The L^{p} approach to the Navier-Stokes equations with the Neumann boundary condition

Tetsuro Miyakawa
(Received January 20, 1980)

1. Introduction

Let D be a bounded open set in $R^{n}, n \geq 3$, with smooth boundary S, and v be the unit exterior normal to S. The motion of a viscous incompressible fluid in D is described by the Navier-Stokes equation:

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t}-\Delta u+(u, \operatorname{grad}) u+\operatorname{grad} q & =f \tag{1}\\
\operatorname{div} u=0 & \text { in } D \times(0, T), \\
u(x, 0)=a(x) & \text { in } D \times(0, T),
\end{align*}\right.
$$

with the boundary condition:

$$
\begin{equation*}
u(x, t)=0 \quad \text { on } \quad S \times(0, T) \tag{2}
\end{equation*}
$$

Here $u(x, t)=\left(u_{1}(x, t), \ldots, u_{n}(x, t)\right), q(x, t)$ and $f(x, t)=\left(f_{1}(x, t), \ldots, f_{n}(x, t)\right)$ denote the velocity, the pressure and the external force respectively, and (u, grad) $=$ $u_{j} \partial / \partial x_{j}$.

So far, the above problem has been attacked mainly within the framework of the Hilbert space $\left(L^{2}(D)\right)^{n}$. In this framework the existence and uniqueness, local in time, of strong solutions were established, when $n=3$, by Kiselev and Ladyzhenskaya [9] under some regularity assumptions on the initial data. Then Kato and Fujita [5], [8] made these assumptions weaker and also proved similar but stronger results by the method of evolution equations in Hilbert spaces. Inoue and Wakimoto [7] extended the results of [5], [8] to the case when $n=4,5$. But the case $n \geq 6$ still remains open.

On the other hand, in [5], Fujita and Kato suggested the possibility of removing the regularity assumptions noticed above by passing from L^{2} to general L^{p} spaces. However, the existence of strong solutions in L^{p} spaces is still not known, mainly because of the lack of knowledge about the L^{p}-theory of the Stokes system, i.e. the linearized version of the problem (1) and (2).

In this paper we consider in $\left(L^{p}(D)\right)^{n}, n<p<\infty$, the equation (1) under the following boundary condition (the Neumann condition for 1-forms, see [3]):

$$
\begin{equation*}
\sigma(\delta, v) u=0, \quad \sigma(\delta, v) d u=0 \quad \text { on } \quad S \times(0, T) \tag{3}
\end{equation*}
$$

where d and δ denote the exterior differentiation and its formal adjoint respectively, acting on differential forms on D, and $\sigma(\delta, v)$ denotes the value at v of the principal symbol $\sigma(\delta)$ of δ. (Throughout this paper we identify vector fields and 1 -forms by means of the standard Euclidean metric.) In 3-dimensional case (3) means that u is tangential and rot u is perpendicular to S at each time t. We shall establish the local existence and uniqueness of strong solutions of the problem (1) and (3) without any regularity assumptions on the initial data.

In Section 2, we give a brief survey on the decomposition of $\left(L^{p}(D)\right)^{n}$ into the direct sum of solenoidal vector fields and gradients of scalar functions, which is a generalization of the well-known orthogonal decomposition theorem of $\left(L^{2}(D)\right)^{n}$ (see [17]), namely,

$$
\left(L^{p}(D)\right)^{n}=X_{p}(D) \oplus G_{p}(D) \quad \text { (direct sum) }
$$

where

$$
\begin{aligned}
& X_{p}(D)=\left\{u \in\left(L^{p}(D)\right)^{n} ; \delta u=0 \text { in } D, \sigma(\delta, v) u=0 \text { on } S\right\} \\
& G_{p}(D)=\left\{u \in\left(L^{p}(D)\right)^{n} ; u=d q \text { for some } q \in W^{1, p}(D)\right\}
\end{aligned}
$$

Since the details of the subject are presented in [6], we shall omit the proofs.
Section 3 is devoted to the investigation of the following elliptic boundary value problem, the Neumann problem for 1 -forms:

$$
\begin{cases}-\Delta u=f & \text { in } D \tag{4}\\ \sigma(\delta, v) u=0, \quad \sigma(\delta, v) d u=0 & \text { on } S\end{cases}
$$

where $-\Delta=d \delta+\delta d$ denotes the Laplacian acting on 1 -forms on D. It will be shown that the Laplacian with the Neumann condition on $\left(L^{p}(D)\right)^{n}$ leaves the space $X_{p}(D)$ invariant and hence generates a holomorphic semigroup on $X_{p}(D)$, which enables us to discuss the problem (1) and (3) on L^{p} spaces. It is to be noted that the corresponding result is not known for the Stokes system except when D is a half-space of R^{3}. See [13] in this respect.

Using the results obtained in Sections 2 and 3, we consider in Section 4 the problem (1) and (3) in the form of the following evolution equation in $X_{p}(D)$, $n<p<\infty$:

$$
\begin{align*}
\frac{d u}{d t}+A u+P(u, \operatorname{grad}) u & =P f, \quad t>0 \tag{5}\\
u(0) & =a \in X_{p}(D)
\end{align*}
$$

where $A=A_{p}$ is the restriction to $X_{p}(D)$ of the Laplacian with the Neumann
condition, and $P=P_{p}:\left(L^{p}(D)\right)^{n} \rightarrow X_{p}(D)$ is the projection along $G_{p}(D)$.
We shall mainly follow the discussion of [8] and prove the local existence and uniqueness of solutions of (5), which we shall call strong solutions of (1) and (3), for any $a \in X_{p}(D)$ under some assumptions on Pf.

In [4], Fabes, Lewis and Riviere discussed the equation (1) in L^{p} spaces under various boundary conditions including (2) and (3) and proved the local existence and uniqueness of weak solutions. But the regularity property of their solutions is not clear.

The author would like to express his sincere gratitude to Professor A. Inoue, who helped him with valuable discussions and constant encouragement.

2. The decomposition theorem

In this section we review some results due to Fujiwara and Morimoto [6] on the direct sum decomposition of $\left(L^{p}(D)\right)^{n}, 1<p<\infty$, which will be needed later. In what follows we denote by $W^{s, p}(D)$ the Sobolev space of order s, with the norm $\|\cdot\|_{s, p}$. All functions considered in this paper are assumed to be real, unless otherwise specified. For the sake of convenience, elements in $\left(L^{p}(D)\right)^{n}$ will be regarded as 1 -forms. Thus, for example, $\delta u=-\operatorname{div} u, \sigma(\delta, v) u=-u \cdot v$, in the notation of vector analysis.

Theorbm 2.1. Suppose that $u \in\left(L^{p}(D)\right)^{n}$ and $\delta u \in L^{p}(D)$. Then the boundary value $\sigma(\delta, v) u$ makes sense and belongs to $W^{-1 / p, p}(S)$. Further, there exists a constant $C>0$ independent of u such that

$$
\begin{equation*}
\|\sigma(\delta, v) u\|_{-1 / p, p} \leq C\left(\|u\|_{0, p}+\|\delta u\|_{0, p}\right) . \tag{6}
\end{equation*}
$$

Now, we set

$$
\begin{equation*}
X_{p}(D)=\left\{u \in\left(L^{p}(D)\right)^{n} ; \delta u=0 \text { in } D, \sigma(\delta, v) u=0 \text { on } S\right\} \tag{7}
\end{equation*}
$$

By the above theorem one can easily see that $X_{p}(D)$ is a closed subspace of $\left(L^{p}(D)\right)^{n}$.

Lemma 2.2. The space of all $u \in\left(C_{0}^{\infty}(D)\right)^{n}$ satisfying $\delta u=0$ in D is dense in $X_{p}(D)$.

Let us now construct a bounded operator $P_{p}:\left(L^{p}(D)\right)^{n} \rightarrow X_{p}(D)$ as follows.
For each $u \in\left(L^{p}(D)\right)^{n}$ we can choose $q_{j} \in W^{1, p}(D), j=1,2$, such that
(8) (i) $\left\{\begin{array}{rlll}-\Delta q_{1} & =\delta u & \text { in } & D, \\ q_{1} & =0 & \text { on } & S,\end{array}\right.$ (ii) $\left\{\begin{array}{rll}-\Delta q_{2}=0 & \text { in } & D, \\ \partial q_{2} / \partial v & =\sigma(\delta, v)\left(d q_{1}-u\right) & \\ \text { on } & S .\end{array}\right.$

The existence and uniqueness of $q_{j}, j=1,2$, (up to an additive constant for q_{2}) is
assured by the L^{p}-theory of elliptic boundary value problems (see [10], [11]). Thus, $P_{p} u \equiv u-d\left(q_{1}+q_{2}\right)$ is well-defined and belongs to $X_{p}(D)$. The boundedness of P_{p} follows from the well-known estimates of elliptic problems ([10], [11]). If we set

$$
\begin{equation*}
G_{p}(D)=\left\{u \in\left(L^{p}(D)\right)^{n} ; u=d q \quad \text { for some } \quad q \in W^{1, p}(D)\right\} \tag{9}
\end{equation*}
$$

then it is obvious from our construction of P_{p} that $\left(L^{p}(D)\right)^{n}$ is the sum of $X_{p}(D)$ and $G_{p}(D)$. More precisely we have

Theorem 2.3. (i) $\quad\left(L^{p}(D)\right)^{n}=X_{p}(D) \oplus G_{p}(D)$, (direct sum).
(ii) P_{p} is the projection onto $X_{p}(D)$ along $G_{p}(D)$.

From this it follows that $G_{p}(D)$ is also a closed subspace of $\left(L^{p}(D)\right)^{n}$. For the dual operator P_{p}^{*} we have

Theorem 2.4. $P_{p}^{*}=P_{p^{\prime}}, p^{\prime}=p /(p-1)$.
Using all these results one can obtain the following
Theorem 2.5. (i) $\quad X_{p}(D)^{\perp}=G_{p^{\prime}}(D)$. (ii) $\quad X_{p}(D)^{*}=X_{p^{\prime}}(D)$.
Here $X_{p}(D)^{\perp}$ denotes the annihilator of $X_{p}(D)$.

3. The Neumann problem for $\mathbf{1}$-forms

Our aim in this section is to investigate the relation between the decomposition theorem of the preceding section and the boundary value problem:

$$
\begin{cases}-\Delta u=f & \text { in } \quad D \tag{4}\\ \sigma(\delta, v) u=0, \quad \sigma(\delta, v) d u=0 & \text { on } \quad S\end{cases}
$$

Let us begin with the variational formulation of (4). We set

$$
V=\left\{u \in\left(W^{1,2}(D)\right)^{n} ; \sigma(\delta, v) u=0 \text { on } S\right\},
$$

and consider the bilinear form:

$$
a(u, v)=(d u, d v)+(\delta u, \delta v), \quad u, v \in V,
$$

where (u, v) denotes the L^{2}-inner product. Then a direct calculation leads us to
Proposition 3.1. $a(u, v)$ is coercive on V, i.e., there exist positive constants C_{0} and C_{1} such that

$$
\begin{equation*}
a(u, u) \geq C_{0}\|u\|_{1,2}^{2}-C_{1}\|u\|_{0,2}^{2} \quad \text { for any } \quad u \in V . \tag{10}
\end{equation*}
$$

Thus it follows from the regularity theorem for coercive forms (see [12]) that if $u \in V$ and $f \in\left(L^{2}(D)\right)^{n}$ satisfy the equation

$$
\begin{equation*}
a(u, v)=(f, v) \quad \text { for any } \quad v \in V \tag{11}
\end{equation*}
$$

then u is in $\left(W^{2,2}(D)\right)^{n}$, and satisfies

$$
\begin{equation*}
-\Delta u=f \quad \text { in } \quad D, \tag{12}
\end{equation*}
$$

with $-\Delta=d \delta+\delta d$. Multiplying both sides of (12) with $v \in V$ and integrating by parts one can show that

$$
\begin{equation*}
\int_{S}\langle\sigma(\delta, v) d u, v\rangle d S=0 \quad \text { for any } \quad v \in V \tag{13}
\end{equation*}
$$

Here $\langle\cdot, \cdot\rangle$ denotes the Euclidean metric of R^{n}. Now, we may assume that the normal vector v is smoothly extended to a neighbourhood of S in R^{n}. Since $\sigma(\delta, v)^{2} d u=0$ by virtue of $\delta^{2}=0$, one can choose $v \in V$ which is equal to $\sigma(\delta, v) d u$ near S. This and (13) imply that $\sigma(\delta, v) d u=0$ on S. Thus we have deduced the boundary value problem (4) from (11).

The L^{p}-theory of elliptic boundary value problems such as developed in [11] enables us to give the following

Definition 3.2. We set

$$
\begin{align*}
& D\left(B_{p}\right)=\left\{u \in\left(W^{2, p}(D)\right)^{n} ; \sigma(\delta, v) u=0, \sigma(\delta, v) d u=0 \text { on } S\right\}, \tag{14}\\
& B_{p} u=-\Delta u \quad \text { for } \quad u \in D\left(B_{p}\right) \tag{15}
\end{align*}
$$

Note that B_{p} is a densely defined closed operator on $\left(L^{p}(D)\right)^{n}$.
The following lemma is of fundamental importance to our purposes.
Lemma 3.3. $\quad B_{p} u \in X_{p}(D)$ if and only if $u \in D\left(B_{p}\right) \cap X_{p}(D)$.
To prove this lemma we need the following
Lemma 3.4. Suppose $v \in\left(W^{2, p}(D)\right)^{n}$ satisfies $\sigma(\delta, v) d v=0$ on S. Then, $\sigma(\delta, v) \delta d v=0$ on S.

Note that, by Theorem 2.1, $\sigma(\delta, v) \delta d v$ makes sense as an element of $W^{-1 / p, p}(S)$, since $\delta d v \in\left(L^{p}(D)\right)^{n}$ satisfies $\delta(\delta d v)=\delta^{2} d v=0$ in D.

Proof of Lemma 3.3. We first assume that $f=B_{p} u$ is in $X_{p}(D)$. It suffices to prove that $\delta u=0$ in D. By definition, it is clear that $\delta f=0$ in D, and $\sigma(\delta, v) f=0$ on S. From this and Lemma 3.4, we have

$$
\begin{equation*}
-\Delta(\delta u)=-\delta(\Delta u)=\delta f=0 \quad \text { in } \quad D \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
\sigma(\delta, v) d \delta u & =\sigma(\delta, v)(f-\delta d u) \tag{17}\\
& =\sigma(\delta, v) f-\sigma(\delta, v) \delta d u \\
& =0 \quad \text { on } \quad S .
\end{align*}
$$

Since $\sigma(\delta, v) d \delta u=-\partial(\delta u) / \partial v$ in the usual notation, one concludes from (16) and (17) that $\delta u=$ const. in D. Therefore we have

$$
\begin{align*}
0=(d \delta u, u) & =\int_{S}\langle\sigma(d, v) \delta u, u\rangle d S+(\delta u, \delta u) \tag{18}\\
& =-\int_{S}\langle\delta u, \sigma(\delta, v) u\rangle d S+(\delta u, \delta u) \\
& =(\delta u, \delta u)
\end{align*}
$$

Thus $\delta u=0$ in D, and hence u is in $X_{p}(D)$.
Conversely, suppose u is in $D\left(B_{p}\right) \cap X_{p}(D)$, and set $f=B_{p} u$. It is obvious that

$$
\begin{equation*}
\delta f=-\delta \Delta u=-\Delta(\delta u)=0 \tag{19}
\end{equation*}
$$

By Lemma 3.4, we have

$$
\begin{align*}
\sigma(\delta, v) f & =\sigma(\delta, v) \delta d u+\sigma(\delta, v) d \delta u \tag{20}\\
& =\sigma(\delta, v) d \delta u \\
& =0 \quad \text { on } \quad S
\end{align*}
$$

since $\delta u=0$ in D. Thus f belongs to $X_{p}(D)$. The proof is completed.
Proof of Lemma 3.4. For each $q \in C^{2}(\bar{D})$, we have

$$
\begin{align*}
0 & =\left(\delta^{2} d u, q\right) \tag{21}\\
& =\int_{S}\langle\sigma(\delta, v) \delta d u, q\rangle d S+(\delta d u, d q) \\
& =\int_{S}\langle\sigma(\delta, v) \delta d u, q\rangle d S+\int_{S}\langle\sigma(\delta, v) d u, d q\rangle d S+\left(d u, d^{2} q\right) \\
& =\int_{S}\langle\sigma(\delta, v) \delta d u, q\rangle d S
\end{align*}
$$

Since $C^{2}(\bar{D})$ is dense in $W^{1, p^{\prime}}(D)$, it follows from the surjectivity of the trace operator: $\left.q \rightarrow q\right|_{s}$ from $W^{1, p^{\prime}}(D)$ to $W^{1-1 / p^{\prime}, p^{\prime}}(S)=W^{1 / p, p^{\prime}}(S)$ that $\sigma(\delta, v) \delta d u=0$ on S. This completes the proof.

Lemma 3.3 enables us to define a densely defined closed operator A_{p} on $X_{p}(D)$
as follows.

$$
\left\{\begin{array}{l}
D\left(A_{p}\right)=D\left(B_{p}\right) \cap X_{p}(D) \tag{22}\\
A_{p} u=B_{p} u=-\Delta u, \quad \text { for } u \in D\left(A_{p}\right)
\end{array}\right.
$$

Theorem 3.5. $\quad P_{p}$ maps $D\left(B_{p}\right)$ into $D\left(A_{p}\right)$, and $B_{p} P_{p}=A_{p} P_{p}=P_{p} B_{p}$ on $D\left(B_{p}\right)$.
Proof. Let $u=w+d q$ be in $D\left(B_{p}\right)$ with $w=P_{p} u$. Since $u \in\left(W^{2, p}(D)\right)^{n}$, the function q is determined by

$$
-\Delta q=\delta u \text { in } D, \text { and } \partial q / \partial v=-\sigma(\delta, v) u=0 \text { on } S
$$

Thus we see $q \in W^{3, p}(D)$, and hence $w=u-d q \in\left(W^{2, p}(D)\right)^{n} \cap X_{p}(D)$. Because $\sigma(\delta ; v) d w=\sigma(\delta, v) d u=0$ on S, we have $w \in D\left(B_{p}\right) \cap X_{p}(D)=D\left(A_{p}\right)$, and

$$
B_{p} u=B_{p} w+d(-\Delta q)=A_{p} w+d(-\Delta q)
$$

from which we obtain, using Lemma 3.3,

$$
P_{p} B_{p} u=B_{p} w=B_{p} P_{p} u=A_{p} w=A_{p} P_{p} u
$$

This completes the proof.
Corollary 3.6. $\left(\lambda-B_{p}\right)^{-1} P_{p}=P_{p}\left(\lambda-B_{p}\right)^{-1}=\left(\lambda-A_{p}\right)^{-1} P_{p}$, for any λ in the resolvent set of B_{p}.

Proof. To show that $\left(\lambda-A_{p}\right)^{-1}$ exists and is bounded on $X_{p}(D)$ it is sufficient to prove that $\lambda-A_{p}$ is surjective, since A_{p} is a restriction of B_{p}. By assumption, for each $f \in X_{p}(D)$, there exists a unique element $v \in D\left(B_{p}\right)$ such that $f=$ $\left(\lambda-B_{p}\right) v$. Thus we have, by Theorem 3.5,

$$
\begin{equation*}
f=P_{p} f=P_{p}\left(\lambda-B_{p}\right) v=\left(\lambda-A_{p}\right) P_{p} v \tag{23}
\end{equation*}
$$

from which follows the existence of $\left(\lambda-A_{p}\right)^{-1}$.
Now, let us fix $f \in\left(L^{p}(D)\right)^{n}$ and choose $v \in D\left(B_{p}\right)$ such that

$$
\begin{equation*}
\left(\lambda-B_{p}\right) v=f \tag{24}
\end{equation*}
$$

Applying P_{p} to both sides of (24) we obtain, by Theorem 3.5,

$$
\begin{equation*}
P_{p}\left(\lambda-B_{p}\right) v=\left(\lambda-A_{p}\right) P_{p} v=\left(\lambda-B_{p}\right) P_{p} v=P_{p} f \tag{25}
\end{equation*}
$$

so that

$$
\begin{equation*}
P_{p} v=P_{p}\left(\lambda-B_{p}\right)^{-1} f=\left(\lambda-A_{p}\right)^{-1} P_{p} f=\left(\lambda-B_{p}\right)^{-1} P_{p} f \tag{26}
\end{equation*}
$$

This completes the proof.

We shall now determine the dual operator A_{p}^{*}.
Lemma 3.7. $\quad B_{p}^{*}=B_{p^{\prime}}$.
Proof. By the regularity theorem for the Neumann problem the spectra of B_{p} are independent of p, and hence are contained in $[0, \infty)$ since B_{2} is nonnegative. Thus, $T_{p}=\left(1+B_{p}\right)^{-1}$ is a bounded operator on $\left(L^{p}(D)\right)^{n}$ for $1<p<\infty$. By an integration by parts,

$$
\begin{equation*}
\left(T_{p} f, g\right)=a_{1}\left(T_{p} f, T_{p^{\prime}} g\right)=\left(f, T_{p^{\prime}} g\right) \tag{27}
\end{equation*}
$$

for any $f \in\left(L^{p}(D)\right)^{n}$ and $g \in\left(L^{p^{\prime}}(D)\right)^{n}$, where $a_{1}(u, v)=(d u, d v)+(\delta u, \delta v)+(u, v)$. Thus, $T_{p}^{*}=T_{p^{\prime}}$ so that $B_{p}^{*}=B_{p^{\prime}}$.

Theorem 3.8. $\quad A_{p}^{*}=A_{p^{\prime}}$.
Proof. Let v be in $D\left(A_{p^{\prime}}\right)$. Then, an integration by parts yields, for each $u \in D\left(A_{p}\right)$,

$$
\begin{align*}
\left(A_{p} u, v\right) & =(\delta d u, v)=\int_{S}\langle\sigma(\delta, v) d u, v\rangle d S+(d u, d v) \tag{28}\\
& =(d u, d v)=\int_{S}\langle\sigma(d, v) u, d v\rangle d S+(u, \delta d v) \\
& =-\int_{S}\langle u, \sigma(\delta, v) d v\rangle d S+\left(u, A_{p}, v\right)=\left(u, A_{p^{\prime}} v\right) .
\end{align*}
$$

Thus we have proved $A_{p^{\prime}} \subset A_{p}^{*}$.
Conversely, suppose that v is in $D\left(A_{p}^{*}\right)$ and set $f=A_{p}^{*} v$. Then, for any $w=$ $u+d q \in D\left(B_{p}\right)$ with $P_{p} w=u$, we have

$$
\begin{equation*}
\left(B_{p} w, v\right)=\left(A_{p} u, v\right)=(u, f)=(w, f), \tag{29}
\end{equation*}
$$

by Theorems 2.5 and 3.5. From this we see that v is in $D\left(B_{p}^{*}\right) \cap X_{p^{\prime}}(D)=D\left(B_{p^{\prime}}\right) \cap$ $X_{p^{\prime}}(D)=D\left(A_{p^{\prime}}\right)$ and $A_{p}^{*} v=B_{p}^{*} v=B_{p^{\prime}} v=A_{p^{\prime},}$. This completes the proof.

We are now ready to discuss the semigroups and fractional powers generated by A_{p}. In this paragraph $\left(L^{p}(D)\right)^{n}$ is considered as a complex Banach space.

Before stating our results we note the following fact. As is well known (see [6]) there exists a neighbourhood U of S in R^{n} such that
(30) U and $U \cap D$ are diffeomorphic to $S \times(-\varepsilon, \varepsilon)$ and $S \times(0, \varepsilon)$ respectively, for some $\varepsilon>0$,
and
(31) for each $y^{\prime} \in S$, the curve $y_{n} \rightarrow\left(y^{\prime}, y_{n}\right) \in S \times(-\varepsilon, \varepsilon)$ represents a straight line in U which is perpendicular to S at y^{\prime}.

Choosing a system of local coordinates $y^{\prime}=\left(y_{1}, \ldots, y_{n-1}\right)$ of S, one can consider $\left(y^{\prime}, y_{n}\right)=\left(y_{1}, \ldots, y_{n-1}, y_{n}\right), y_{n} \in(-\varepsilon, \varepsilon)$, as a system of local coordinates on U.

In this situation the boundary value problem (4) takes the following form:

$$
\left\{\begin{array}{l}
-\Delta u=f, \quad y_{n}>0 \tag{4}\\
u_{n}\left(y^{\prime}, 0\right)=0, \quad \frac{\partial u_{k}}{\partial y_{n}}\left(y^{\prime}, 0\right)=0, \quad k=1, \ldots, n-1
\end{array}\right.
$$

Now, let $(d s)^{2}=\sum_{1}^{n-1} g_{j k}\left(y^{\prime}, y_{n}\right) d y_{j} d y_{k}+\left(d y_{n}\right)^{2}$ be the representation of the Euclidean metric with respect to the coordinate (y^{\prime}, y_{n}). Then the following lemma holds, the proof of which is easy and so is omitted.

Lemma 3.9. Let $u(t)$ be a solution of the boundary value problem

$$
\left\{\begin{array}{l}
\left\{\sum_{1}^{n-1} g^{j k}\left(y^{\prime}, 0\right) \xi_{j} \xi_{k}-(d / d t)^{2}\right\} u(t)=-\lambda e^{i \theta} u(t), \quad t>0 \tag{32}\\
u_{n}(0)=0, \quad\left(d u_{j} / d t\right)(0)=0, \quad 1 \leq j \leq n-1, \quad u(\infty)=0
\end{array}\right.
$$

where $\left(g^{j k}\left(y^{\prime}, 0\right)\right)$ is the inverse matrix of $\left(g_{j k}\left(y^{\prime}, 0\right)\right)$. Then, $u(t) \equiv 0$ whenever $\lambda>0, \xi \in R^{n-1},-\pi<\theta<\pi$.

This lemma together with S. Agmon's trick ([1]) tells us that there exist for each $\omega, 0<\omega<\pi / 2$, constants $C_{\omega}>0, M_{\omega}>0$, such that each $\lambda,|\arg \lambda| \geq \omega,|\lambda| \geq$ M_{ω} belongs to the resolvent set of B_{p}, and

$$
\begin{equation*}
\left\|\left(\lambda-B_{p}\right)^{-1}\right\|<C_{\omega} /|\lambda| . \tag{33}
\end{equation*}
$$

This implies the following
Theorem 3.10. $-B_{p}$ generates a holomorphic semigroup, $e^{-t B_{p}}$, on $\left(L^{p}(D)\right)^{n}$.

This theorem and Corollary 3.6, Theorem 3.8 lead us to
Corollary 3.11. $-A_{p}$ generates a holomorphic semigroup, $e^{-t A_{p}}$, on $X_{p}(D)$. Furthermore, we have $P_{p} e^{-t B_{p}}=e^{-t B_{p}} P_{p}=e^{-t A_{p}} P_{p}$, and $\left(e^{-t A_{p}}\right)^{*}=$ $e^{-t A_{p^{\prime}}}$.

By the above results we can now discuss the fractional powers of B_{p} and A_{p}. Without loss of generality we may assume that both B_{p} and A_{p} are invertible.

The following theorem plays an important role in the next section.
Theorem 3.12. (i) $D\left(A_{p}^{\alpha}\right)=D\left(B_{p}^{\alpha}\right) \cap X_{p}(D)$,
(ii) $A_{p}^{\alpha}=B_{p}^{\alpha}$ on $D\left(A_{p}^{\alpha}\right)$ for $0<\alpha<1$.

Proof. Let u be in $D\left(A_{p}^{\alpha}\right)$ and set $v=A_{p}^{\alpha} u \in X_{p}(D)$. Then we have

$$
\begin{align*}
w \equiv B_{p}^{-\alpha} v & =\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \lambda^{-\alpha}\left(\lambda+B_{p}\right)^{-1} v d \lambda \tag{34}\\
& =\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \lambda^{-\alpha}\left(\lambda+A_{p}\right)^{-1} v d \lambda \\
& =A_{p}^{-\alpha} v=u
\end{align*}
$$

by a well-known formula for fractional powers of operators (see [16]). Thus $w=u \in D\left(B_{p}^{\alpha}\right) \cap X_{p}(D)$, and $A_{p}^{\alpha} u=B_{p}^{\alpha} u$.

Conversely, let u be in $D\left(B_{p}^{\alpha}\right) \cap X_{p}(D)$ and set $B_{p}^{\alpha} u=v$. Then we have

$$
\begin{align*}
A_{p}^{-\alpha} P_{p} v & =\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \lambda^{-\alpha}\left(\lambda+A_{p}\right)^{-1} P_{p} v d \lambda \tag{35}\\
& =\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \lambda^{-\alpha} P_{p}\left(\lambda+B_{p}\right)^{-1} v d \lambda \\
& =P_{p} B_{p}^{-\alpha} v=P_{p} u=u
\end{align*}
$$

Thus, $u \in D\left(A_{p}^{\alpha}\right)$ and hence $A_{p}^{\alpha} u=B_{p}^{\alpha} u$ by the first part of this proof.
Proposition 3.13. $\left(A_{p}^{\alpha}\right)^{*}=A_{p^{\prime}}^{\alpha} \quad$ for $\quad 0<\alpha<1$.
Proof. This is an immediate consequence of $\left(A_{p}^{-\alpha}\right)^{*}=A_{p^{\prime}}^{-\alpha}$, which follows from

$$
\left\{\left(\lambda+A_{p}\right)^{-1}\right\}^{*}=\left(\lambda+A_{p}^{*}\right)^{-1}=\left(\lambda+A_{p^{\prime}}\right)^{-1}, \quad \lambda>0 .
$$

4. The Navier-Stokes equation with the Neumann condition

In this section we fix $p, n<p<\infty$, and consider in $\left(L^{p}(D)\right)^{n}$ the problem (1) and (3). For simplicity, we shall write $A_{p}=A, P_{p}=P$ and the L^{p} norm will be denoted by $\|\cdot\|$. All functions considered in this section are assumed to be real.

Now, applying P formally to both sides of (1), we obtain the following evolution equation in the Banach space $X_{p}=X_{p}(D)$.

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+A u=F u+P f, \quad t>0 \tag{I}\\
u(0)=a \\
\text { where } F u=-P(u, \operatorname{grad}) u
\end{array}\right.
$$

Our aim is to establish for an arbitrary $a \in X_{p}$ the local existence and uniqueness of strong solutions in the sense of the following definition.

Dbeinition 4.1. Let $P f$ be in $C\left((0, T] ; X_{p}\right)$. We shall say that $u(t)$ is a
strong solution of (I) on $[0, T]$ if and only if
(i) $u(t) \in C\left([0, T] ; X_{p}\right) \cap C^{1}\left((0, T] ; X_{p}\right), u(0)=a$,
(ii) $u(t)$ is in $D(A)$ for each $t \in(0, T]$, and $A u(t) \in C\left((0, T] ; X_{p}\right)$,
(iii) $\frac{d u}{d t}+A u=F u+P f$ on $(0, T]$.

Let us put $u(t)=e^{\lambda t} v(t), \lambda>0$. Then $v(t)$ is a solution of
(I)

$$
\left\{\begin{array}{l}
\frac{d v}{d t}+(\lambda+A) v=e^{\lambda t} F v+e^{-\lambda t} P f, \quad t>0 \\
v(0)=a
\end{array}\right.
$$

As is shown in the previous section (see the proof of Lemma 3.7) $\lambda+A$ is invertible for any $\lambda>0$. Therefore we shall assume that, for each $p, 1<p<\infty$, both A_{p} and B_{p} are invertible and

$$
\begin{align*}
& \left\|e^{-t A_{p}}\right\| \leq C e^{-t}, \quad\left\|e^{-t B_{p}}\right\| \leq C e^{-t} \quad \text { for some } \quad C=C_{p}>0 \tag{36}\\
& \left\|A_{p}^{\alpha} e^{-t A_{p}}\right\| \leq C_{\alpha} t^{-\alpha}, \quad\left\|B_{p}^{\alpha} e^{-t B_{p}}\right\| \leq C_{\alpha} t^{-\alpha}, \quad \text { for } t>0,0<\alpha \leq 1 \tag{37}\\
& \text { with some } C_{\alpha}=C_{\alpha, p}>0 .
\end{align*}
$$

The factors $e^{ \pm \lambda t}$ on the right hand side of (1$)^{\prime}$ are irrelevant since our consideration is local in time.

We first consider the equation (I) in the form of the following integral equation.

$$
\begin{equation*}
u(t)=e^{-t A} a+\int_{0}^{t} e^{-(t-s) A}\{F u(s)+P f(s)\} d s \tag{II}
\end{equation*}
$$

We shall give, under some assumptions on $P f$, a local existence and uniqueness result for (II) and then show that the solution of (II) thus obtained satisfies (I) if Pf is Hölder continuous.

The following lemma is crucial for our purpose.
Lemma 4.2. There exists a constant $M>0$ such that
(i) $\|P(u, \operatorname{grad}) v\| \leq M\left\|A^{1 / 2} u\right\| \cdot\left\|A^{1 / 2} v\right\|$,
(ii) $\| A^{-1 / 4} P(u$, grad $) v\|\leq M\| A^{1 / 4} u\|\cdot\| A^{1 / 2} v \|$,
for any $u, v \in D\left(A^{1 / 2}\right)$.
Proof. (i) As is shown in the previous section, the following holds with continuous injections.

$$
\begin{equation*}
D(A) \subset D(B) \subset\left(W^{2, p}(D)\right)^{n}, \quad D\left(A^{1 / 2}\right) \subset D\left(B^{1 / 2}\right) \tag{38}
\end{equation*}
$$

According to a result of Seeley [15] we have

$$
\begin{equation*}
D\left(B^{\alpha}\right)=\left[D(B),\left(L^{p}(D)\right)^{n}\right]_{1-\alpha}, \quad 0<\alpha<1 . \tag{39}
\end{equation*}
$$

Thus,

$$
\begin{align*}
D\left(A^{1 / 2}\right) & \subset D\left(B^{1 / 2}\right)=\left[D(B),\left(L^{p}(D)\right)^{n}\right]_{1 / 2} \subset\left[\left(W^{2, p}(D)\right)^{n},\left(L^{p}(D)\right)^{n}\right]_{1 / 2} \tag{40}\\
& =\left(W^{1, p}(D)\right)^{n},
\end{align*}
$$

with continuous injections. Here and hereafter we denote by $[X, Y]_{\theta}, 0 \leq \theta \leq 1$, the complex interpolation space (Calderón [2]) of Banach spaces X and Y. Furthermore, by the Sobolev imbedding theorem,

$$
\begin{equation*}
W^{1, p}(D) \subset C^{\beta}(\bar{D}), \quad \beta=1-n / p \tag{41}
\end{equation*}
$$

Now, let ψ be in $X_{p^{\prime}}$. Then, by (40), (41) and Hölder's inequality, we obtain

$$
\begin{align*}
& |(P(u, \operatorname{grad}) v, \psi)|=|((u, \operatorname{grad}) v, \psi)| \tag{42}\\
& \quad \leq C \sup _{\bar{D}}|u(x)| \int_{D}|\nabla v(y)||\psi(y)| d y \leq C\|u\|_{1, p}\|v\|_{1, p}\|\psi\|_{0, p^{\prime}} \\
& \quad \leq C\left\|A^{1 / 2} u\right\| \cdot\left\|A^{1 / 2} v\right\| \cdot\|\psi\|_{0, p^{\prime}} \quad \text { for } \quad u, v \in D\left(A^{1 / 2}\right),
\end{align*}
$$

from which follows (i) since $X_{p}^{*}=X_{p^{\prime}}$ (Theorem 2.5).
(ii) We make use of the following facts:

$$
\begin{equation*}
B_{p}^{-\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} e^{-t B_{p}} d t \quad \text { for } \quad 0<\alpha<1, \quad 1<p<\infty, \tag{43}
\end{equation*}
$$

$$
\begin{align*}
& \int_{0}^{\infty} t^{\alpha-1}\left|e^{-t B_{P}}(x, y)\right| d t \leq C_{\alpha} /|x-y|^{n-2 \alpha} \tag{44}\\
& \\
& \quad \text { for } \quad(x, y) \in \bar{D} \times \bar{D}, \quad x \neq y, \quad 1<p<\infty,
\end{align*}
$$

where $e^{-t B_{p}}(x, y)$ denotes the kernel function of $e^{-t B_{p}}$. (43) is verified easily by (36) and the well-known integral representation of $e^{-t B_{p}}$ whereas (44) will be proved in Appendix. Thus, for $u, v \in D\left(A^{1 / 2}\right)$ and $\psi \in X_{p^{\prime}}$,

$$
\begin{align*}
& \left|\left(A^{-1 / 4} P(u, \operatorname{grad}) v, \psi\right)\right|=\mid\left((u, \text { grad }) v, A_{p^{\prime / 4}}^{-1 / 4} \psi\right. \tag{45}\\
& \quad \leq C \int_{0}^{\infty} t^{-3 / 4}\left|\left((u, \operatorname{grad}) v, e^{-t B_{p^{\prime}}} \psi\right)\right| d t \\
& \quad \leq C \iint_{D \times D} \frac{|u(x)| \cdot|\nabla v(x)| \cdot|\psi(y)|}{|x-y|^{n-1 / 2}} d x d y .
\end{align*}
$$

Put $w(x)=\int_{D} \frac{|\psi(y)|}{|x-y|^{n-1 / 2}} d y$. By the Sobolev inequality we have

$$
w \in\left(L^{q}(D)\right)^{n}, q^{-1}=1-(2 n)^{-1}-p^{-1}, \quad \text { and } \quad\|w\|_{0, q} \leq C\|\psi\|_{0, p^{\prime}}
$$

with a constant $C>0$ independent of ψ. Therefore, by Hölder's inequality,

$$
\begin{align*}
& \left|\left(A^{-1 / 4} P(u, \operatorname{grad}) v, \psi\right)\right| \leq C\||u| \cdot|\nabla v|\|_{0, q^{\prime}}\|w\|_{0, q} \tag{46}\\
& \quad \leq C\||u| \cdot|\nabla v|\|_{0, q^{\prime}}\|\psi\|_{0, p^{\prime}} \leq C\|u\|_{0,2 n}\|v\|_{1, p}\|\psi\|_{0, p^{\prime}} \\
& \quad \leq C\|u\|_{0,2 n}\left\|A^{1 / 2} v\right\| \cdot\|\dot{\psi}\|_{0, p^{\prime}},
\end{align*}
$$

since $q^{\prime-1}=1-q^{-1}=(2 n)^{-1}+p^{-1}$. This estimate implies that when $p \geq 2 n$,

$$
\begin{equation*}
\| A^{-1 / 4} P(u, \text { grad }) v\|\leq C\| u\|\cdot\| A^{1 / 2} v\|\leq C\| A^{1 / 4} u\|\cdot\| A^{1 / 2} v \| . \tag{47}
\end{equation*}
$$

When $n<p<2 n$, we proceed as follows:
As is noted above, we have

$$
\begin{equation*}
D\left(B^{1 / 2}\right) \subset\left(W^{1, p}(D)\right)^{n} \subset\left(L^{s}(D)\right)^{n}, \quad \text { for any } \quad s \geq 1 . \tag{48}
\end{equation*}
$$

So, by (39) and the reiteration property of interpolation spaces,

$$
\begin{align*}
& D\left(A^{1 / 4}\right) \subset D\left(B^{1 / 4}\right)=\left[D\left(B^{1 / 2}\right),\left(L^{p}(D)\right)^{n}\right]_{1 / 2} \tag{49}\\
& \quad \subset\left[\left(L^{s}(D)\right)^{n},\left(L^{p}(D)\right)^{n}\right]_{1 / 2}=\left(L^{r}(D)\right)^{n},
\end{align*}
$$

where $r^{-1}=(2 s)^{-1}+(2 p)^{-1}$. Now put $s=p n /(p-n)$. Then $r=2 n$, so that by (49),

$$
\begin{equation*}
\left\|A^{-1 / 4} P(u, \operatorname{grad}) v\right\| \leq C\|u\|_{0,2 n}\left\|A^{1 / 2} v\right\| \leq C\left\|A^{1 / 4} u\right\|\left\|A^{1 / 2} v\right\| . \tag{50}
\end{equation*}
$$

This completes the proof of (ii).
We shall now give the existence result for the integral equation (II) by the use of the following iteration scheme,

$$
\begin{align*}
& u_{0}(t)=e^{-t A} a+\int_{0}^{t} e^{-(t-s) A} P f(s) d s \tag{51}\\
& u_{m+1}(t)=u_{0}(t)+\int_{0}^{t} e^{-(t-s) A} F u_{m}(s) d s, \quad m \geq 0 \tag{52}
\end{align*}
$$

Lemma 4.3. Suppose that $a \in X_{p}, P f \in C\left((0, T] ; X_{p}\right)$ and

$$
\begin{equation*}
\left\|A^{-1 / 4} P f(t)\right\|=o\left(t^{-3 / 4}\right) \quad \text { as } \quad t \longrightarrow 0 \tag{53}
\end{equation*}
$$

Then, each $u_{m}(t)$ in (52) is well-defined and belongs to $C\left([0, T] ; X_{p}\right) \cap C((0, T]$; $D\left(A^{\alpha}\right)$), $0<\alpha<3 / 4$. Furthermore, there exist constants $K_{\alpha m}$ such that

$$
\begin{equation*}
\left\|A^{\alpha} u_{m}(t)\right\| \leq K_{\alpha m} t^{-\alpha}, \quad 0 \leq \alpha<3 / 4 \tag{54}
\end{equation*}
$$

Proof. In view of (53) and (37), we have

$$
\begin{aligned}
\left\|A^{\alpha} u_{0}(t)\right\| & \leq\left\|A^{\alpha} e^{-t A} a\right\|+\int_{0}^{t}\left\|A^{\alpha} e^{-(t-s) A} P f(s)\right\| d s \\
& \leq\left\|A^{\alpha} e^{-t A} a\right\|+\int_{0}^{t}\left\|A^{\alpha+1 / 4} e^{-(t-s) A}\right\| \cdot\left\|A^{-1 / 4} P f(s)\right\| d s \\
& \leq\left\|A^{\alpha} e^{-t A} a\right\|+C_{\alpha} N \int_{0}^{t}(t-s)^{-\alpha-1 / 4} s^{-3 / 4} d s \\
& \leq K_{\alpha 0} t^{-\alpha}
\end{aligned}
$$

where

$$
\begin{align*}
& K_{\alpha 0}=\sup _{0<t \leq T} t^{\alpha}\left\|A^{\alpha} e^{-t A} a\right\|+C_{\alpha} N B(3 / 4-\alpha, 1 / 4) \tag{55}\\
& N=\sup _{0<t \leq T} t^{3 / 4}\left\|A^{-1 / 4} \operatorname{Pf}(t)\right\| \tag{56}
\end{align*}
$$

Here $B(\cdot, \cdot)$ denotes the beta function. Suppose that (54) is valid for u_{0}, \ldots, u_{m}. Then, it follows from Lemma 4.2 that
(57) $\left\|A^{\alpha} u_{m+1}(t)\right\| \leq\left\|A^{\alpha} u_{0}(t)\right\|+\int_{0}^{t}\left\|A^{\alpha+1 / 4} e^{-(t-s) A}\right\| \cdot\left\|A^{-1 / 4} F u_{m}(s)\right\| d s$

$$
\begin{aligned}
& \leq K_{\alpha 0} t^{-\alpha}+C_{\alpha} M \int_{0}^{t}(t-s)^{-\alpha-1 / 4}\left\|A^{1 / 4} u_{m}(s)\right\| \cdot\left\|A^{1 / 2} u_{m}(s)\right\| d s \\
& \leq\left\{K_{\alpha 0}+C_{\alpha} M B(3 / 4-\alpha, 1 / 4) K_{1 / 4, m} K_{1 / 2, m}\right\} t^{-\alpha} .
\end{aligned}
$$

Thus we may put

$$
\begin{equation*}
K_{\alpha, m+1}=K_{\alpha 0}+C_{\alpha} M B(3 / 4-\alpha, 1 / 4) K_{1 / 4, m} K_{1 / 2, m} \tag{58}
\end{equation*}
$$

This completes the proof.
Let us now put $k_{m}=\max \left(K_{1 / 4, m}, K_{1 / 2, m}\right)$. From (58) we obtain

$$
\begin{equation*}
k_{m+1} \leq k_{0}+C_{1} M \beta k_{m}^{2} \tag{59}
\end{equation*}
$$

where $C_{1}=\max \left(C_{1 / 4}, C_{1 / 2}\right)$ and $\beta=\max \{B(1 / 4,1 / 4), B(1 / 2,1 / 4)\}$. By an elementary calculation it is readily verified that if

$$
\begin{equation*}
k_{0}<1 /\left(4 C_{1} M \beta\right) \tag{60}
\end{equation*}
$$

then, for each $m>0$,

$$
\left\{\begin{array}{l}
k_{m} \leq K \equiv\left\{1-\left(1-4 C_{1} M \beta k_{0}\right)^{1 / 2}\right\} /\left(2 C_{1} M \beta\right)<1 /\left(2 C_{1} M \beta\right) \tag{61}\\
\left\|A^{\gamma} u_{m}(t)\right\| \leq K t^{-\gamma}, \quad \gamma=1 / 2,1 / 4
\end{array}\right.
$$

so that, by (58),

$$
\begin{equation*}
K_{\alpha m} \leq K_{\alpha} \equiv K_{\alpha 0}+C_{\alpha} M B(3 / 4-\alpha, 1 / 4) K^{2} \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A^{\alpha} u_{m}(t)\right\| \leq K_{\alpha} t^{-\alpha}, \quad \text { for any } \quad m \geq 0,0 \leq \alpha<3 / 4 \tag{63}
\end{equation*}
$$

Let us put

$$
\begin{align*}
w_{m+1}(t) \equiv u_{m+1}(t)-u_{m}(t)=\int_{0}^{t} e^{-(t-s) A}\left\{F u_{m}(s)-F u_{m-1}(s)\right\} d s & \tag{64}\\
& \left(u_{-1}(s)=0\right)
\end{align*}
$$

Because of the inequality (easily derived from Lemma 4.2)

$$
\begin{align*}
& \left\|A^{-1 / 4}(F u-F v)\right\| \tag{65}\\
& \quad \leq M\left\{\left\|A^{1 / 2} u\right\| \cdot\left\|A^{1 / 4}(u-v)\right\|+\left\|A^{1 / 2}(u-v)\right\| \cdot\left\|A^{1 / 4} v\right\|\right\}
\end{align*}
$$

one can see that, for $0<\alpha<3 / 4$,
(66)
$\left\|A^{\alpha} w_{m+1}(t)\right\|$

$$
\begin{aligned}
& \leq C_{\alpha} \int_{0}^{t}(t-s)^{-\alpha-1 / 4} M\left\{\left\|A^{1 / 2} u_{m}(s)\right\| \cdot\left\|A^{1 / 4} w_{m}(s)\right\|+\left\|A^{1 / 4} u_{m-1}(s)\right\| \cdot\left\|A^{1 / 2} w_{m}(s)\right\|\right\} d s \\
& \leq C_{\alpha} M K \int_{0}^{t}(t-s)^{-\alpha-1 / 4}\left\{s^{-1 / 2}\left\|A^{1 / 4} w_{m}(s)\right\|+s^{-1 / 4}\left\|A^{1 / 2} w_{m}(s)\right\|\right\} d s
\end{aligned}
$$

From this we obtain, by induction on m,

$$
\begin{equation*}
\left\|A^{\gamma} w_{m}(t)\right\| \leq\left(2 C_{1} M K \beta\right)^{m} K t^{-\gamma}, \quad \gamma=1 / 2,1 / 4 \tag{67}
\end{equation*}
$$

so that
(68) $\left\|A^{\alpha} w_{m+1}(t)\right\| \leq 2 C_{\alpha} M K^{2}\left(2 C_{1} M K \beta\right)^{m} B(3 / 4-\alpha, 1 / 4) t^{-\alpha}, \quad 0 \leq \alpha<3 / 4$.

Since $2 C_{1} M K \beta<1$ by (61), we see from (68) that $\sum_{m}\left\|A^{\alpha} w_{m}(t)\right\|$ converges uniformly on compact subsets of $(0, T]$ and so does $\sum_{m}\left\|w_{m}(t)\right\|$ uniformly on $[0, T]$. Thus, there exist u in $C\left([0, T] ; X_{p}\right)$ and v_{α} in $C\left((0, T] ; X_{p}\right)$ such that

$$
\begin{equation*}
u_{m}(t) \longrightarrow u(t) \text { in } X_{p} \text { uniformly on }[0, T] \tag{69}
\end{equation*}
$$

and
(70) $A^{\alpha} u_{m}(t) \longrightarrow v_{\alpha}(t)$ in X_{p} uniformly on compact subsets of $(0, T], 0<\alpha<3 / 4$.

Since A^{α} is a closed operator we see that $v_{\alpha}(t)=A^{\alpha} u(t)$, and hence $A^{\alpha} u \in C((0, T]$; X_{p}), $0<\alpha<3 / 4$. Moreover, by (63) and (61), we have
(71) $\quad\left\|A^{\gamma} u(t)\right\| \leq K t^{-\gamma}, \quad \gamma=1 / 4,1 / 2, \quad\left\|A^{\alpha} u(t)\right\| \leq K_{\alpha} t^{-\alpha}, \quad 0 \leq \alpha<3 / 4$.

Combining (63) and (71) with the inequality (easily derived from Lemma 4.2),

$$
\begin{equation*}
\|F u-F v\| \leq M\left(\left\|A^{1 / 2} u\right\|+\left\|A^{1 / 2} v\right\|\right)\left\|A^{1 / 2}(u-v)\right\| \tag{72}
\end{equation*}
$$

and taking Lemma 4.2 into account, one obtains

$$
\left\{\begin{array}{l}
F u_{m}(t) \longrightarrow F u(t) \quad \text { on } \quad(0, T] \tag{73}\\
\left\|A^{-1 / 4} F u_{m}(t)\right\| \leq C t^{-3 / 4} \quad \text { with } \quad C>0 \quad \text { independent of } m .
\end{array}\right.
$$

Applying the dominated convergence theorem to the scheme (52) one concludes that

$$
\begin{equation*}
u(t)=e^{-t A} a+\int_{0}^{t} e^{-(t-s) A}\{F u(s)+P f(s)\} d s \quad \text { on } \quad[0, T] \tag{74}
\end{equation*}
$$

Thus we have constructed a solution of (II) under the assumption (60). In view of (53), (55), (56) and the fact that

$$
\begin{equation*}
t^{\alpha}\left\|A^{\alpha} e^{-t A} a\right\| \longrightarrow 0, \quad \text { as } \quad t \longrightarrow 0, \quad \text { for each } \quad a \in X_{p} \tag{75}
\end{equation*}
$$

we have only to choose $T>0$ sufficiently small in order for (60) to be valid. Thus we have proved the following

Theorem 4.4. For any $a \in X_{p}$ and any $P f \in C\left((0, \infty) ; X_{p}\right)$ satisfying (53), there exist a $T>0$ and a solution $u(t)$ of (II) belonging to $C\left([0, T] ; X_{p}\right) \cap$ $C\left((0, T] ; D\left(A^{\alpha}\right)\right)$ for any $\alpha, 0<\alpha<3 / 4$.

The solution $u(t)$ constructed above satisfies

$$
\begin{equation*}
\left\|A^{1 / 2} u(t)\right\|=o\left(t^{-1 / 2}\right), \quad\left\|A^{1 / 4} u(t)\right\|=o\left(t^{-1 / 4}\right), \quad t \longrightarrow 0, \tag{76}
\end{equation*}
$$

as will be seen from the fact that we can make k_{0} in (60), and hence K in (61), arbitrarily small by choosing $T>0$ small. This observation leads us to the following definition of the function space $S[0, T]$, in which the uniqueness result is to be shown.

Definition 4.5. Let $u(t)$ be continuous on [$0, T$] with values in X_{p}. We say that $u(t)$ is in $S[0, T]$ if and only if $A^{1 / 2} u(t)$ is continuous on $(0, T]$ and satisfies $\left\|A^{1 / 2} u(t)\right\|=o\left(t^{-1 / 2}\right), t \rightarrow 0$.

Note that $\left\|A^{1 / 4} u(t)\right\|=o\left(t^{-1 / 4}\right)$ holds for any $u(t)$ in $S[0, T]$ by the wellknown moment inequality (see [16]),

$$
\begin{equation*}
\left\|A^{1 / 4} v\right\| \leq C\left\|A^{1 / 2} v\right\|^{1 / 2} \cdot\|v\|^{1 / 2} \tag{77}
\end{equation*}
$$

Theorem 4.6. The solution of (II) is unique within the class $S[0, T]$.

Proof. Let $u, v \in S[0, T]$ be two solutions of (II) corresponding to the same data. Then, since

$$
\begin{equation*}
w(t) \equiv u(t)-v(t)=\int_{0}^{t} e^{-(t-s) A}\{F u(s)-F v(s)\} d s, \tag{78}
\end{equation*}
$$

we have, by (65),
(79) $\left\|A^{\gamma} w(t)\right\| \leq C_{1} M K_{0} \int_{0}^{t}(t-s)^{-\gamma-1 / 4}\left(s^{-1 / 4}\left\|A^{1 / 2} w(s)\right\|+s^{-1 / 2}\left\|A^{1 / 4} w(s)\right\|\right) d s$
for $\gamma=1 / 2,1 / 4$. Here we have chosen K_{0} so that $\left\|A^{\gamma} u(t)\right\| \leq K_{0} t^{-\gamma},\left\|A^{\gamma} v(t)\right\| \leq$ $K_{0} t^{-\gamma}$ for $\gamma=1 / 2,1 / 4$. Since both u and v are in $S[0, T]$, we can choose $T_{0}>0$ so that (79) holds on ($0, T_{0}$] with K_{0} sufficiently small. By induction on m it is easily shown from (79) that

$$
\begin{equation*}
\left\|A^{\gamma} w(t)\right\| \leq\left(2 C_{1} M \beta K_{0}\right)^{m} 2 K_{0} t^{-\gamma} \quad \text { on } \quad\left(0, T_{0}\right] . \tag{80}
\end{equation*}
$$

Since we may assume $2 C_{1} M \beta K_{0}<1$, it follows from (80) that $w(t)=0$ on $\left[0, T_{0}\right]$. Repeating the above argument for $t \geq T_{0}$, we can choose $T_{j}, j \geq 1$, such that $w(t)=0$ on $\left[\sum_{k=0}^{j} T_{k}, \sum_{k=0}^{j+1} T_{k}\right], j \geq 0$. Since $A^{1 / 2} u(t)$ and $A^{1 / 2} v(t)$ are continuous on ($0, T$], we see easily that $\left\{T_{j}\right\}$ is bounded away from 0 . Thus we may conclude that $w(t)=0$ on $[0, T]$.

Finally we shall prove the following theorem concerning the equation (I).
Theorem 4.7. If, in addition to the assumptions of Theorem 4.4, Pf is Hölder continuous on [$\varepsilon, T]$ for any $\varepsilon>0$, then the solution $u(t)$ of (II) is the solution of (I) in the sense of Definition 4.1.

Proof. As is easily verified $u(t)$ satisfies for each $\varepsilon>0$,

$$
\begin{equation*}
u(t)=e^{-(t-\varepsilon) A} u(\varepsilon)+\int_{\varepsilon}^{t} e^{-(t-s) A}\{F u(s)+P f(s)\} d s \quad \text { on } \quad[\varepsilon, T] \tag{81}
\end{equation*}
$$

So, our assertion is true if we show the Hölder continuity of $F u(t)$ on $[\varepsilon, T]$, which, in view of (72), follows if $A^{1 / 2} u(t)$ is Hölder continuous. Therefore, in the following, we prove the Hölder continuity of $A^{1 / 2} u(t)$ on $[\varepsilon, T]$.

Put $u(t)=u_{0}(t)+w(t)$, where

$$
\begin{align*}
& u_{0}(t)=e^{-t A} a+\int_{0}^{t} e^{-(t-s) A} P f(s) d s \tag{82}\\
& w(t)=\int_{0}^{t} e^{-(t-s) A} F u(s) d s \tag{83}
\end{align*}
$$

The first term on the right hand side of (82) is estimated as follows.
(84)

$$
\begin{aligned}
& \left\|A^{1 / 2}\left(e^{-(t+h) A}-e^{-t A}\right) a\right\|=\left\|\left(e^{-h A}-I\right) A^{1 / 2} e^{-t A} a\right\| \\
& \quad \leq\left\|\left(e^{-h A}-I\right) A^{-\alpha}\right\| \cdot\left\|A^{\alpha+1 / 2} e^{-t A} a\right\| \leq C_{\alpha} h^{\alpha} \varepsilon^{-\alpha-1 / 2} \text { for } \varepsilon \leq t \leq t+h, 0<\alpha \leq 1 / 2
\end{aligned}
$$

Note that here (and hereafter) we use $\left\|\left(e^{-h A}-I\right) A^{-\alpha}\right\| \leq C_{\alpha} h^{\alpha}$, which is easily checked by an elementary calculation.

For the second term of (82) we have

$$
\begin{align*}
& A^{1 / 2} \int_{0}^{t+h} e^{-(t+h-s) A} P f(s) d s-A^{1 / 2} \int_{0}^{t} e^{-(t-s) A} P f(s) d s \tag{85}\\
& \quad=\int_{0}^{t} A^{1 / 2}\left\{e^{-(t+h-s) A}-e^{-(t-s) A}\right\} P f(s) d s+\int_{t}^{t+h} A^{1 / 2} e^{-(t+h-s) A} P f(s) d s \\
& \quad \equiv I_{1}+I_{2}
\end{align*}
$$

so that
(86) $\left\|I_{1}\right\| \leq \int_{0}^{t}\left\|A^{1 / 2}\left(e^{-h A}-I\right) e^{-(t-s) A} P f(s)\right\| d s$

$$
\begin{aligned}
& \leq\left\|\left(e^{-h A}-I\right) A^{-\alpha}\right\| \int_{0}^{t}\left\|A^{\alpha+3 / 4} e^{-(t-s) A}\right\| \cdot\left\|A^{-1 / 4} P f(s)\right\| d s \\
& \leq C_{\alpha} h^{\alpha} N \int_{0}^{t}(t-s)^{-\alpha-3 / 4} s^{-3 / 4} d s \\
& \leq C_{\alpha} h^{\alpha} t^{-\alpha-1 / 2} B(1 / 4-\alpha, 1 / 4) \\
& \leq C_{\alpha} h^{\alpha} \varepsilon^{-\alpha-1 / 2} B(1 / 4-\alpha, 1 / 4) \quad \text { for } \quad \varepsilon \leq t \leq t+h, \quad 0<\alpha<1 / 4,
\end{aligned}
$$

and

$$
\begin{align*}
\left\|I_{2}\right\| & \leq \int_{t}^{t+h}\left\|A^{1 / 2} e^{-(t+h-s) A} P f(s)\right\| d s \tag{87}\\
& \leq \int_{t}^{t+h}\left\|A^{3 / 4} e^{-(t+h-s) A}\right\|\left\|A^{-1 / 4} \operatorname{Pf}(s)\right\| d s \\
& \leq C \int_{t}^{t+h}(t+h-s)^{-3 / 4} d s\left(\sup _{\varepsilon<t<T}\left\|A^{-1 / 4} \operatorname{Pf}(t)\right\|\right) \\
& \leq C_{\varepsilon} h^{1 / 4} \quad \text { for } \varepsilon \leq t \leq t+h
\end{align*}
$$

Combining (86) and (87) with (84) we see that $A^{1 / 2} u_{0}(t)$ is Hölder continuous on $[\varepsilon, T]$ with exponent $\alpha, 0<\alpha<1 / 4$.

The estimation of (83) is carried out as follows. Put

$$
\begin{align*}
A^{1 / 2} w(t+h)-A^{1 / 2} w(t)= & \int_{0}^{t} A^{1 / 2}\left\{e^{-(t+h-s) A}-e^{-(t-s) A}\right\} F u(s) d s \tag{88}\\
& +\int_{t}^{t+h} A^{1 / 2} e^{-(t+h-s) A} F u(s) d s \\
\equiv & I_{3}+I_{4}
\end{align*}
$$

Then, by virtue of (76), we have, with some $K>0$,

$$
\begin{align*}
\left\|I_{3}\right\| & \leq\left\|\left(e^{-h A}-I\right) A^{-\alpha}\right\| \int_{0}^{t}\left\|A^{\alpha+3 / 4} e^{-(t-s) A}\right\| \cdot\left\|A^{-1 / 4} F u(s)\right\| d s \tag{89}\\
& \leq C_{\alpha} h^{\alpha} \int_{0}^{t}(t-s)^{-\alpha-3 / 4} M K^{2} s^{-3 / 4} d s \\
& \leq C_{\alpha} M K^{2} \varepsilon^{-\alpha-1 / 2} B(1 / 4-\alpha, 1 / 4) h^{\alpha}, \quad \text { for } \quad \varepsilon \leq t \leq t+h, \quad 0<\alpha<1 / 4
\end{align*}
$$

and

$$
\begin{align*}
\left\|I_{4}\right\| & \leq \int_{t}^{t+h}\left\|A^{3 / 4} e^{-(t+h-s) A}\right\| \cdot\left\|A^{-1 / 4} F u(s)\right\| d s \tag{90}\\
& \leq C \int_{t}^{t+h}(t+h-s)^{-3 / 4} K^{2} M s^{-3 / 4} d s \\
& \leq C K^{2} M t^{-3 / 4} \int_{t}^{t+h}(t+h-s)^{-3 / 4} d s \\
& \leq C K^{2} M \varepsilon^{-3 / 4} h^{1 / 4} \quad \text { for } \quad \varepsilon \leq t \leq t+h .
\end{align*}
$$

Thus $A^{1 / 2} w(t)$ is also Hölder continuous on [$\left.\varepsilon, T\right]$ with exponent $\alpha, 0<\alpha<1 / 4$. This completes the proof.

Remark 4.8. Kato and Fujita [8] treated problem (1) and (2) in the form of the equation (I) in $X_{2}, n=3$, with A denoting the Stokes operator. They proved the local existence and uniqueness under the assumption $a \in D\left(A^{1 / 4}\right)$. This assumption is needed because, in their case, one must require $u \in D\left(A^{3 / 4}\right)$ in order to obtain a good estimate for the nonlinear term $F u$ whereas we have only to require $u \in D\left(A^{1 / 2}\right)$ in our case (see Lemma 4.2 in this note).

Appendix

Here we prove the inequality (44), i.e.,
(44) $\int_{0}^{\infty} t^{\alpha-1}|U(t, x, y)| d t \leq C_{\alpha} /|x-y|^{n-2 \alpha}, \quad(x, y) \in \bar{D} \times \bar{D}, \quad x \neq y, 0<\alpha<1$,
where $U(t, x, y)$ denotes the kernel function of $e^{-t B_{p}}, 1<p<\infty$.

For $0<t \leq 1$, the following estimate is known (see [14]).

$$
\begin{equation*}
|U(t, x, y)| \leq C t^{-n / 2} \exp \left\{-|x-y|^{2} / c t\right\} \tag{91}
\end{equation*}
$$

Therefore, denoting $r=|x-y| \neq 0$, we obtain

$$
\begin{align*}
\int_{0}^{1} t^{\alpha-1}|U(t, x, y)| d t & \leq C \int_{0}^{1} t^{\alpha-1-n / 2} \exp \left(-r^{2} / c t\right) d t \tag{92}\\
& \leq C \int_{0}^{\infty} t^{\alpha-1-n / 2} \exp \left(-r^{2} / c t\right) d t \leq C_{\alpha} r^{2 \alpha-n}
\end{align*}
$$

For $t>1$, we proceed as follows. Let $0<\lambda_{1} \leq \lambda_{2} \leq \cdots$ be the eigenvalues of B_{2} and $\left\{\phi_{m}\right\}$ be the corresponding orthonormal system of eigenforms. (Note that B_{p} is assumed to be invertible by adding a positive constant to the Laplacian.) As is well known $U(t, x, y)$ admits the following expansion,

$$
\begin{equation*}
U(t, x, y)=\sum_{m=1}^{\infty} \exp \left(-\lambda_{m} t\right) \phi_{m}(x) \otimes \phi_{m}(y) \tag{93}
\end{equation*}
$$

so that we obtain for $t>1$,

$$
\begin{align*}
& |U(t, x, y)| \tag{94}\\
& \quad \leq \sum_{m=1}^{\infty} \exp \left(-\lambda_{m} t\right)\left|\phi_{m}(x)\right| \cdot\left|\phi_{m}(y)\right| \\
& \quad \leq\left\{\sum_{m=1}^{\infty} \exp \left(-\lambda_{m} t\right)\left|\phi_{m}(x)\right|^{2}\right\}^{1 / 2}\left\{\sum_{m=1}^{\infty} \exp \left(-\lambda_{m} t\right)\left|\phi_{m}(y)\right|^{2}\right\}^{1 / 2} \\
& \quad \leq \exp \left(-\lambda_{1}(t-1)\right)\left\{\sum_{m=1}^{\infty} \exp \left(-\lambda_{m}\right)\left|\phi_{m}(x)\right|^{2}\right\}^{1 / 2} \times\left\{\sum_{m=1}^{\infty} \exp \left(-\lambda_{m}\right)\left|\phi_{m}(y)\right|^{2}\right\}^{1 / 2} \\
& \quad=\exp \left(-\lambda_{1}(t-1)\right)\{\operatorname{Tr} U(1, x, x)\}^{1 / 2}\{\operatorname{Tr} U(1, y, y)\}^{1 / 2} \\
& \quad \leq C \exp \left(-\lambda_{1} t\right)
\end{align*}
$$

since D is bounded and $U(t, x, y)$ is smooth on $(0, \infty) \times \bar{D} \times \bar{D}$. Here $\operatorname{Tr} S$ denotes the trace of a matrix S. Thus,

$$
\begin{equation*}
\int_{1}^{\infty} t^{\alpha-1}|U(t, x, y)| d t \leq C \int_{0}^{\infty} t^{\alpha-1} \exp \left(-\lambda_{1} t\right) d t=C_{\alpha} \Gamma(\alpha) \tag{95}
\end{equation*}
$$

Combining (92) with (95) we therefore obtain

$$
\begin{align*}
\int_{0}^{\infty} t^{\alpha-1}|U(t, x, y)| d t & \leq C_{1} /|x-y|^{n-2 \alpha}+C_{2} \tag{96}\\
& \leq C_{3} /|x-y|^{n-2 \alpha},
\end{align*}
$$

since D is bounded. This completes the proof of (44).

References

[1] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147.
[2] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190.
[3] P. E. Conner, The Neumann's problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc., 20 (1956).
[4] E. B. Fabes, J. E. Lewis and N. M. Riviere, Boundary value problems for the NavierStokes equations, Amer. J. Math., 99 (1977), 626-668.
[5] H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., 16 (1964), 269-315.
[6] D. Fujiwara and H. Morimoto, An L_{r}-theorem for the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sec. IA, 24 (1977), 685-700.
[7] A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo, Sec. IA, 24 (1977), 303-320.
[8] T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova, 32 (1962), 243-260.
[9] A. A. Kiselev and O. A. Ladyzhenskaya, On the existence and uniqueness of the solution of the non-stationary problem for an incompressible viscous fluid, Izv. Akad. Nauk, USSR, 21 (1957), 655-680.
[10] J. L. Lions and E. Magenes, Problemi ai limiti non omogenei (III), Ann. Scuola Norm. Sup. Pisa, 15 (1961), 39-101.
[11] J. L. Lions and E. Magenes, Problemi ai limiti non omogenei (V), Ann. Scuola Norm. Sup. Pisa, 16 (1962), 1-44.
[12] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Springer (1972).
[13] M. F. McCracken, The Stokes equations in L_{p}, Thesis, University of California, Berkeley.
[14] D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Math., 7 (1971), 145-210.
[15] R. Seeley, Norms and domains of the complex powers A_{B}^{z}, Amer. J. Math., 93 (1971), 299-309.
[16] H. Tanabe, Equations of Evolution, Pitman (1979).
[17] R. Temam, Navier-Stokes Equations, North-Holland (1977).

> Department of Mathematics, Faculty of Science, Hiroshima University

