Нігозніма Матн. J. 10 (1980), 699

Correction to "On Fitting's lemma"

Yasuyuki HIRANO

(Received February 6, 1980)

In Proposition 1 in [1] the proof of $1 \Rightarrow 2$ is invalid, since End $((R^n/e_{11}K)_R)$ is not ring isomorphic to $I_{(R)n}(K)/K$ in general. Here is a revised proof.

PROOF OF 1)=>2) OF [1, Proposition 1]. Let K be a right ideal of $(R)_n$. Then each element $s \in I_{(R)n}(K)$ induces, by left multiplication, an $(R)_n$ -endomorphism of the right $(R)_n$ -module $(R)_n/K$, which we denote by f(s). It is easy to see that the ring $I_{(R)n}/K$ is isomorphic to the subring $\operatorname{End}_{(R)n}((R)_n/K)$ of $\operatorname{End}_R((R)_n/K)$ by the map $s+K \rightarrow f(s)$. Suppose $xy-1 \in K$ with $x \in I_{(R)n}(K)$ and $y \in (R)_n$. Then f(x) is a surjective endomorphism and hence an isomorphism by 1). If the inverse of f(x) is represented by f(z) with $z \in I_{(R)n}(K)$, we have that $zx-1 \in K$. Since $y-z=z(xy-1)-(zx-1)y \in K$, it is immediate that $y \in I_{(R)n}(K)$ and $yx-1=(y-z)x-(zx-1) \in K$.

The author is grateful to Prof. J. W. Fisher for pointing out the error.

Reference

[1] Y. Hirano: On Fitting's lemma, Hiroshima Math. J. 9 (1979), 623-626.

Department of Mathematics, Faculty of Science, Hiroshima University