Modularity in Lie algebras

Ralph K. Amayo and Jochen Schwarz

(Received October 31, 1979)

A subalgebra M of a Lie algebra L is termed modular in $L(M \mathrm{~m} L)$ if M is a modular element in the lattice formed by the subalgebras of L, i.e., if
(*) $\langle M, U\rangle \cap V=\langle U, M \cap V\rangle$ for all $U, V \leqq L$ with $U \leqq V$ and (**) $\langle M, U\rangle \cap V=\langle U \cap V, M\rangle$ for all $U, V \leqq L$ with $M \leqq V$ hold.

Simple examples for modular subalgebras of a Lie algebra L are the quasiideals of $L-Q \leqq L$ is called a quasi-ideal of $L(Q \mathrm{q} L)$ if Q is permutable with every subspace R of L, i.e., if $[Q, R] \subseteq Q+R$ for all $R \subseteq L$ ([1], p. 28).

That the reverse implication is not true is shown by the Lie algebra $L(L=$ $\langle e\rangle+\langle f\rangle+\langle g\rangle)$ defined over a field containing no pair of elements α, β such that $\alpha^{2}+\beta^{2}=-1$, with the following multiplication: $[e, f]=g,[f, g]=e,[g, e]=$ f. L is simple, and every one-dimensional subalgebra of L is maximal and modular in L, but not a quasi-ideal of L.

We prove the following (M_{L} denotes the core of M in L):
(i) A modular subalgebra M of a Lie algebra L permutable with a solvable subalgebra A of L is a quasi-ideal of $M+A$ - in particular M is a quasi-ideal of L if L is solvable.
(ii) A modular subalgebra M of a finite-dimensional Lie algebra L over any field of characteristic zero is either
a) an ideal of L; or
b) L / M_{L} is metabelian, every subalgebra of L / M_{L} is a quasi-ideal, M / M_{L} is one-dimensional and is spanned by an element which acts as the identity map on $\left([L, L]+M_{L}\right) / M_{L}$; and $L /\left([L, L]+M_{L}\right)$ is one-dimensional; or
c) M / M_{L} is two-dimensional and L / M_{L} is the three-dimensional split simple Lie algebra; or
d) M / M_{L} is a one-dimensional maximal subalgebra of L / M_{L} and L / M_{L} is a three-dimensional non-split simple Lie algebra.

1. Elementary properties of modular subalgebras

The properties 1.1-1.3 hold for modular elements in more general lattices; proofs can be found in [9], where the modular elements are called "Dedekind elements."

Proposition 1.1. Let M be modular in a Lie algebra Land let U be a
subalgebra of L. Then $M \cap U$ is modular in U ([9], III, p. 74).
Proposition 1.2. Let M be modular in L and let I be an ideal of L with $I \leqq M$. Then M / I is modular in L / I ([9], IV, p. 75).

Proposition 1.3. Let M and N be modular in a Lie algebra L. Then $\langle M, N\rangle$ is modular in L ([9], V, p. 75).

Lemma 1.4. Let M be modular in L, Q be a quasi-ideal of L, and $\phi: L \rightarrow$ L^{\prime} a homomorphism of Lie algebras. Then $\phi(M)$ is modular in $\phi(L)$, and $\phi(Q)$ is a quasi-ideal of $\phi(L)$.

Lemma 1.5. Let M be modular in a Lie algebra L. Then
a) M is a maximal subalgebra of $\langle M, x\rangle$ for all $x \in L \backslash M$.
b) $\quad I_{L}(M)$, the idealizer of M in L, is either L or M.

Proof. a) If $M \leqq N \leqq\langle M, x\rangle$, then by (**) $N=N \cap\langle M, x\rangle=\langle N \cap\langle x\rangle$, $M\rangle$, hence $N=M$ or $N=\langle M, x\rangle$.
b) Suppose $M \nsubseteq I_{L}(M) \leqq L$ and let $x \in I_{L}(M) \backslash M, y \in L \backslash I_{L}(M)$. Then $M \neq$ $M+[y, M]=M+[x+y, M]$ and M is a maximal subalgebra of $\langle y, M\rangle$ and of $\langle x+y, M\rangle$ due to a). Now

$$
\begin{aligned}
& M \leqq\langle M,[x+y, M]\rangle \leqq\langle x+y, M\rangle \text { and } \\
& M \leqq\langle M,[y, M]\rangle \leqq\langle y, M\rangle .
\end{aligned}
$$

Using a) we get

$$
\langle x+y, M\rangle=\langle M,[x+y, M]\rangle=\langle M,[y, M]\rangle=\langle y, M\rangle .
$$

This means $x+y \in\langle y, M\rangle$, hence $x \in\langle y, M\rangle$. Therefore, $x \in I_{L}(M) \cap\langle y, M\rangle=$ $\left\langle I_{L}(M) \cap\langle y\rangle, M\right\rangle=M$ by (**), which contradicts our assumption.

Lbmma 1.6. Let M be modular in a Lie algebra L and let U be a subalgebra of L with $\langle M, U\rangle=M+U$. Then
a) $\quad M$ is permutable with all quasi-ideals W of U.
b) Every $V \leqq L$ with $U \cap M \leqq V \leqq U$ is permutable with M.
c) If in addition, $U \cap M$ is a quasi-ideal of U, then M is a quasi-ideal of $M+U$.

Proof. a) As $W \mathrm{q} U$ and $\langle U, M\rangle=U+M$ we have $\langle W, M\rangle=U \cap$ $\langle W, M\rangle+M=\langle W, M \cap U\rangle+M=W+M \cap U+M=W+M$ by (*).
b) $\langle V, M\rangle=U \cap\langle V, M\rangle+M=\langle V, U \cap M\rangle+M=V+M$ due to (*).
c) Let $x=u+m ; u \in U, m \in M$. As $(U \cap M) \mathrm{q} M$ we have by $(*)\langle x, M\rangle=$ $\langle u, M\rangle=\langle u, U \cap M\rangle+M=\langle u\rangle+U \cap M+M=\langle u\rangle+M=\langle x\rangle+M$.

Proposition 1.7. Let M be modular in a Lie algebra L and A be a solvable subalgebra of L. Then $A \cap M$ is a quasi-ideal of A; more precisely: $A \cap M$ is an ideal of A or $\operatorname{dim} A / A \cap M=1$ or $A=[A, A]+A \cap M,[[A, A],[A, A]] \leqq$ $A \cap M=\langle m\rangle+(A \cap M)_{A}$ with $m \in M$ and $[a, m]=a\left(\bmod (A \cap M)_{A}\right)$ for all $a \in[A, A]$.

Proof. Let $a \in A \backslash A \cap M . B:=\langle a, A \cap M\rangle$ is solvable, and by (*) it follows that

$$
B=B \cap(A \cap\langle a, M\rangle)=B \cap\langle a, M\rangle=\langle a, B \cap M\rangle .
$$

If we pick $r \geqq 1, r \in \mathbf{N}$, maximal with respect to $B^{(r)} \ddagger M$, we have $M \leqq\left\langle B^{(r)}, M\right\rangle$ $\leqq\langle B, M\rangle \leqq\langle a, M\rangle$ and $\left\langle B^{(r)}, M\right\rangle=\langle a, M\rangle$ by Lemma 1.5 a); now (using (*))

$$
\begin{gathered}
B=B \cap\left\langle B^{(r)}, M\right\rangle=\left\langle B^{(r)}, M \cap B\right\rangle=B^{(r)}+M \cap B \text { and } \\
B^{(r+1)} \leqq B^{(r)} \cap M \triangleleft B^{(r)} .
\end{gathered}
$$

Thus $A \cap M=B \cap M$ is a quasi-ideal of B due to Lemma 1.6c). In particular, $B=\langle a, B \cap M\rangle=\langle a\rangle+B \cap M=\langle a\rangle+A \cap M$. As a was arbitrary, we have $(A \cap M) \mathrm{q} A$. The additional remarks of the proposition are a direct consequence of Theorem 3.6 in [1].

Corollary 1.8. Let M be modular in L and let A be a solvable subalgebra of L permutable with M. Then M is a quasi-ideal of $M+A$.

The following are two convenient technical lemmas:
Lemma 1.9. Let M be a modular and maximal subalgebra of a Lie algebra L. Then $\operatorname{dim} V \leqq 1$ for every subalgebra V of L with $M \cap V=0$.

Proof. Suppose $M \cap V=0$ for $V \leqq L$ with $\operatorname{dim} V>1$, and let $0 \neq u \in V$. But now (*) does not hold, which contradicts $M \mathrm{~m} L$:

$$
\langle u, M\rangle \cap V=L \cap V=V \neq\langle u\rangle=\langle u, M \cap V\rangle .
$$

Lbmma 1.10. Let M be a modular and maximal subalgebra of a Lie algebra L. Then $M \cap U$ is a modular and maximal subalgebra of U for every subalgebra U of L with $U \$ M$.

Proof. We have $(M \cap U) m U$ by Proposition 1.1. If $x \in U \backslash(M \cap U),\langle x$, $M\rangle=L$ holds and by (*) it follows that $U=U \cap L=U \cap\langle x, M\rangle=\langle x, U \cap M\rangle$.

2. The finite-dimensional case in characteristic zero

All Lie algebras in this section are finite dimensional and defined over an
arbitrary field of characteristic zero. The following lemma is a slight extension of a theorem of Chevalley, Tuck and Towers, which occurs for $V=A$ ([8], pp. 443444).

Lbmma 2.1. Let U and V be subspaces of a finite-dimensional algebra A over any field of characteristic zero with $U \subseteq V$. If U is invariant under all automorphisms α of A with $\alpha(V)=V$, then U is invariant under all derivations d of A with $d(V) \subseteq V$. In particular if A is a Lie algebra and V a subalgebra of A, then U is an ideal of V.

Proof. The Lie algebra $\mathrm{L}($ Aut $(A))$ of the algebraic group Aut (A) of the automorphisms of A coincides with the derivation algebra $\mathrm{D}(A)$ of A, a subalgebra of $\operatorname{gl}(A)([4]$, p. 179 and p.128). The automorphisms of A which leave V invariant form an algebraic group $\left(:=\operatorname{AUT}_{V}(A)\right.$), whose Lie algebra $\mathrm{L}\left(\operatorname{AUT}_{V}(A)\right)$ consists of all endomorphisms of the vector space A mapping V into V ([4], pp. 144-145). Thus $\operatorname{Aut}(A) \cap \operatorname{AUT}_{V}(A)$ is an algebraic group ([4], p. 79); these are the algebra-automorphisms of A which leave V invariant. Since $\mathrm{L}($ Aut (A) $\left.\cap \operatorname{AUT}_{V}(A)\right)=\mathrm{L}(\operatorname{Aut}(A)) \cap \mathrm{L}\left(\operatorname{AUT}_{V}(A)\right)([4], \mathrm{p} .171,172)$, we have $\mathrm{L}(\operatorname{Aut}(A) \cap$ $\left.\operatorname{AUT}_{V}(A)\right)=\mathrm{D}_{V}(A):=\{d \in \mathrm{D}(A) ; d(V) \subseteq V\} \leqq \mathrm{D}(A)$. Hence Aut $(A) \cap \operatorname{AUT}_{V}(A)$ is contained in \mathfrak{g}, where

$$
\begin{aligned}
\mathrm{g}:= & \{G ; G \text { is an algebraic group of automorphisms of the } \\
& \text { vector space } \left.A \text { with } \mathrm{L}(G) \geqq \mathrm{D}_{V}(A)\right\} .
\end{aligned}
$$

Let $\mathrm{G}(A)=\cap\{G ; G \in \mathfrak{g}\}$. Then $\mathrm{G}(A) \leqq \operatorname{Aut}(A) \cap \operatorname{AUT}_{V}(A) . \mathrm{G}(A)$ is an irreducible algebraic group with $\mathrm{L}(\mathrm{G}(A)) \geqq \mathrm{D}_{V}(A)$ ([4], Definition 1, p. 86; Theorem 10, p. 165, and Theorem 14, p. 175). As $G(A)$ is contained in Aut (A) $\cap \operatorname{AUT}_{V}(A)$, thus leaving U invariant by construction, U is invariant under $\mathrm{L}(\mathrm{G}(A)) \geqq \mathrm{D}_{V}(A)([8], \mathrm{pp} .443-444)$.

Thborem 2.2. If a Lie algebra L over any field of characteristic zero contains a core-free subalgebra of codimension 1 , then L is either one-dimensional, or two-dimensional non-abelian, or L is the three-dimensional split simple Lie algebra.

The proof of the theorem can be found in [7], pp. 105-107.
Notation. We call a modular subalgebra M of a Lie algebra L maximal modular in L, if there is no modular subalgebra N of L such that $M \leqq N \leqq L$.

Using Lemma 2.1, the proof of the next lemma is analogous to part (ii) of the proof of R. Schmidt's Lemma 1 for groups ([6], p. 361):

Lemma 2.3. Let M be maximal modular in a Lie algebra L. If M is
not an ideal of L, then M is a maximal subalgebra of L.
Theorem 2.4. Let M be maximal modular in a Lie algebra L. If M is not an ideal of L, one of the following holds:
a) M is of codimension 1 in L and $\operatorname{dim} L / M_{L} \leqq 3$,
b) M is a maximal subalgebra of L with $\operatorname{dim} M / M_{L}=1$, and L / M_{L} is a three-dimensional non-split simple Lie algebra.

Proof. Let L be a counterexample of minimal dimension. $\quad M$ is a maximal subalgebra of L due to Lemma 2.3, and we can assume that $M_{L}=0$ (w.l.o.g.) by Lemma 1.2.

If the largest solvable ideal of L, the radical of $L(\operatorname{rad}(L))$, is non-trivial, $\operatorname{rad}(L) \leq M$ holds, hence M is a quasi-ideal of $L=M+\operatorname{rad}(L)$ (Corollary 1.8). As M is maximal in L, we have $\operatorname{dim} L / M=1$, and by Theorem 2.2 it follows that $\operatorname{dim} L / M_{L} \leqq 3$. Now let $\operatorname{rad}(L)=0$ and $L=\oplus_{i=1}^{n} E_{i}, 1 \leqq n \in \mathbf{N}$, with simple ideals E_{i} of L.

If $n \geqq 2$, then $\left\langle M, E_{1}\right\rangle=M+E_{1}=L$ and $M \cap E_{2} \triangleleft M, E_{1} \leqq I_{L}\left(M \cap E_{2}\right)$ (since $\left[E_{1}, E_{2}\right]=0$); thus $M \cap E_{2} \triangleleft L$, i.e., $M \cap E_{2}=0$. By Lemma 1.9 the contradiction $\operatorname{dim} E_{2} \leqq 1$ follows.

Therefore $n=1$ and L is simple.
An easy calculation shows that L is not a counterexample for $\operatorname{dim} L=3$, because a) holds if L is split, and b) holds if L is non-split. Hence we may assume that
A) L is a simple Lie algebra with $\operatorname{dim} L>3$.

If we look at L over an algebraically closed extension field \mathfrak{f}^{\prime} of $\mathfrak{f}, L \dot{\otimes}_{\mathfrak{t}} \mathfrak{f}^{\prime}$ is semi-simple and $\operatorname{dim}_{t^{\prime}}\left(L \otimes_{\mathfrak{t}} \mathfrak{f}^{\prime}\right)=\operatorname{dim} L$ ([3], p. 95). L has non-trivial Cartansubalgebras ([2], p. 21), every Cartan-subalgebra H of L remains (as $H \otimes_{\mathbb{t}} \mathfrak{f}^{\prime}$) Cartan, and by $\left([2]\right.$, p. 36) $\operatorname{dim}_{t^{\prime}}\left(H \otimes_{\mathrm{t}} \mathrm{f}^{\prime}\right)=\operatorname{dim} H$ holds. As $\operatorname{dim} L>3$ it follows by 1.9 that
A1) $\operatorname{dim} H \geqq 2$ and $M \cap H \neq 0$ for all $H \in \operatorname{Cart}(L)$ and $\operatorname{dim}(H /(M \cap H)) \leqq 1$.
As $\alpha(M) \mathrm{m} L$ for all $\alpha \in \operatorname{Aut}(L)$, Lemma 2.1 leads to (recall that $M_{L}=0$)
A2) $\cap\{\alpha(M) ; \alpha \in \operatorname{Aut}(L)\}=0$.
By A1) and the maximality of M in L we have
B1) $\operatorname{dim} M \geqq 2$.
Now we show that
B2) $\quad M$ is not solvable and M is not three-dimensional split simple.
Assume the contrary. Take $H \in \operatorname{Cart}(L)$ such that $H \nsubseteq M$. Due to A2) there exists a $\beta \in \operatorname{Aut}(L)$ such that $H \cap M \nsubseteq H \cap \beta(M) . \quad M$ and $\beta(M)$ are modular and maximal in L (Lemma 1.4). A1), B1) and Lemma 1.9 imply that $H \cap \beta(M)$ $\neq 0, M \cap \beta(M) \neq 0$. Furthermore

$$
H \cap \beta(M) \nsubseteq M \text {, i.e., } H \cap \beta(M) \nsubseteq M \cap \beta(M) \text {. }
$$

$M \cap \beta(M)$ is modular and maximal in M, rsp. in $\beta(M)$ by Lemma 1.10. So we have $\operatorname{dim} M /(M \cap \beta(M))=1=\operatorname{dim} \beta(M) /(M \cap \beta(M))$ by the choice of L, and therefore $M=H \cap M+M \cap \beta(M)$, and $\beta(M)=H \cap \beta(M)+M \cap \beta(M)$. As H is nilpotent (hence solvable) the maximal quasi-ideal $M \cap H$ of H is of codimension 1 in H (Lemma 1.10, Proposition 1.7); thus $H=H \cap M+H \cap \beta(M)$. Now we have

$$
[M, \beta(M)] \leqq M+\beta(M) \text {, i.e., } M+\beta(M)=\langle M, \beta(M)\rangle=L .
$$

Hence $\operatorname{dim} L / M=\operatorname{dim} \beta(M) /(M \cap \beta(M))=1$, and by Theorem 2.2 it now follows that $\operatorname{dim} L \leqq 3$ - which is a contradiction to A).

Next we prove the following:
B3) M is semi-simple.
Suppose $\operatorname{rad}(M) \neq 0$. By A2) and (*) there exists a $\beta(M) \nsubseteq \operatorname{rad}(M), \beta \in$ Aut (L), such that $M=M \cap L=M \cap\langle\operatorname{rad}(M), \beta(M)\rangle=\operatorname{rad}(M)+M \cap \beta(M) . \quad M$ $\cap \beta(M)$ cannot be solvable; if it were, M would be solvable. $M \cap \beta(M)$ is a quasiideal of M (Corollary 1.8), and $\operatorname{dim} M /(M \cap \beta(M))=1$ by the maximality of $M \cap$ $\beta(M)$ in M (Lemma 1.10). \quad So $(M \cap \beta(M)) \mathrm{q} \beta(M)$ since $\operatorname{dim} M \cap \beta(M)=\operatorname{dim} M-1$ $=\operatorname{dim} \beta(M)-1$.

Let $(M \cap \beta(M))^{(\omega)}$ denote $\cap_{n=1}^{\infty}(M \cap \beta(M))^{(n)}$; then $(M \cap \beta(M))^{(\omega)} \neq 0$ is an ideal of M and of $\beta(M)$ due to Corollary 3.3 in [1]. Thus the contradiction $(M \cap \beta(M))^{(\omega)} \triangleleft\langle M, \beta(M)\rangle=L$ follows.

Now we can show that B) M is three-dimensional non-split simple.

Suppose M is not simple. Let E be one of the simple ideals of M not contained in $\alpha(M) \neq M, \alpha \in \operatorname{Aut}(L)$. Then (by (*))

$$
M=L \cap M=\langle\alpha(M), E\rangle \cap M=\langle E, M \cap \alpha(M)\rangle=E+M \cap \alpha(M) .
$$

$M \cap \alpha(M)$ cannot be solvable since $M=M^{(n)}=(M \cap \alpha(M))^{(n)}+E$ for all $n \in \mathbf{N}$. Let $A=(M \cap \alpha(M))_{M}$ and $B=(M \cap \alpha(M))_{\alpha(M)}$. The choice of L and Lemma 1.10 lead to

$$
\operatorname{dim}(M \cap \alpha(M)) / A \leqq 2 \text { and } \operatorname{dim}(M \cap \alpha(M)) / B \leqq 2
$$

Hence $(M \cap \alpha(M))^{(2)} \leqq A \cap B$, and because A, rsp. B, is a semi-simple ideal of M, rsp. $\alpha(M)$, we have

$$
0 \neq(M \cap \alpha(M))^{(\omega)}=A^{(\omega)}=A=B=B^{(\omega)}=(M \cap \alpha(M))^{(\omega)}
$$

where $(M \cap \alpha(M))^{(\omega)}$ denotes $\cap_{n=1}^{\infty}(M \cap \alpha(M))^{(n)}$. But now $0 \neq(M \cap \alpha(M))^{(\omega)}$ $\Delta\langle M, \alpha(M)\rangle=L$ contradicts the simplicity of $L-M$ is therefore simple. Lemma 1.10 and the choice of L lead to $\operatorname{dim} M /(M \cap \beta(M))_{M}=\operatorname{dim} M \leqq 3$ for all
$\beta(M) \neq M, \beta \in \operatorname{Aut}(L)$, i.e., M is a three dimensional non-split simple subalgebra of L by B2).

We have the following deductions from B):
B4) $\operatorname{dim} M \cap \beta(M)=1$ for all $\beta(M) \neq M, \beta \in \operatorname{Aut}(L)$
B5) $\operatorname{dim} M \cap H=1$ for all $H \in \operatorname{Cart}(L)$ (by A1))
B6) All Cartan-subalgebras of L are two-dimensional, and $\operatorname{dim} A \leqq 2$ holds for every solvable subalgebra A of L (since $\operatorname{dim} A /(M \cap A) \leqq 1$ and $\operatorname{dim} A=\operatorname{dim} M \cap$ $A+\operatorname{dim} A /(M \cap A)$).

Now we show the following:
C1) Let E be a three-dimensional non-split simple Lie algebra over a field f characteristic zero. Then for any two independent elements a and z of E (i.e., $z \in E \backslash\langle a\rangle$), there exist scalars $\tau_{j}(z), j=1,2,3$, such that

$$
\begin{aligned}
& {[[a, z], a]=\tau_{1}(z) \cdot a+\tau_{2}(z) \cdot z \quad \text { and }} \\
& {[[a, z], z]=\tau_{3}(z) \cdot a-\tau_{1}(z) \cdot z \quad \text { and } \quad \tau_{2}(z) \cdot \tau_{3}(z) \neq 0 .}
\end{aligned}
$$

It is clear that a, z and $[a, z]$ span E. Thus fixing a we have for each $z \in$ $E \backslash\langle a\rangle$ that
(i) $[[a, z], a]=\mu_{1} z+\mu_{2}[a, z]+\mu_{3} a, \mu_{1} \neq 0$, and
(ii) $[[a, z], z]=\lambda_{1} z+\lambda_{2}[a, z]+\lambda_{3} a, \lambda_{3} \neq 0$,
where $\mu_{i}=\mu_{i}(z) \in \mathfrak{f}$ and $\lambda_{i}=\lambda_{i}(z) \in \mathfrak{f}$ for $i=1,2,3$. As $[[[a, z], a], z]=[[[a, z]$, z], a] holds, (i) and (ii) imply
(iii) $\mu_{3}=-\lambda_{1}, \mu_{2} \lambda_{1}=\lambda_{2} \mu_{1}$, and $\mu_{2} \lambda_{3}=\lambda_{2} \mu_{3}$.

Using (i) and setting $\hat{z}=\mu_{3} a+\mu_{1} z$ we have $[[a, \hat{z}], a]=\mu_{1} \hat{z}+\mu_{2}[a, \hat{\imath}]$, i.e., $\hat{\mu}_{1}=$ $\hat{\mu}_{1}(\hat{z})=\mu_{1}, \hat{\mu}_{2}=\hat{\mu}_{2}(\hat{z})=\mu_{2}$, and $\hat{\mu}_{3}=\hat{\mu}_{3}(\hat{z})=0$. By (iii) we have

$$
[[a, \hat{z}], \hat{z}]=0 \cdot \hat{z}+0 \cdot[a, \hat{z}]+\hat{\lambda}_{3} a
$$

where $\hat{\lambda}_{3}=\hat{\lambda}_{3}(\hat{z})$ and $\hat{\lambda}_{1}=\hat{\lambda}_{1}(\hat{z})=-\hat{\mu}_{3}=0, \hat{\lambda}_{2}=\hat{\lambda}_{2}(\hat{z})=0$; hence

$$
\hat{\mu}_{2}=\mu_{2}=0 .
$$

Now

$$
[[a, \hat{z}], a]=\mu_{1} \hat{z} \quad \text { and } \quad[[a, \hat{\imath}], \hat{z}]=\hat{\lambda}_{3} a
$$

with $\mu_{1} \neq 0, \hat{\lambda}_{3} \neq 0$. Replacing \hat{z} by $\mu_{3} a+\mu_{1} z$ the result follows.
Now we claim that
C2) $M+\alpha(M) \neq L$ for all $\alpha \in \operatorname{Aut}(L)$.
Suppose $M+\alpha(M)=L$ for an $\alpha(M) \neq M, \alpha \in \operatorname{Aut}(L)$. Then L is five-dimen-
sional by B) and B4). But this is not possible - if we look at L over an algebraically closed extension field \mathfrak{f}^{\prime} of \mathfrak{f}, $L \otimes_{\mathfrak{t}} \mathfrak{f}^{\prime}$ is semi-simple ([3], p. 95), $\operatorname{dim}_{\mathfrak{t}^{\prime}}\left(L \otimes_{\mathfrak{t}^{\prime}} \mathfrak{f}^{\prime}\right)$ $=\operatorname{dim} L=5$ holds ([3], p. 95) and $H \otimes_{\mathrm{t}} \mathrm{F}^{\prime}$ is two-dimensional for every $H \in$ $\operatorname{Cart}(L)$ ([3], p. 36). Looking now at the Cartan-decomposition of $L \otimes_{\mathbb{t}} \mathfrak{f}^{\prime}$ rsp. $H \otimes_{\mathfrak{t}^{\prime}} \mathfrak{F}^{\prime}, \operatorname{dim}_{\mathfrak{t}^{\prime}}\left(L \otimes_{\mathfrak{t}} \mathfrak{F}^{\prime}\right)=\operatorname{dim} L$ cannot be an odd number. (Using C 1) and the Jacobi-identity we can give an elementary proof of C2) showing the elementary character of the result.)

Next we prove the following:
C3) Let P and Q be elements of $\Omega:=\{\alpha(M) ; \alpha \in \operatorname{Aut}(L)\}$ such that $H \cap P \neq$ $H \cap Q$ for a Cartan-subalgebra H of L. Then if $\langle a\rangle=P \cap Q,\langle x\rangle=H \cap P$ and $\langle\dot{\langle }\rangle=H \cap Q$ we have

$$
\begin{aligned}
& L=P+Q+\langle[[a, x], y]\rangle, \\
& P=\langle x\rangle+\langle[a, x]\rangle+\langle a\rangle, \text { and } \\
& Q=\langle y\rangle+\langle[a, y]\rangle+\langle a\rangle,
\end{aligned}
$$

and for $z \in\{x, y\}$,
(1) $[[a, z], a]=\tau_{2}(z) \cdot z$
$[[a, z], z]=\tau_{3}(z) \cdot a$ with $\tau_{2}(z) \cdot \tau_{3}(z) \neq 0, \quad$ and
(2) $[[[a, x], y], a]=0=[[a, x],[a, y]]$,
(3) $[[a, x],[[a, x], y]]=\tau_{3}(x) \cdot \tau_{2}(y) y$,
(4) $[[a, y],[[a, x], y]]=\tau_{3}(y) \cdot \tau_{2}(x) x$, and
$J=\langle[[a, x], y], a\rangle$ is a Cartan-subalgebra of L with $P \cap J=Q \cap J=P \cap Q=\langle a\rangle$.
As a consequence of B4) and B5) we get $\operatorname{dim} P \cap Q=\operatorname{dim} H \cap P=\operatorname{dim} H \cap Q$ $=1$. By A2) there exist $P, Q \in \Omega$ such that $H \cap P=\langle x\rangle \neq\langle y\rangle=H \cap Q$ for an $H \in \operatorname{Cart}(L)$. Setting $\langle a\rangle=P \cap Q, P$ and Q are of the above form. For $z \in\{x, y\}$ we have by C1)

$$
\begin{align*}
& {[[a, z], a]=\tau_{1}(z) \cdot a+\tau_{2}(z) \cdot z} \\
& {[[a, z], z]=\tau_{3}(z) \cdot a-\tau_{1}(z) \cdot z \quad \text { with } \quad \tau_{2}(z) \cdot \tau_{3}(z) \neq 0} \tag{i}
\end{align*}
$$

H must be abelian by B6), hence $[x, y]=0$. Using (i) we have

$$
\begin{aligned}
& {[[[a, x], y], a]+[[a, x],[a, y]]=[[[a, x], a], y]=\tau_{1}(x)[a, y],} \\
& {[[[a, y], x], a]+[[a, y],[a, x]]=[[[a, y], a], x]=\tau_{1}(y)[a, x]}
\end{aligned}
$$

Thus setting $u=[[a, x], y]=[[a, y], x]$ we get
(ii)

$$
[u, a]=\delta_{1}[a, x]+\delta_{2}[a, y], \quad \text { and }
$$

$$
[[a, x],[a, y]]=-\delta_{1}[a, x]+\delta_{2}[a, y] \text { with }
$$

(iii)

$$
\delta_{1}=\frac{1}{2} \tau_{1}(y) \quad \text { and } \quad \delta_{2}=\frac{1}{2} \tau_{1}(x) .
$$

Now $[u, x]=\tau_{3}(x)[a, y]$ and $[u, y]=\tau_{3}(y)[a, x]$ by (i); hence

$$
\left[u, a+\beta_{1} x+\beta_{2} y\right]=0, \quad \text { where }
$$

$$
\begin{equation*}
\beta_{1}=-\delta_{2} \cdot \tau_{3}(x)^{-1}, \quad \beta_{2}=-\delta_{1} \cdot \tau_{3}(y)^{-1} . \tag{iv}
\end{equation*}
$$

u is linearly independent of $v:=a+\beta_{1} x+\beta_{2} y$ by C2). Therefore $J:=\langle u, v\rangle$ $=\langle u\rangle+\langle v\rangle$ is two-dimensional and abelian and by B6) a Cartan-subalgebra of L. Now

$$
\begin{aligned}
& 0 \neq \lambda_{1} u+\lambda_{2} v \in P \cap J, \quad \text { and } \\
& 0 \neq \mu_{1} u+\mu_{2} v \in Q \cap J, \quad \text { where } \lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in \mathfrak{E} .
\end{aligned}
$$

So we obtain $\lambda_{1}=0=\mu_{1}$, as $u \notin P+Q$ and $v \in P+Q$, and $\beta_{1}=0=\beta_{2}$, as $y \notin P$ and $x \notin Q$, whence $\tau_{1}(x)=\tau_{1}(y)=0$ by (iii) and (iv). Thus $J=\langle[[a, x], y], a\rangle$ and $P \cap J=Q \cap J=P \cap Q=\langle a\rangle$. The equations (1)-(4) follow from (i)-(iv) and $L=P+Q+\langle[[a, x], y]\rangle$.

Next we show that
C) M is not three-dimensional non-split simple.

Assume the contrary. Let P, Q, H, J be as in C3), $\langle l\rangle \leqq I_{L}(\langle l\rangle)$ holds for all $l \in L$ by B6). Let $N=\langle[[a, x], y]\rangle+\langle[a, y]\rangle+\langle y\rangle$; then L is the vector space direct sum $L=N+P$, where $P=\langle x\rangle+\langle[a, x]\rangle+\langle a\rangle$. By the equations (1)-(4) of C3) we have $[N, P] \subseteq N$, and N is not a subalgebra of L.

Let $u=a+x$ and let $v \in I_{L}(\langle u\rangle) \backslash\langle u\rangle$; then $v=p+n$ with $p \in P$ and $n \in N \backslash 0$ (as $\left.I_{P}(\langle u\rangle)=\langle u\rangle\right)$. Now

$$
[u, v]=[a+x, p]+[a+x, n] \in\langle u\rangle,
$$

and since $[P, N] \subseteq N$ we have

$$
[a+x, n] \in P \cap N=0 .
$$

Let $n=\gamma_{1}[[a, x], y]+\gamma_{2}[a, y]+\gamma_{3} y$, where $\gamma_{i} \in \mathfrak{f}$, $i=1,2,3$. By C3), by $[x, y]$ $=0$, and since $[[[a, x], y], x]=[[[a, x], x], y]$, we obtain

$$
\begin{aligned}
0 & =[n, a+x] \\
& =\gamma_{1}\left(0+\tau_{3}(x)[a, y]\right)+\gamma_{2}\left(\tau_{2}(y) y+[[a, y], x]\right)+\gamma_{3}(-[a, y]+0) .
\end{aligned}
$$

Thus $\gamma_{2}=0\left(\right.$ as $\left.\tau_{2} \neq 0\right)$ and $\gamma_{1} \cdot \tau_{3}=\gamma_{3}$. Now $n=\gamma_{1}\left([[a, x], y]+\tau_{3}(x) y\right)$ and $J^{\prime}:=$
$\left\langle[[a, x], y]+\tau_{3}(x) y, a+x\right\rangle$ is abelian, whence a Cartan-subalgebra of L.
So $Q \cap J^{\prime} \neq 0$ for $Q=\langle y\rangle+\langle[a, y]\rangle+\langle a\rangle \in \Omega$ by A1). Hence there exist elements $q \in Q$ and $j \in J^{\prime}$ such that

$$
\begin{aligned}
0 & \neq j=\lambda_{1}\left([[a, x], y]+\tau_{3}(x) y\right)+\lambda_{2}(a+x) \\
& =q=\mu_{1} y+\mu_{2}[a, y]+\mu_{3} a, \text { where } \lambda_{i}, \mu_{j} \in \mathfrak{f} ; i, j \in\{1,2,3\} .
\end{aligned}
$$

Now

$$
\lambda_{1}=0 \quad \text { and } \quad \lambda_{2}=0,
$$

whence $j=0$, which is a contradiction.
But now C) contradicts B) and therefore L cannot be a counterexample.
Corollary 2.5. A simple Lie algebra L over any field of characteristic zero has proper, non-trivial modular subalgebras if and only if L is threedimensional.

Corollary 2.6. Let L be a Lie algebra over an arbitrary field \mathfrak{f} of characteristic zero. Then a modular subalgebra M of L is either a quasi-ideal of L or else M / M_{L} is a one-dimensional, maximal subalgebra of the three-dimensional non-split simple Lie algebra L / M_{L}.

Remark. The complete result referred to in the introduction is an immediate consequence of Corollary 2.6 and Theorem 3.6 in [1].

Proof. W.l.o.g. we may assume that $M_{L}=0$. We use induction on $\operatorname{dim} L / M$. If $\operatorname{dim} L / M=1$, then M is a quasi-ideal of L. Let $\mathscr{S}=\{N \mathrm{~m} L ; M \leqq$ $N \leqq L\}$. If $\mathscr{S}=\phi$, there is nothing to prove due to Theorem 2.4. Now we pick an $M^{\prime} \in \mathscr{S}$ such that $\operatorname{dim} M^{\prime} \mid M$ is minimal. The corollary holds for M^{\prime} by induction and we are left with two cases:
A) $M^{\prime} q L$.

Let $x \in L \backslash M^{\prime}$ and $u \in M^{\prime}$ be arbitrary. By (**) we have $M=\left\langle M, M^{\prime} \cap\right.$ $\langle x+u\rangle\rangle=\langle M, x+u\rangle \cap M^{\prime} \mathrm{q}\langle M, x+u\rangle$. So for an arbitrary $m \in M$ the following holds: $[m, x+u]=\lambda(x+u)(\bmod M)$, and $[m, x+u]=(\mu x+[m, u])(\bmod$ $M)$ with $\lambda, \mu \in \mathfrak{f}$. Hence $[m, u]=\lambda u(\bmod M)$ holds and $M q L$.
B) $\quad M^{\prime} \overline{\mathrm{q}} L$, i.e., M^{\prime} is a maximal subalgebra of L with $\operatorname{dim} M^{\prime} \mid M_{L}^{\prime}=1$, and L / M_{L}^{\prime} is a three dimensional non-split simple Lie algebra.

We may assume that M_{L}^{\prime} is non-trivial, otherwise $M=0$. Let $x \in L \backslash M^{\prime}$ and $u \in M^{\prime}$ be arbitrary. By (**) we have $M \cap M_{L}^{\prime}=\left\langle M, M^{\prime} \cap\langle x+u\rangle\right\rangle \cap M_{L}^{\prime}=\langle M$, $x+u\rangle \cap M_{L}^{\prime} \triangleleft\langle M, x+u\rangle$. So $M \cap M_{L}^{\prime}$ is idealized by x and $x+u$, hence by $u=(x+u)-x$. Therefore $M \cap M_{L}^{\prime} \triangleleft L$, which implies $M \cap M_{L}^{\prime}=0$. By the minimality of $M^{\prime}, M^{\prime}=M+M_{L}^{\prime}$ holds (see Prop. 1.3), and M is one-dimensional (so let $M=\langle m\rangle$). Let $v \in M_{L}^{\prime}$ be arbitrary. Then by (*) we have

$$
\langle v\rangle=\left\langle v, M \cap M_{L}^{\prime}\right\rangle=\langle M, v\rangle \cap M_{L}^{\prime} \triangleleft\langle M, v\rangle .
$$

Now, for arbitrary $v, w \in M_{L}^{\prime}$,

$$
[m, v]=\lambda_{v} v,[m, w]=\lambda_{w} w \text { and }[m, v+w]=\lambda_{(v+w)}(v+w)
$$

with $\lambda_{v}, \lambda_{w}, \lambda_{(v+w)} \in f$. So $\lambda_{v}=\lambda_{w}=\lambda_{(v+w)}$ and there exists a $\lambda \in f$ such that

$$
[m, v]=\lambda v \quad \text { for all } \quad v \in M_{L}^{\prime} .
$$

This also implies that $M_{L}^{\prime} \subseteq[M, L]$ for $\lambda \neq 0$ - for $\lambda=0, M_{L}^{\prime}(\$ M)$ idealizes M, and hence M is an ideal of L by Lemma 1.5 b), i.e., the contradiction $M=0$ follows.

Next let $x \in L \backslash M^{\prime}, u \in M^{\prime}$, and $v \in M_{L}^{\prime}$ be arbitrary. Then

$$
\begin{aligned}
& {[m,[x+u, v]]=\lambda[x+u, v], \text { and }} \\
& {[m,[x+u, v]]=[[m, x+u], v]+\lambda[x+u, v] .}
\end{aligned}
$$

Therefore $[[m, x+u], v]=0$ for all choices of x, u and v, hence $\left[[M, L], M_{L}^{\prime}\right]=0$. Thus $\left[[M, L]^{L}, M_{L}^{\prime}\right]=0$, where $[M, L]^{L}$ denotes the smallest ideal of L containing $[M, L] . \quad$ As L / M_{L}^{\prime} is simple and $M_{L}^{\prime} \subseteq[M, L],[M, L]^{L}=L$ holds. So $\left[L, M_{L}^{\prime}\right]=0$, which implies that $M_{L}^{\prime}(\$ M)$ is contained in $I_{L}(M)$, hence $M \triangleleft L$ by Lemma 1.5 b) and the contradiction $M=0$ follows (as $M_{L}=0$).

Corollary 2.7. Let L be a Lie algebra over any field of characteristic zero. If every subalgebra of L is modular in L, then L is either metabelian or else three-dimensional non-split simple.

Proof. If $U \mathrm{q} L$ for all $U \leqq L$, then L is metabelian ([1], Theorem 3.8). If there exists a subalgebra U of L, which is not a quasi-ideal of L, then L contains a three-dimensional non-split simple subalgebra $E=\langle e\rangle+\langle f\rangle+\langle g\rangle$. Suppose $L \neq E$; then $\operatorname{dim} L>3$.

But now $\langle e\rangle$ has to be a quasi-ideal of L since $\operatorname{dim} L /\langle e\rangle \geqq 3$ by Corollary 2.6, which is not possible, because $\langle e, f\rangle=E \neq\langle e\rangle+\langle f\rangle$ - hence $L=E$.

Acknowledgment. A portion of this paper is based on the second author's Diplomarbeit written under the supervision of Prof. O. H. Kegel.

References

[1] R. K. Amayo: Quasi-ideals of Lie algebras I, Proc. London Math. Soc. (3) 33 (1976), 28-36.
[2] D. W. Barnes: Lie algebras (lecture notes), University of Tübingen, 1968/69.
[3] N. Bourbaki: Groupes et algèbres de Lie, Chap. 1, Hermann, Paris, 1960.
[4] C. Chevalley: Théorie des groupes de Lie, Tome II, Hermann, Paris, 1951.
[5] N. Jacobson; Lie algebras, Interscience, New York, 1966.
[6] R. Schmidt: Modulare Untergruppen endlicher Gruppen, Illionis J. Math. 13 (1969), 358-377.
[7] J. Tits: Sur une classe de groupes de Lie résolubles, Bull. Soc. Math. Belg. 11 (1959), 100-115.
[8] D. A. Towers: A Frattini theory for Lie algebras, Proc. London Math. Soc. (3) 27 (1973), 440-462.
[9] H. Zassenhaus: The theory of groups, Vandenhoeck \& Ruprecht, 2. Aufl., Göttingen, 1958.

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901, U.S.A.

