_i \rangle, \end{aligned}$$

where \overline{L}_i is the linear transformation ad (e_i) restricted to g_0 and \overline{L}_i^* is the adjoint transformation of \overline{L}_i . Put $g_i = \mathbf{R} \cdot e_i + g_0$ (i = 1, 2, 3). Then g_i (i = 1, 2, 3) are subalgebras of g. Let G_1 , G_2 and G_3 be the analytic subgroups of G corresponding to g_1 , g_2 and g_3 respectively. We choose the induced metrics from G on G_1 , G_2 and G_3 . Let $\rho(G_1)$, $\rho(G_2)$ and $\rho(G_3)$ denote the scalar curvatures of G_1 , G_2 and G_3 respectively. Then

Kagumi UESU

$$\begin{split} \rho(G_s) &= \rho(G_0) + \frac{1}{4} \sum_{\alpha,\beta=4,\alpha\neq\beta}^n \langle L_{\alpha}^* e_{\beta} + L_{\beta}^* e_{\alpha}, e_s \rangle^2 \\ &- \sum_{\alpha,\beta=4,\alpha\neq\beta}^n \langle L_{\alpha}^* e_{\alpha}, e_s \rangle \langle L_{\beta}^* e_{\beta}, e_s \rangle \\ &+ 2 \sum_{\alpha=4}^n \kappa(e_s, e_{\alpha}) - \frac{1}{2} \sum_{\alpha=4}^n \sum_{t=1,t\neq s}^3 \langle L_s^* e_{\alpha} + L_{\alpha}^* e_s, e_t \rangle^2 \\ &+ \sum_{\alpha=4}^n \sum_{t=1,t\neq s}^3 \langle L_s^* e_s, e_t \rangle \langle L_{\alpha}^* e_{\alpha}, e_t \rangle \,. \end{split}$$

Hence

$$\begin{split} \sum_{s=1}^{3} \rho(G_s) \\ &= 2\rho(G_0) + \sum_{\alpha,\beta=4,\alpha\neq\beta}^{n} \bar{\kappa}(e_{\alpha}, e_{\beta}) + \frac{1}{4} \sum_{s=1}^{3} \sum_{\alpha,\beta=4,\alpha\neq\beta}^{n} \langle L_{\alpha}^* e_{\beta} + L_{\beta}^* e_{\alpha}, e_s \rangle^2 \\ &- \sum_{s=1}^{3} \sum_{\alpha,\beta=4,\alpha\neq\beta}^{n} \langle L_{\alpha}^* e_{\alpha}, e_s \rangle \langle L_{\beta}^* e_{\beta}, e_s \rangle + 2 \sum_{s=1}^{3} \sum_{\alpha=4}^{n} \kappa(e_s, e_{\alpha}) \\ &- \frac{1}{2} \sum_{\alpha=4}^{n} \sum_{s,t=1,s\neq t}^{3} \langle L_{s}^* e_{\alpha} + L_{\alpha}^* e_{s}, e_t \rangle^2 \\ &+ 2 \sum_{\alpha=4}^{n} \sum_{s,t=1,s\neq t}^{3} \langle L_{s}^* e_{s}, e_t \rangle \langle L_{\alpha}^* e_{\alpha}, e_t \rangle. \end{split}$$

Since $\langle L_s^* e_s, e_t \rangle = 0$, we have

$$\begin{split} \sum_{\alpha,\beta=4,\alpha\neq\beta}^{n} \kappa(e_{\alpha}, e_{\beta}) &+ 2\sum_{s=1}^{3} \sum_{\alpha=4}^{n} \kappa(e_{s}, e_{\alpha}) \\ &= \sum_{s=1}^{3} \rho(G_{s}) - 2\rho(G_{0}) + \frac{1}{2} \sum_{\alpha=4}^{n} \sum_{s,t=1,s\neq t}^{3} \langle L_{s}^{*}e_{\alpha} + L_{\alpha}^{*}e_{s}, e_{t} \rangle^{2} \\ &= \sum_{s=1}^{3} \rho(G_{s}) - 2\rho(G_{0}) + \frac{1}{2} \sum_{s,t=1,s\neq t}^{3} \|[e_{s}, e_{t}]]_{g_{0}}\|^{2}. \end{split}$$

We put $S_i = \frac{1}{2}(\bar{L}_i + \bar{L}_i^*)$ (i = 1, 2, 3). Then, by Lemma 5.6 in [1],

$$\rho(G_i) = \rho(G_0) - \operatorname{trace} (S_i^2) - (\operatorname{trace} S_i)^2$$

Using Lemma 2, we obtain the following equality:

$$\rho(G) = \rho(G_0) + \rho(G/G_0) - \sum_{i=1}^{3} \operatorname{trace} (S_i^2) - \sum_{i=1}^{3} (\operatorname{trace} S_i)^2 - \frac{1}{4} \sum_{s,t=1,s\neq t}^{3} \|[e_s, e_t]_{g_0}\|^2.$$

Hence

$$\rho(G) \leq \rho(G_0) + \rho(G/G_0),$$

where the equality holds if and only if the space spanned by $\{e_1, e_2, e_3\}$ is a

326

subalgebra of g and \overline{L}_i (i=1, 2, 3) are skew adjoint. By Corollary 4.7 in [1], $\rho(G/G_0)$ is strictly negative and by the induction hypothesis $\rho(G_0)$ is non-positive. So we have $\rho(G)$ is strictly negative. Q. E. D.

References

- J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329.
- [2] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (1966), 459-469.

Department of Mathematics, Faculty of Science, Kyushu University