HIROSHIMA MATH. J. 10 (1980), 311-322

Modularity in Lie algebras

Ralph K. AMAYO and Jochen SCHWARZ (Received October 31, 1979)

A subalgebra M of a Lie algebra L is termed modular in L (M m L) if M is a modular element in the lattice formed by the subalgebras of L, i.e., if

(*) $\langle M, U \rangle \cap V = \langle U, M \cap V \rangle$ for all $U, V \leq L$ with $U \leq V$ and

(**) $\langle M, U \rangle \cap V = \langle U \cap V, M \rangle$ for all $U, V \leq L$ with $M \leq V$ hold.

Simple examples for modular subalgebras of a Lie algebra L are the quasiideals of $L-Q \leq L$ is called a quasi-ideal of $L(Q \neq L)$ if Q is permutable with every subspace R of L, i.e., if $[Q, R] \subseteq Q+R$ for all $R \subseteq L([1], p. 28)$.

That the reverse implication is not true is shown by the Lie algebra $L(L = \langle e \rangle + \langle f \rangle + \langle g \rangle)$ defined over a field containing no pair of elements α , β such that $\alpha^2 + \beta^2 = -1$, with the following multiplication: [e, f] = g, [f, g] = e, [g, e] = f. L is simple, and every one-dimensional subalgebra of L is maximal and modular in L, but not a quasi-ideal of L.

We prove the following $(M_L \text{ denotes the core of } M \text{ in } L)$:

(i) A modular subalgebra M of a Lie algebra L permutable with a solvable subalgebra A of L is a quasi-ideal of M+A — in particular M is a quasi-ideal of L if L is solvable.

(ii) A modular subalgebra M of a finite-dimensional Lie algebra L over any field of characteristic zero is either

a) an ideal of L; or

b) L/M_L is metabelian, every subalgebra of L/M_L is a quasi-ideal, M/M_L is one-dimensional and is spanned by an element which acts as the identity map on $([L, L] + M_L)/M_L$; and $L/([L, L] + M_L)$ is one-dimensional; or

c) M/M_L is two-dimensional and L/M_L is the three-dimensional split simple Lie algebra; or

d) M/M_L is a one-dimensional maximal subalgebra of L/M_L and L/M_L is a three-dimensional non-split simple Lie algebra.

1. Elementary properties of modular subalgebras

The properties 1.1–1.3 hold for modular elements in more general lattices; proofs can be found in [9], where the modular elements are called "Dedekind elements."

PROPOSITION 1.1. Let M be modular in a Lie algebra L and let U be a

subalgebra of L. Then $M \cap U$ is modular in U ([9], III, p. 74).

PROPOSITION 1.2. Let M be modular in L and let I be an ideal of L with $I \leq M$. Then M/I is modular in L/I ([9], IV, p. 75).

PROPOSITION 1.3. Let M and N be modular in a Lie algebra L. Then $\langle M, N \rangle$ is modular in L ([9], V, p. 75).

LEMMA 1.4. Let M be modular in L, Q be a quasi-ideal of L, and $\phi: L \rightarrow L'$ a homomorphism of Lie algebras. Then $\phi(M)$ is modular in $\phi(L)$, and $\phi(Q)$ is a quasi-ideal of $\phi(L)$.

LEMMA 1.5. Let M be modular in a Lie algebra L. Then

a) M is a maximal subalgebra of $\langle M, x \rangle$ for all $x \in L \setminus M$.

b) $I_L(M)$, the idealizer of M in L, is either L or M.

PROOF. a) If $M \leq N \leq \langle M, x \rangle$, then by (**) $N = N \cap \langle M, x \rangle = \langle N \cap \langle x \rangle$, $M \rangle$, hence N = M or $N = \langle M, x \rangle$.

b) Suppose $M \leq I_L(M) \leq L$ and let $x \in I_L(M) \setminus M$, $y \in L \setminus I_L(M)$. Then $M \neq M + [y, M] = M + [x + y, M]$ and M is a maximal subalgebra of $\langle y, M \rangle$ and of $\langle x + y, M \rangle$ due to a). Now

 $M \leqq \langle M, [x + y, M] \rangle \leqq \langle x + y, M \rangle$ and

$$M \leqq \langle M, [y, M] \rangle \leqq \langle y, M \rangle.$$

Using a) we get

$$\langle x + y, M \rangle = \langle M, [x + y, M] \rangle = \langle M, [y, M] \rangle = \langle y, M \rangle.$$

This means $x + y \in \langle y, M \rangle$, hence $x \in \langle y, M \rangle$. Therefore, $x \in I_L(M) \cap \langle y, M \rangle = \langle I_L(M) \cap \langle y \rangle, M \rangle = M$ by (**), which contradicts our assumption.

LEMMA 1.6. Let M be modular in a Lie algebra L and let U be a subalgebra of L with $\langle M, U \rangle = M + U$. Then

- a) M is permutable with all quasi-ideals W of U.
- b) Every $V \leq L$ with $U \cap M \leq V \leq U$ is permutable with M.

c) If in addition, $U \cap M$ is a quasi-ideal of U, then M is a quasi-ideal of M+U.

PROOF. a) As $W \neq U$ and $\langle U, M \rangle = U + M$ we have $\langle W, M \rangle = U \cap \langle W, M \rangle + M = \langle W, M \cap U \rangle + M = W + M \cap U + M = W + M$ by (*).

b) $\langle V, M \rangle = U \cap \langle V, M \rangle + M = \langle V, U \cap M \rangle + M = V + M$ due to (*).

c) Let x=u+m; $u \in U$, $m \in M$. As $(U \cap M) \neq M$ we have by $(*) \langle x, M \rangle = \langle u, M \rangle = \langle u, U \cap M \rangle + M = \langle u \rangle + U \cap M + M = \langle u \rangle + M = \langle x \rangle + M$.

PROPOSITION 1.7. Let M be modular in a Lie algebra L and A be a solvable subalgebra of L. Then $A \cap M$ is a quasi-ideal of A; more precisely: $A \cap M$ is an ideal of A or dim $A/A \cap M = 1$ or $A = [A, A] + A \cap M$, $[[A, A], [A, A]] \leq A \cap M = \langle m \rangle + (A \cap M)_A$ with $m \in M$ and $[a, m] = a \pmod{(A \cap M)_A}$ for all $a \in [A, A]$.

PROOF. Let $a \in A \setminus A \cap M$. $B := \langle a, A \cap M \rangle$ is solvable, and by (*) it follows that

$$B = B \cap (A \cap \langle a, M \rangle) = B \cap \langle a, M \rangle = \langle a, B \cap M \rangle.$$

If we pick $r \ge 1$, $r \in \mathbb{N}$, maximal with respect to $B^{(r)} \le M$, we have $M \le \langle B^{(r)}, M \rangle \le \langle B, M \rangle \le \langle a, M \rangle$ and $\langle B^{(r)}, M \rangle = \langle a, M \rangle$ by Lemma 1.5a); now (using (*))

$$B = B \cap \langle B^{(r)}, M \rangle = \langle B^{(r)}, M \cap B \rangle = B^{(r)} + M \cap B \text{ and}$$
$$B^{(r+1)} \leq B^{(r)} \cap M \lhd B^{(r)}.$$

Thus $A \cap M = B \cap M$ is a quasi-ideal of B due to Lemma 1.6c). In particular, $B = \langle a, B \cap M \rangle = \langle a \rangle + B \cap M = \langle a \rangle + A \cap M$. As a was arbitrary, we have $(A \cap M) \neq A$. The additional remarks of the proposition are a direct consequence of Theorem 3.6 in [1].

COROLLARY 1.8. Let M be modular in L and let A be a solvable subalgebra of L permutable with M. Then M is a quasi-ideal of M + A.

The following are two convenient technical lemmas:

LEMMA 1.9. Let M be a modular and maximal subalgebra of a Lie algebra L. Then dim $V \leq 1$ for every subalgebra V of L with $M \cap V = 0$.

PROOF. Suppose $M \cap V=0$ for $V \leq L$ with dim V > 1, and let $0 \neq u \in V$. But now (*) does not hold, which contradicts $M \mod L$:

$$\langle u, M \rangle \cap V = L \cap V = V \neq \langle u \rangle = \langle u, M \cap V \rangle.$$

LEMMA 1.10. Let M be a modular and maximal subalgebra of a Lie algebra L. Then $M \cap U$ is a modular and maximal subalgebra of U for every subalgebra U of L with $U \leq M$.

PROOF. We have $(M \cap U) \equiv U$ by Proposition 1.1. If $x \in U \setminus (M \cap U)$, $\langle x, M \rangle = L$ holds and by (*) it follows that $U = U \cap L = U \cap \langle x, M \rangle = \langle x, U \cap M \rangle$. \Box

2. The finite-dimensional case in characteristic zero

All Lie algebras in this section are finite dimensional and defined over an

arbitrary field of characteristic zero. The following lemma is a slight extension of a theorem of Chevalley, Tuck and Towers, which occurs for V=A ([8], pp. 443–444).

LEMMA 2.1. Let U and V be subspaces of a finite-dimensional algebra A over any field of characteristic zero with $U \subseteq V$. If U is invariant under all automorphisms α of A with $\alpha(V) = V$, then U is invariant under all derivations d of A with $d(V) \subseteq V$. In particular if A is a Lie algebra and V a subalgebra of A, then U is an ideal of V.

PROOF. The Lie algebra $L(\operatorname{Aut}(A))$ of the algebraic group Aut (A) of the automorphisms of A coincides with the derivation algebra D(A) of A, a subalgebra of gl(A) ([4], p. 179 and p. 128). The automorphisms of A which leave V invariant form an algebraic group (:=AUT_V(A)), whose Lie algebra $L(\operatorname{AUT}_V(A))$ consists of all endomorphisms of the vector space A mapping V into V([4], pp. 144–145). Thus Aut(A) \cap AUT_V(A) is an algebraic group ([4], p. 79); these are the algebra-automorphisms of A which leave V invariant. Since $L(\operatorname{Aut}(A) \cap \operatorname{AUT}_V(A)) = L(\operatorname{Aut}(A)) \cap L(\operatorname{AUT}_V(A))$ ([4], p. 171, 172), we have $L(\operatorname{Aut}(A) \cap \operatorname{AUT}_V(A)) = D_V(A) := \{d \in D(A); d(V) \subseteq V\} \leq D(A)$. Hence Aut(A) \cap AUT_V(A) is contained in g, where

 $g := \{G; G \text{ is an algebraic group of automorphisms of the vector space A with L } (G) \ge D_V(A) \}.$

Let $G(A) = \cap \{G; G \in g\}$. Then $G(A) \leq \operatorname{Aut}(A) \cap \operatorname{AUT}_V(A)$. G(A) is an irreducible algebraic group with $L(G(A)) \geq D_V(A)$ ([4], Definition 1, p. 86; Theorem 10, p. 165, and Theorem 14, p. 175). As G(A) is contained in Aut (A) $\cap \operatorname{AUT}_V(A)$, thus leaving U invariant by construction, U is invariant under $L(G(A)) \geq D_V(A)$ ([8], pp. 443-444).

THEOREM 2.2. If a Lie algebra L over any field of characteristic zero contains a core-free subalgebra of codimension 1, then L is either one-dimensional, or two-dimensional non-abelian, or L is the three-dimensional split simple Lie algebra.

The proof of the theorem can be found in [7], pp. 105–107.

NOTATION. We call a modular subalgebra M of a Lie algebra L maximal modular in L, if there is no modular subalgebra N of L such that $M \leq N \leq L$.

Using Lemma 2.1, the proof of the next lemma is analogous to part (ii) of the proof of R. Schmidt's Lemma 1 for groups ([6], p. 361):

LEMMA 2.3. Let M be maximal modular in a Lie algebra L. If M is

314

not an ideal of L, then M is a maximal subalgebra of L.

THEOREM 2.4. Let M be maximal modular in a Lie algebra L. If M is not an ideal of L, one of the following holds:

a) M is of codimension 1 in L and dim $L/M_L \leq 3$,

b) M is a maximal subalgebra of L with dim $M/M_L=1$, and L/M_L is a three-dimensional non-split simple Lie algebra.

PROOF. Let L be a counterexample of minimal dimension. M is a maximal subalgebra of L due to Lemma 2.3, and we can assume that $M_L = 0$ (w.l.o.g.) by Lemma 1.2.

If the largest solvable ideal of L, the radical of L (rad (L)), is non-trivial, rad (L) $\leq M$ holds, hence M is a quasi-ideal of L=M+rad(L) (Corollary 1.8). As M is maximal in L, we have dim L/M=1, and by Theorem 2.2 it follows that dim $L/M_L \leq 3$. Now let rad (L)=0 and $L=\bigoplus_{i=1}^{n} E_i$, $1 \leq n \in \mathbb{N}$, with simple ideals E_i of L.

If $n \ge 2$, then $\langle M, E_1 \rangle = M + E_1 = L$ and $M \cap E_2 \lhd M$, $E_1 \le I_L(M \cap E_2)$ (since $[E_1, E_2] = 0$); thus $M \cap E_2 \lhd L$, i.e., $M \cap E_2 = 0$. By Lemma 1.9 the contradiction dim $E_2 \le 1$ follows.

Therefore n=1 and L is simple.

An easy calculation shows that L is not a counterexample for dim L=3, because a) holds if L is split, and b) holds if L is non-split. Hence we may assume that

A) L is a simple Lie algebra with dim L > 3.

If we look at L over an algebraically closed extension field \mathfrak{k}' of \mathfrak{k} , $L \otimes_{\mathfrak{k}} \mathfrak{k}'$ is semi-simple and $\dim_{\mathfrak{k}'}(L \otimes_{\mathfrak{k}} \mathfrak{k}') = \dim L$ ([3], p. 95). L has non-trivial Cartansubalgebras ([2], p. 21), every Cartan-subalgebra H of L remains (as $H \otimes_{\mathfrak{k}} \mathfrak{k}')$ Cartan, and by ([2], p. 36) $\dim_{\mathfrak{k}'}(H \otimes_{\mathfrak{k}} \mathfrak{k}') = \dim H$ holds. As dim L > 3 it follows by 1.9 that

A1) dim $H \ge 2$ and $M \cap H \ne 0$ for all $H \in Cart(L)$ and dim $(H/(M \cap H)) \le 1$.

As $\alpha(M) \equiv L$ for all $\alpha \in \text{Aut}(L)$, Lemma 2.1 leads to (recall that $M_L = 0$) A2) $\cap \{\alpha(M); \alpha \in \text{Aut}(L)\} = 0.$

By A1) and the maximality of M in L we have

B1) dim $M \ge 2$.

Now we show that

B2) M is not solvable and M is not three-dimensional split simple.

Assume the contrary. Take $H \in \text{Cart}(L)$ such that $H \leq M$. Due to A2) there exists a $\beta \in \text{Aut}(L)$ such that $H \cap M \leq H \cap \beta(M)$. M and $\beta(M)$ are modular and maximal in L (Lemma 1.4). A1), B1) and Lemma 1.9 imply that $H \cap \beta(M) \neq 0$, $M \cap \beta(M) \neq 0$. Furthermore

$$H \cap M \leq \beta(M)$$
, i.e., $H \cap M \leq M \cap \beta(M)$, and

 $H \cap \beta(M) \leq M$, i.e., $H \cap \beta(M) \leq M \cap \beta(M)$.

 $M \cap \beta(M)$ is modular and maximal in M, rsp. in $\beta(M)$ by Lemma 1.10. So we have dim $M/(M \cap \beta(M)) = 1 = \dim \beta(M)/(M \cap \beta(M))$ by the choice of L, and therefore $M = H \cap M + M \cap \beta(M)$, and $\beta(M) = H \cap \beta(M) + M \cap \beta(M)$. As H is nilpotent (hence solvable) the maximal quasi-ideal $M \cap H$ of H is of codimension 1 in H (Lemma 1.10, Proposition 1.7); thus $H = H \cap M + H \cap \beta(M)$. Now we have

 $[M, \beta(M)] \leq M + \beta(M)$, i.e., $M + \beta(M) = \langle M, \beta(M) \rangle = L$.

Hence dim $L/M = \dim \beta(M)/(M \cap \beta(M)) = 1$, and by Theorem 2.2 it now follows that dim $L \leq 3$ — which is a contradiction to A).

Next we prove the following:

B3) *M* is semi-simple.

Suppose rad $(M) \neq 0$. By A2) and (*) there exists a $\beta(M) \geqq \operatorname{rad}(M), \beta \in$ Aut (L), such that $M = M \cap L = M \cap \langle \operatorname{rad}(M), \beta(M) \rangle = \operatorname{rad}(M) + M \cap \beta(M)$. $M \cap \beta(M)$ cannot be solvable; if it were, M would be solvable. $M \cap \beta(M)$ is a quasiideal of M (Corollary 1.8), and dim $M/(M \cap \beta(M)) = 1$ by the maximality of $M \cap \beta(M)$ in M (Lemma 1.10). So $(M \cap \beta(M)) \neq \beta(M)$ since dim $M \cap \beta(M) = \dim M - 1$ $= \dim \beta(M) - 1$.

Let $(M \cap \beta(M))^{(\omega)}$ denote $\bigcap_{n=1}^{\infty} (M \cap \beta(M))^{(n)}$; then $(M \cap \beta(M))^{(\omega)} \neq 0$ is an ideal of M and of $\beta(M)$ due to Corollary 3.3 in [1]. Thus the contradiction $(M \cap \beta(M))^{(\omega)} \triangleleft \langle M, \beta(M) \rangle = L$ follows.

Now we can show that

B) M is three-dimensional non-split simple.

Suppose M is not simple. Let E be one of the simple ideals of M not contained in $\alpha(M) \neq M$, $\alpha \in Aut(L)$. Then (by (*))

$$M = L \cap M = \langle \alpha(M), E \rangle \cap M = \langle E, M \cap \alpha(M) \rangle = E + M \cap \alpha(M).$$

 $M \cap \alpha(M)$ cannot be solvable since $M = M^{(n)} = (M \cap \alpha(M))^{(n)} + E$ for all $n \in \mathbb{N}$. Let $A = (M \cap \alpha(M))_M$ and $B = (M \cap \alpha(M))_{\alpha(M)}$. The choice of L and Lemma 1.10 lead to

dim $(M \cap \alpha(M))/A \leq 2$ and dim $(M \cap \alpha(M))/B \leq 2$.

Hence $(M \cap \alpha(M))^{(2)} \leq A \cap B$, and because A, rsp. B, is a semi-simple ideal of M, rsp. $\alpha(M)$, we have

$$0 \neq (M \cap \alpha(M))^{(\omega)} = A^{(\omega)} = A = B = B^{(\omega)} = (M \cap \alpha(M))^{(\omega)},$$

where $(M \cap \alpha(M))^{(\omega)}$ denotes $\bigcap_{n=1}^{\infty} (M \cap \alpha(M))^{(n)}$. But now $0 \neq (M \cap \alpha(M))^{(\omega)}$ $\lhd \langle M, \alpha(M) \rangle = L$ contradicts the simplicity of L - M is therefore simple. Lemma 1.10 and the choice of L lead to dim $M/(M \cap \beta(M))_M = \dim M \leq 3$ for all $\beta(M) \neq M, \beta \in Aut(L)$, i.e., M is a three dimensional non-split simple subalgebra of L by B2).

We have the following deductions from B):

B4) dim $M \cap \beta(M) = 1$ for all $\beta(M) \neq M$, $\beta \in Aut(L)$

B5) dim $M \cap H = 1$ for all $H \in Cart(L)$ (by A1))

B6) All Cartan-subalgebras of L are two-dimensional, and dim $A \le 2$ holds for every solvable subalgebra A of L (since dim $A/(M \cap A) \le 1$ and dim $A = \dim M \cap A + \dim A/(M \cap A)$).

Now we show the following:

C1) Let E be a three-dimensional non-split simple Lie algebra over a field f of characteristic zero. Then for any two independent elements a and z of E (i.e., $z \in E \setminus \langle a \rangle$), there exist scalars $\tau_j(z)$, j=1, 2, 3, such that

$$[[a, z], a] = \tau_1(z) \cdot a + \tau_2(z) \cdot z \quad \text{and}$$
$$[[a, z], z] = \tau_3(z) \cdot a - \tau_1(z) \cdot z \quad \text{and} \quad \tau_2(z) \cdot \tau_3(z) \neq 0$$

It is clear that a, z and [a, z] span E. Thus fixing a we have for each $z \in E \setminus \langle a \rangle$ that

(i)
$$[[a, z], a] = \mu_1 z + \mu_2 [a, z] + \mu_3 a, \mu_1 \neq 0$$
, and

(ii)
$$[[a, z], z] = \lambda_1 z + \lambda_2 [a, z] + \lambda_3 a, \lambda_3 \neq 0,$$

where $\mu_i = \mu_i(z) \in \mathfrak{t}$ and $\lambda_i = \lambda_i(z) \in \mathfrak{t}$ for i = 1, 2, 3. As [[[a, z], a], z] = [[[a, z], z], a] holds, (i) and (ii) imply

(iii)
$$\mu_3 = -\lambda_1, \mu_2\lambda_1 = \lambda_2\mu_1$$
, and $\mu_2\lambda_3 = \lambda_2\mu_3$.

Using (i) and setting $\hat{z} = \mu_3 a + \mu_1 z$ we have $[[a, \hat{z}], a] = \mu_1 \hat{z} + \mu_2 [a, \hat{z}]$, i.e., $\hat{\mu}_1 = \hat{\mu}_1(\hat{z}) = \mu_1$, $\hat{\mu}_2 = \hat{\mu}_2(\hat{z}) = \mu_2$, and $\hat{\mu}_3 = \hat{\mu}_3(\hat{z}) = 0$. By (iii) we have

$$[[a, \hat{z}], \hat{z}] = 0 \cdot \hat{z} + 0 \cdot [a, \hat{z}] + \hat{\lambda}_3 a,$$

where $\hat{\lambda}_3 = \hat{\lambda}_3(\hat{z})$ and $\hat{\lambda}_1 = \hat{\lambda}_1(\hat{z}) = -\hat{\mu}_3 = 0$, $\hat{\lambda}_2 = \hat{\lambda}_2(\hat{z}) = 0$; hence

$$\hat{\mu}_2 = \mu_2 = 0.$$

Now

$$[[a, \hat{z}], a] = \mu_1 \hat{z}$$
 and $[[a, \hat{z}], \hat{z}] = \hat{\lambda}_3 \hat{a}$

with $\mu_1 \neq 0$, $\hat{\lambda}_3 \neq 0$. Replacing \hat{z} by $\mu_3 a + \mu_1 z$ the result follows. Now we claim that

C2) $M + \alpha(M) \neq L$ for all $\alpha \in \text{Aut}(L)$. Suppose $M + \alpha(M) = L$ for an $\alpha(M) \neq M$, $\alpha \in \text{Aut}(L)$. Then L is five-dimensional by B) and B4). But this is not possible — if we look at L over an algebraically closed extension field t' of t, $L \otimes_t t'$ is semi-simple ([3], p. 95), $\dim_{t'}(L \otimes_t t')$ = dim L=5 holds ([3], p. 95) and $H \otimes_t t'$ is two-dimensional for every $H \in$ Cart (L) ([3], p. 36). Looking now at the Cartan-decomposition of $L \otimes_t t'$ rsp. $H \otimes_t t'$, dim_{t'} ($L \otimes_t t'$)=dim L cannot be an odd number. (Using C1) and the Jacobi-identity we can give an elementary proof of C2) showing the elementary character of the result.)

Next we prove the following:

C3) Let P and Q be elements of $\Omega := \{\alpha(M); \alpha \in \operatorname{Aut}(L)\}$ such that $H \cap P \neq H \cap Q$ for a Cartan-subalgebra H of L. Then if $\langle a \rangle = P \cap Q, \langle x \rangle = H \cap P$ and $\langle y \rangle = H \cap Q$ we have

$$L = P + Q + \langle [[a, x], y] \rangle,$$

$$P = \langle x \rangle + \langle [a, x] \rangle + \langle a \rangle, \text{ and}$$

$$Q = \langle y \rangle + \langle [a, y] \rangle + \langle a \rangle,$$

and for $z \in \{x, y\}$,

we have by C1)

(1) $[[a, z], a] = \tau_2(z) \cdot z$

 $[[a, z], z] = \tau_3(z) \cdot a$ with $\tau_2(z) \cdot \tau_3(z) \neq 0$, and

(2)
$$[[[a, x], y], a] = 0 = [[a, x], [a, y]],$$

(3)
$$[[a, x], [[a, x], y]] = \tau_3(x) \cdot \tau_2(y)y,$$

(4) $[[a, y], [[a, x], y]] = \tau_3(y) \cdot \tau_2(x)x$, and

 $J = \langle [[a, x], y], a \rangle \text{ is a Cartan-subalgebra of } L \text{ with } P \cap J = Q \cap J = P \cap Q = \langle a \rangle.$ As a consequence of B4) and B5) we get dim $P \cap Q = \dim H \cap P = \dim H \cap Q$ =1. By A2) there exist $P, Q \in \Omega$ such that $H \cap P = \langle x \rangle \neq \langle y \rangle = H \cap Q$ for an $H \in \text{Cart}(L)$. Setting $\langle a \rangle = P \cap Q$, P and Q are of the above form. For $z \in \{x, y\}$

(i)

$$\begin{bmatrix} [a, z], a \end{bmatrix} = \tau_1(z) \cdot a + \tau_2(z) \cdot z,$$

$$\begin{bmatrix} [a, z], z \end{bmatrix} = \tau_3(z) \cdot a - \tau_1(z) \cdot z \quad \text{with} \quad \tau_2(z) \cdot \tau_3(z) \neq 0.$$

H must be abelian by B6), hence [x, y] = 0. Using (i) we have

 $[[[a, x], y], a] + [[a, x], [a, y]] = [[[a, x], a], y] = \tau_1(x)[a, y],$

 $[[[a, y], x], a] + [[a, y], [a, x]] = [[[a, y], a], x] = \tau_1(y)[a, x].$

Thus setting u = [[a, x], y] = [[a, y], x] we get

Modularity in Lie algebras

(ii)
$$[u, a] = \delta_1[a, x] + \delta_2[a, y]$$
, and

$$[[a, x], [a, y]] = -\delta_1[a, x] + \delta_2[a, y]$$
 with

(iii)
$$\delta_1 = \frac{1}{2}\tau_1(y) \text{ and } \delta_2 = \frac{1}{2}\tau_1(x).$$

Now $[u, x] = \tau_3(x)[a, y]$ and $[u, y] = \tau_3(y)[a, x]$ by (i); hence

$$[u, a + \beta_1 x + \beta_2 y] = 0, \text{ where}$$

(iv)
$$\beta_1 = -\delta_2 \cdot \tau_3(x)^{-1}, \quad \beta_2 = -\delta_1 \cdot \tau_3(y)^{-1}.$$

u is linearly independent of $v := a + \beta_1 x + \beta_2 y$ by C2). Therefore $J := \langle u, v \rangle = \langle u \rangle + \langle v \rangle$ is two-dimensional and abelian and by B6) a Cartan-subalgebra of *L*. Now

$$0 \neq \lambda_1 u + \lambda_2 v \in P \cap J, \text{ and}$$
$$0 \neq \mu_1 u + \mu_2 v \in Q \cap J, \text{ where } \lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathfrak{k}.$$

So we obtain $\lambda_1 = 0 = \mu_1$, as $u \notin P + Q$ and $v \in P + Q$, and $\beta_1 = 0 = \beta_2$, as $y \notin P$ and $x \notin Q$, whence $\tau_1(x) = \tau_1(y) = 0$ by (iii) and (iv). Thus $J = \langle [[a, x], y], a \rangle$ and $P \cap J = Q \cap J = P \cap Q = \langle a \rangle$. The equations (1)-(4) follow from (i)-(iv) and $L = P + Q + \langle [[a, x], y] \rangle$.

Next we show that

C) *M* is not three-dimensional non-split simple.

Assume the contrary. Let P, Q, H, J be as in C3), $\langle l \rangle \leq I_L(\langle l \rangle)$ holds for all $l \in L$ by B6). Let $N = \langle [[a, x], y] \rangle + \langle [a, y] \rangle + \langle y \rangle$; then L is the vector space direct sum L = N + P, where $P = \langle x \rangle + \langle [a, x] \rangle + \langle a \rangle$. By the equations (1)-(4) of C3) we have $[N, P] \subseteq N$, and N is not a subalgebra of L.

Let u = a + x and let $v \in I_L(\langle u \rangle) \setminus \langle u \rangle$; then v = p + n with $p \in P$ and $n \in N \setminus 0$ (as $I_P(\langle u \rangle) = \langle u \rangle$). Now

$$[u, v] = [a + x, p] + [a + x, n] \in \langle u \rangle,$$

and since $[P, N] \subseteq N$ we have

$$[a + x, n] \in P \cap N = 0.$$

Let $n = \gamma_1[[a, x], y] + \gamma_2[a, y] + \gamma_3 y$, where $\gamma_i \in \mathfrak{k}$, i = 1, 2, 3. By C3), by [x, y] = 0, and since [[[a, x], y], x] = [[[a, x], x], y], we obtain

$$0 = [n, a + x]$$

= $\gamma_1(0 + \tau_3(x)[a, y]) + \gamma_2(\tau_2(y)y + [[a, y], x]) + \gamma_3(-[a, y] + 0).$

Thus $\gamma_2 = 0$ (as $\tau_2 \neq 0$) and $\gamma_1 \cdot \tau_3 = \gamma_3$. Now $n = \gamma_1([[a, x], y] + \tau_3(x)y)$ and J' :=

 $\langle [[a, x], y] + \tau_3(x)y, a + x \rangle$ is abelian, whence a Cartan-subalgebra of L.

So $Q \cap J' \neq 0$ for $Q = \langle y \rangle + \langle [a, y] \rangle + \langle a \rangle \in \Omega$ by A1). Hence there exist elements $q \in Q$ and $j \in J'$ such that

$$0 \neq j = \lambda_1([[a, x], y] + \tau_3(x)y) + \lambda_2(a + x)$$

= $q = \mu_1 y + \mu_2[a, y] + \mu_3 a$, where $\lambda_i, \mu_i \in \mathfrak{k}; i, j \in \{1, 2, ...\}$

Now

$$\lambda_1 = 0$$
 and $\lambda_2 = 0$,

whence j=0, which is a contradiction.

But now C) contradicts B) and therefore L cannot be a counterexample. \Box

3}.

COROLLARY 2.5. A simple Lie algebra L over any field of characteristic zero has proper, non-trivial modular subalgebras if and only if L is threedimensional.

COROLLARY 2.6. Let L be a Lie algebra over an arbitrary field \mathfrak{t} of characteristic zero. Then a modular subalgebra M of L is either a quasi-ideal of L or else M/M_L is a one-dimensional, maximal subalgebra of the three-dimensional non-split simple Lie algebra L/M_L .

REMARK. The complete result referred to in the introduction is an immediate consequence of Corollary 2.6 and Theorem 3.6 in [1].

PROOF. W.1.o.g. we may assume that $M_L=0$. We use induction on dim L/M. If dim L/M=1, then M is a quasi-ideal of L. Let $\mathscr{S} = \{N \text{ m } L; M \leqq N \leqq L\}$. If $\mathscr{S} = \phi$, there is nothing to prove due to Theorem 2.4. Now we pick an $M' \in \mathscr{S}$ such that dim M'/M is minimal. The corollary holds for M' by induction and we are left with two cases:

A) $M' \neq L$.

Let $x \in L \setminus M'$ and $u \in M'$ be arbitrary. By (**) we have $M = \langle M, M' \cap \langle x+u \rangle \rangle = \langle M, x+u \rangle \cap M' q \langle M, x+u \rangle$. So for an arbitrary $m \in M$ the following holds: $[m, x+u] = \lambda(x+u) \pmod{M}$, and $[m, x+u] = (\mu x + [m, u]) \pmod{M}$ with $\lambda, \mu \in \mathfrak{k}$. Hence $[m, u] = \lambda u \pmod{M}$ holds and M q L.

B) $M' \bar{q} L$, i.e., M' is a maximal subalgebra of L with dim $M'/M'_L = 1$, and L/M'_L is a three dimensional non-split simple Lie algebra.

We may assume that M'_L is non-trivial, otherwise M=0. Let $x \in L \setminus M'$ and $u \in M'$ be arbitrary. By (**) we have $M \cap M'_L = \langle M, M' \cap \langle x+u \rangle \rangle \cap M'_L = \langle M, x+u \rangle \cap M'_L = \langle M, x+u \rangle$. So $M \cap M'_L$ is idealized by x and x+u, hence by u = (x+u) - x. Therefore $M \cap M'_L \lhd L$, which implies $M \cap M'_L = 0$. By the minimality of M', $M' = M + M'_L$ holds (see Prop. 1.3), and M is one-dimensional (so let $M = \langle m \rangle$). Let $v \in M'_L$ be arbitrary. Then by (*) we have

320

$$\langle v \rangle = \langle v, M \cap M'_L \rangle = \langle M, v \rangle \cap M'_L \lhd \langle M, v \rangle$$

Now, for arbitrary $v, w \in M'_L$,

$$[m, v] = \lambda_v v, [m, w] = \lambda_w w$$
 and $[m, v + w] = \lambda_{(v+w)}(v+w)$

with λ_v , λ_w , $\lambda_{(v+w)} \in \mathfrak{k}$. So $\lambda_v = \lambda_w = \lambda_{(v+w)}$ and there exists a $\lambda \in \mathfrak{k}$ such that

$$[m, v] = \lambda v$$
 for all $v \in M'_L$.

This also implies that $M'_L \subseteq [M, L]$ for $\lambda \neq 0$ — for $\lambda = 0$, $M'_L (\leq M)$ idealizes M, and hence M is an ideal of L by Lemma 1.5b), i.e., the contradiction M = 0 follows. Next let $x \in L \setminus M'$, $u \in M'$, and $v \in M'_L$ be arbitrary. Then

$$[m, [x + u, v]] = \lambda[x + u, v], \text{ and}$$
$$[m, [x + u, v]] = [[m, x + u], v] + \lambda[x + u, v].$$

Therefore [[m, x+u], v]=0 for all choices of x, u and v, hence $[[M, L], M'_L]=0$. Thus $[[M, L]^L, M'_L]=0$, where $[M, L]^L$ denotes the smallest ideal of L containing [M, L]. As L/M'_L is simple and $M'_L \subseteq [M, L], [M, L]^L = L$ holds. So $[L, M'_L]=0$, which implies that $M'_L (\leq M)$ is contained in $I_L(M)$, hence $M \lhd L$ by Lemma 1.5b) and the contradiction M=0 follows (as $M_L=0$).

COROLLARY 2.7. Let L be a Lie algebra over any field of characteristic zero. If every subalgebra of L is modular in L, then L is either metabelian or else three-dimensional non-split simple.

PROOF. If $U \neq L$ for all $U \leq L$, then L is metabelian ([1], Theorem 3.8). If there exists a subalgebra U of L, which is not a quasi-ideal of L, then L contains a three-dimensional non-split simple subalgebra $E = \langle e \rangle + \langle f \rangle + \langle g \rangle$. Suppose $L \neq E$; then dim L > 3.

But now $\langle e \rangle$ has to be a quasi-ideal of L since dim $L/\langle e \rangle \ge 3$ by Corollary 2.6, which is not possible, because $\langle e, f \rangle = E \neq \langle e \rangle + \langle f \rangle$ — hence L = E.

ACKNOWLEDGMENT. A portion of this paper is based on the second author's Diplomarbeit written under the supervision of Prof. O. H. Kegel.

References

- R. K. Amayo: Quasi-ideals of Lie algebras I, Proc. London Math. Soc. (3) 33 (1976), 28-36.
- [2] D. W. Barnes: Lie algebras (lecture notes), University of Tübingen, 1968/69.
- [3] N. Bourbaki: Groupes et algèbres de Lie, Chap. 1, Hermann, Paris, 1960.
- [4] C. Chevalley: Théorie des groupes de Lie, Tome II, Hermann, Paris, 1951.
- [5] N. Jacobson: Lie algebras, Interscience, New York, 1966.

- [6] R. Schmidt: Modulare Untergruppen endlicher Gruppen, Illionis J. Math. 13 (1969), 358-377.
- [7] J. Tits: Sur une classe de groupes de Lie résolubles, Bull. Soc. Math. Belg. 11 (1959), 100-115.
- [8] D. A. Towers: A Frattini theory for Lie algebras, Proc. London Math. Soc. (3) 27 (1973), 440-462.
- [9] H. Zassenhaus: The theory of groups, Vandenhoeck & Ruprecht, 2. Aufl., Göttingen, 1958.

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901, U.S.A.