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Introduction and Notation. A ring R is called a (von Neumann) regular
ring if for each a in R there exists an x in R such that a=axa. The notion of
regularity has been extended to modules by D. Fieldhouse [6], R. Ware [20] and
J. Zelmanowitz [21]. In this paper, following Zeclmanowitz [21], we call a
right R-module M regular if given any me M there exists fe Homg (M, R) with
mf(m)=m. O. Villamayor has shown that every simple right R-module is
injective if and only if every right ideal of R is an intersection of maximal right
ideals. If a ring R satisfies these equivalent conditions, R is called a right V-ring.
The notion of V-rings has been extended to modules by V. S. Ramamurthi [16]
and H. Tominaga [19]. In this paper, following Tominaga [19], we call a
module My a V-module if every R-submodule is an intersection of maximal R-
submodules. Such a module My has also been called “co-semisimple’’ by K. R.
Fuller [10]. The connections between the class of regular rings and the class of
V-rings are studied by many authors (see the references of [7]).

In this paper, we shall consider the connections between the class of regular
modules and the class of V-modules, and we shall study the relationship between
these modules and their endomorphism rings. J. Fisher and R. Snider [9,
Corollary 1.3] proved that a ring R is regular if and only if R is fully idempotent
and every prime factor ring of R is regular. In §2, we shall extend this result to
modules (Theorem 2.3). In §3, we consider V-modules and their endomor-
phism rings. We prove that a finitely generated projective module My is a
V-module if and only if Endg (M) is a right V-ring and My is a self-generator. In
§4, we prove that a module My over a P.I.-ring R is regular if and only if it is a
locally projective V-module (Theorem 4.4). R. Ware [20, Proposition 2.5] proved
that if a projective module My over a commutative ring R is regular, then every
simple homomorphic image of My is injective. The converse assertion was
proved by V.S. Ramamurthi [16, Theorem 4] and Z. Maoulaoui [14, Propo-
sition 1]. We shall prove this result for general regular modules over commuta-
tive rings. Finally, in §5, we consider fixed subrings of automorphisms. We
prove that if G is a finite group of automorphisms of a ring R such that |G|~te R
and J(R/I)=0 for every G-invariant right ideal I of R, then the fixed subring R¢
is a right V-ring.

Throughout this paper, R will denote an associative ring with identity and
all modules considered are unitary right R-modules. Homomorphisms will be
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written on the side opposite to that of scalars. For any module M, M* denotes
Homg (M, R), and S=S(M) denotes Endy (M). We denote by Z(M) and J(M)
the singular submodule of M and the Jacobson radical of M, respectively. And
we say that M is semisimple if J(M)=0. The annihilator ideal of M will be
denoted by Anng (M): Anng (M)={re R|Mr=0}. The homomorphisms ( , ):
M*®gM—R with (f, m)=f(m) and [ , ]: M®g M*—S with [m, f1=mf are
R-R-linear and S-S-linear, respectively. As is well known, (S, M*, M, R) with
these homomorphisms forms a Morita context. The images (M*, M) and
[M, M*] will be denoted by T and 4, respectively. We denote by U(sMp) (resp.
U(Myp)) the lattice of S-R-submodules (resp. R-submodules) of M, and by U (zR)
(resp. U(gRpR)) the lattice of all left ideals (resp. ideals) I of R with TI=1. Fur-
ther, U ,(Ss) (resp. U 4(sSs)) denotes the lattice of all right ideals (resp. ideals) K
of S with KA=K. Given R-module M and A4, we set T (A)=3 {Im(f)|fe
Hompg (M, A)}.

1. Preliminaries. Let R’ be a ring (with or without identity). Following
Tominaga [19], we say that a right R’-module M #0 is s-unital if u e uR’ for any
ueM. If x,,..., x, are arbitrary elements of an s-unital module Mg, then there
exists e € R’ such that x,e=x; for all x; ([19, Theorem 1]). Following B. Zimmer-
man-Huisgen [24], we say that a right R-module M is locally projective if M
satisfies the following condition: For all diagrams

4L, B .0

g
F— AL
with exact upper row and a finitely generated submodule F of M there is g’ €
Hompg (M, A) such that g|F=fg’|F. It is known that My is locally projective
if and only if M is s-unital as a left 4-module (see [24]). My is called a self-
generator (resp. a X-self-generator) if Ty(A)=A for all R-submodules A of M
(resp. for all R-submodules A of M" where n is any positive integer) (see [23]).
Now, we begin with the following proposition.

PROPOSITION 1.1. Let M be a right R-module. Then the following are
equivalent:

1) M is s-unital as a right T-module.

2) The mapping U 4(Sg)—»U(Mpg); I=IM, is a lattice isomorphism.

3) M is a self-generator and AM =M (or equivalently MT=M).
If My is locally projective, we may add:

4) Every simple homomorphic image of any submodule of My is a homo-
morphic image of Mpg.

ProOF. 1)=2). It is clear that for any Le U(Mpg), L=[L, M*]M. Then
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we have [L, M*]=[L, M*][M, M*]=[L, M*]4, and so [L, M*]e U /(Ss). If
IM=KM for I, K € U/Ss), we have [=(IM, M*)=(KM, M*)=K. Therefore,
U(S)—»U(Mpg); I-IM, is a lattice isomorphism.

2)=3) and 4). Trivial.

3)=>1). Since My is a self-generator and M = MT, for each m e M, we have
me mR=Ty(mR)=Ty(mR)T =mT.

Next, we assume that My is a locally projective module.

4)=-3). It suffices to show that M is a self-generator. Assume that there is
an N € U(Mp) such that T, (N)#N. Let X=x+ T)(N) be a non-zero element of
N/Ty(N) and let Y be a maximal submodule of XR. By hypothesis, there is a
non-zero R-homomorphism h: M—XR/Y. Now, we take an me M such that
h(m)#0. Since My is locally projective, there is an h’' € Homg (M, xR+ T),(N))
such that h|mR=mnh"|mR, where r is the natural epimorphism: xR+ Ty (N)—
XR/Y. 1In particular, we have O=mnh'(m)=h(m). This is a contradiction.

A ring R is called fully right (resp. left) idempotent if I2=1 for every right
(resp. left) ideal I of R. And R is fully idempotent if I?=1 for every ideal I of R.
Let us call a module My, fully idempotent if for every me M, me S[m, M*]mR.
Further My is called fully right idempotent (resp. fully left idempotent) if me
[m, M*¥ImR (resp. me S[m, M*]m) (cf. [13], [16]). A ring R is fully idem-
potent, fully right idempotent or fully left idempotent, according as Ry is .

ProrosiTION 1.2 (cf. [13, Theorem 7]). (1) The following conditions are
equivalent:

1) My is a fully right idempotent module.

2) For every R-submodule N of M, N=[N, M*]N.

3) My is s-unital and I> =1 for every I € U 4(Sy).

4) My is s-unital and N nIM=IN for every S-R-submodule N of M and
every right ideal I of S.

5) My is s-unital and sM|N is flat for each S-R-submodule N of M.

6) My is s-unital and the functor Homg snn.m/ny) (M/N, <) from the
category Mod-R/Anng (M/N) to the category Mod-S preserves injective modules
for each S-R-submodule N of M.

(2) The following conditions are equivalent:

1) My is a fully idempotent module.

2) For every S-R-submodule N of M, N=[N, M*]N.

3) The mapping U (xrRr)—>U(sMyp); I->MI, is a lattice isomorphism and
I2=] for each I € U (zxRR)-

4) The mapping U(zgRg)—U(sMg); I-MI, is a lattice isomorphism and
NN MI=NI for every S-R-submodule N of M and for every ideal I of R.

5) The mapping U ,(sSs)—U(sMg); K—KM, is a lattice isomorphism and
K%=K for every K e U 4(sSg).
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6) The mapping U ,(sSs)— U(sMg); K—KM, is a lattice isomorphism and
NnNKM=KN for every S-R-submodule N of M and for every ideal K of S.

ProOOF. (1). 1)<2)is clear.

2)=>3). For each me M, we have that me m(M*, mR)=mT. Let I be in
U4(Ss). Then IM=[IM, M*]IM=I14IM =1>M, and therefore I=[IM, M*]=
[I?M, M*]=1I2.

3)=4). Let N be an S-R-submodule of M, and I a right ideal of S. It is
clear that NN IM=2IN. By Proposition 1.1, N nIM=KM for some K € U ,(Sg).
Since I2I42KA=K, it follows that IN2 KN2K(KM)=KM =N nIM. There-
fore, IN=NnIM.

4)<>5). Since M is s-unital, ¢M is locally projective, and hence gM is flat
(see [24]). Then, it is well known that ¢M/N is flat if and only if NnIM=IN
for each right ideal I of S.

5)<>6). This follows from the well known fact that for a R’-R"”-bimodule
rWr» W is flat if and only if Homg. (W, -): Mod-R"—Mod-R’ preserves injec-
tive modules ([5, Proposition 6.28, p. 318]).

4)=3). If I1eU/(Ss), then IM=SIM NIM=ISIM=I1?M. Therefore we
obtain I=I[M, M*]=I1*[M, M*]=12.

3)=2). If N is an R-submodule of M, then by Proposition 1.1 there exists
some I e U,(Sg) such that N=IM, and therefore [N, M*|N=[IM, M*]IM =
IAIM=1?M=IM=N.

(2). 1)<2)is clear.

2)=>3). Foreach N € U(sMg), we have that N=[N, M*]N=M(M*, N) and
(M*, N)e Up(gRg). If I is in Uy(gxRg), then MI=[MI, M¥*]MI=MI?, and
hence I =(M*, M)I=(M*, MI?)=12.

3)=>4). Let N be an S-R-submodule of M, and I an ideal of R. Then
NnMI=ML for some Le Up(gRg). Since I2TI2TL=L, we see that NI=
NLo(ML)L=ML=N nMI. Therefore, NI=NnMI.

4)=3). If I € Up(gxRRg), then MI=MI n MI=M]I?, and hence I*>=1.

3)=2). For each S-R-submodule N of M, we can find some I € U(zRg),
such that N=MI. Then [N, M¥]N=[MI, M*IMI=MI>=MI=N.

Similarly, interchanging R and S, we can prove 2)=-5)=6)=-5)=>2).

Finally we state the following propositions without proofs. The proofs of
them are similar to those of corresponding propositions in [13] and [21].

ProroSITION 1.3.  If My is fully idempotent, then there hold the following:

(1) S=Endg (M) is a semiprime ring.

(2) The center of S is a regular ring.

(3) If S=S,®S,®---®S, with two-sided simple rings S;, then M;=S;M
is S-R-simple and M=M,®---®M,,.
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ProposITION 1.4. (1) Mgy=®, M, is fully right idempotent (resp.
fully idempotent) if and only if each M, is fully right idempotent (resp. fully
idempotent).

(2) If R s fully right idempotent (resp. fully idempotent) then a projective
module My is fully right idempotent (resp. fully idempotent).

2. Regular modules. Following Zelmanowitz [21], we call a module My
regular if given any m e M there exists fe Homg (M, R) with mf(m)=m. Ob-
viously, every regular module is locally projective. Moreover, we have the
following

ProPOSITION 2.1.  The following conditions are equivalent:

1) My is a regular module.

2) My is locally projective and every homomorphic image of My is flat.

3) My is locally projective and for any submodule N of My and any left
R-module L, the natural homomorphism N®gr L->M® g L is a monomorphism.

4) My is locally projective and MI N N=NI for every submodule N of
My and every left ideal I of R.

Proor. By [6, Proposition 8.1] and [21, Theorem 2.3], 1)=2)=>3)=-4).
We show that 4) implies 1). Let m be an element of M. Then memRn
M(M*, m)=m(M*, m).

A module My is prime (resp. semiprime) if for every non-zero elements
m, m; in M there holds m(M*, m,)#0 (resp. m(M*, m)#0) (see [22]). It is
well known that a ring R is fully idempotent if and only if every factor ring of
R is semiprime. For locally projective modules, we have

PROPOSITION 2.2. Let My be a locally projective module. Then the follow-
ing conditions are equivalent:

1) My is a fully idempotent module.

2) For any S-R-submodule N of M, M|N is a semiprime R/Anng (M/N)-
module.

3) For any S-R-submodule N of M, R/Anng (M/N) is semiprime.

Proor. 1)=2). If M is fully idempotent, then the R/Anng (M/N)-module
M|N is also fully idempotent and so semiprime.

2)=1). If My is not fully idempotent, there is an meM such that
me S(m)M*(m)R. We set Mgr=M|N, where N=S(m)M*(m)R and R=R/
Anng(M). Since Mg is semiprime, there exists an fe (Mg)* such that m(f, m)#0.
Then, by hypothesis, there is an f* € M* such that nf*|mR=fg|mR where n and
g are natural epimorphisms R—R and M— M, respectively. But m(f*, m)e N
implies m(f, m)=0. This is a contradiction.
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2)<>3). Let N be a proper S-R-submodule of M and let i=n-+ N be a non-
zero element of M=M/N. Since My is locally projective, there are my,..., m; €
M, fi,..., fy € M* such that Y% m;f(n)=n. Each f; induces an element f; in
Hompg (M, R), where R=R/Anng (M). Then, 0#i=Y %, m,f(7)e[M, M*](#n).
Now, 2)<>3) is clear by [22, Proposition 1.1].

The following theorem is an extension of [9, Corollary 1.3] to modules.

THEOREM 2.3. The following conditions are equivalent:

1) My is a regular module.

2) My is locally projective and fully idempotent, and for each prime
ideal P of R, M/MP is a regular R/P-module.

3) My is locally projective and fully idempotent, and each prime factor
module M/Ng (N S ,My) is a regular R-module, where R=R/Anng(M/N).

PrOOF. A proof involves a slight modification of that of [9, Theorem 1.1].

1)=2). Trivial.

2)=3). If M=M/Ng is prime for an S-R-submodule N, then R=R/Anng
(M)is a prime ring by [22, Proposition 1.1]. Hence M/N is a regular R-module
by 2).

3)=>1). We have to show that for each m e M there exists an fe M* such
that m=mf(m). Assume, to the contrary, that there exists an m € M such that
m=mx(m) has no solution in M*. Then, by making use of the fact that My is
locally projective and Zorn’s lemma, we can choose an S-R-submodule N of M
which is maximal with respect to the property that # =mx(m) has no solution in
Hompg (M/N, R) where R=R/Anng (M/N), i.e. m—mx(m) is not in N for every
x e M#*. By hypothesis, M=M/Ng is not prime. Therefore, there exist non-
zero elements m, and i, in M such that [, (Mg)*]#,=0. Since Mg is semi-
prime by Proposition 2, it follows that Sm;R n Sm,R=0. By the choice of N
and the fact that My is locally projective, there exist x and y in M* with
m—m(x, m)e Sm;R+N and m—m(y, m)e SmyR+ N. Thus m—m(x+y—
x[m, y])m is in (Sm;R+N)n(Sm,R+N)=N. This contradicts the choice of
N. Consequently My is regular and the proof is complete.

COROLLARY 2.4. Let R be a ring all of whose prime factor rings are regu-
lar. Then every locally projective, fully idempotent module is regular.

Proor. Since every locally projective module over a regular ring is regular
by [24, 2.3, 4)], our assertion is clear by Theorem 2.3.

3. V-modules. It was proved in [15] that for a ring R the following state-
ments are equivalent:
1) Every simple right R-module is injective.
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2) Every right R-module is semisimple.

3) Every right ideal of R is an intersection of maximal right ideals of R.

A ring R is called a right V-ring if R satisfies the above equivalent con-
ditions. Following Tominaga [19], we call a module My a V-module if every
R-submodule of M is an intersection of maximal R-submodules. Obviously,
a ring R is a right V-ring if and only if the right R-module Ry is a V-module.

Let M be a right R-module. A right R-module N is defined to be M-injec-
tive in case for each monomorphism f: Kz—»Mjy and each homomorphism
g: Kg— Ng there is an R-homomorphism g: Mz— N such that g=g f:

0—> Ky -1 M,

QJ g
e

Ng
The following proposition has been proved in [10, Proposition 3.1]. How-

ever we shall reprove it here because of the connection with the proof of Theorem
3.15.

PROPOSITION 3.1. For a right R-module M the following conditions are
equivalent:

1) My is a V-module.

2) Every simple right R-module is M-injective.

3) Every homomorphic image of My is cogenerated by a direct sum of
simple modules.

PrOOF. 1)<3). Trivial.

1)=>2). Let U be a simple right R-module and let f be a nonzero R-homo-
morphism from a submodule N of M to U. If N’'=Ker/, then there is a maxi-
mal submodule K of My such that K2 N’ but K2N. Since N/Ng is simple, it
follows that NN K=N’. Then M/K=(N+K)/Kg~(N/NnK)g=N/Ng~Ug,
and therefore f can be extended to an fin Homg (M, U). Hence U is M-injective.

2)=>1). Let N be a proper submodule of My, and x a nonzero element of
M=M|N. Then by Zorn’s lemma, there is a submodule Y of M, which is
maximal among the submodules X of My with x¢ X. Let D denote the inter-
section of all submodules Q of Mg with Q2Y. Obviously x is in D, and D/ Yy is
a simple module. Then by 2), D/Y is M-injective and so, M/Y-injective by [2,
Proposition 16.13, p. 188]. Therefore M/Y=D/Y®K]|Y, where K is a submodule
of M. Since x does not belong to K, it follows that Y is a maximal submodule
of M. This implies that My is semisimple.

In case we restrict our attention to locally projective modules, we obtain the
following
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COROLLARY 3.2. Let My be a locally projective module. Then the follow-
ing are equivalent:

1) My is a V-module.

2) My is a self-generator and every simple homomorphic image of My is
M-injective.

3) My is a self-generator and for any simple right R-module X,
Hompg (M, X)g is injective.

Proor. 1)=>2). Since every simple homomorphic image of any submodule
of My is a homomorphic image of My (Proposition 3.1), My is a self-generator
by Proposition 1.1.

2)=>1). Obvious by Proposition 3.1.

2)<>3). Since My is a Z-self-generator by [23, Theorem 2.4], the equivalence
of 2) and 3) is a consequence of [23, Corollary 1.5] and Proposition 3.1.

The following proposition, noted in [10], is immediate from Proposition 3.1
and [2, Proposition 16.13, p. 188].

ProposITION 3.3. (1) Every submodule and every homomorphic image
of a V-module are also V-modules.
(2) @ua M, is a V-module if and only if every M, is a V-module.

As immediate corollaries to Proposition 3.3, we have the following

COROLLARY 3.4. Every module which is generated or finitely cogenerated
by a V-module is also a V-module.

COROLLARY 3.5. Let R be a commutative ring, and My a finitely generated
V-module. Then R/Anng (M) is a V-ring (and hence a regular ring).

Let My be a module. Then it is clear that J(M)=0 if and only if M is
cogenerated by the class of simple modules. Therefore, by Proposition 3.3, we
have

PROPOSITION 3.6. Let My be a V-module. Then for any submodule N
of Mg, Anng (N) and Anng (M/N) are intersections of maximal right ideals of
R.

Every right V-ring is fully right idempotent ([15, Corollary 2.2]). However,
V-modules need not be fully right idempotent. For example, any simple right
R-module which is not isomorphic to any right ideal of R is not a fully right
idempotent module but a V-module. However, we shall show that every locally
projective V-module is fully right idempotent. In advance of proving this we
shall give some definitions: Let My and Ny be two right R-modules. Then N
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is said to be p-M-injective if every R-homomorphism of any cyclic submodule of
My into Ny can be extended to an R-homomorphism of My into Ni. If every
simple right R-module is p-M-injective, My is called a p-V-module. Needless
to say every V-module is a p-V-module.

PropoSITION 3.7. If My is a locally projective, p-V-module, then My is
fully right idempotent. In particular, every locally projective V-module is
fully right idempotent.

PROOF. Assume, to the contrary, that there exists an me M such that
me[m, M¥ImR. Then, by Zorn’s lemma, there is a submodule Y of My which
is maximal among the submodules X of My such that [m, M¥JmR< X EmR.
We consider the following diagram:

0— mR 1, My

7|
mR|Y
where i is the inclusion map and p is the natural epimorphism. Since the simple

right R-module mR/Y is p-M-injective by hypothesis, there is g: M—mR/Y such
that p=qi. We consider also the following diagram:

0—mR-‘, M
e
R, mRIY —0
where h is the natural epimorphism. Since My is locally projective, there is j: M
—R such that gi=hj|mR. Then we have m+ Y=gqi(m)=hj(m)=h(1)j(m).
Since h(1)j(m)cs[m, M*ImR+ Y=Y, it follows that me Y. This is a contra-
diction.

By the above proof, we can easily see the following

ProrosiTION 3.8. The following are equivalent:

1) My is regular.

2) My is locally projective and every right R-module is p-M-injective.
3) My is locally projective and for each me M, mR is p-M-injective.

For an ideal I of R, an R-module M is called I-accessible in case MI=M.

PROPOSITION 3.9. Assume that My is quasi-projective or T-accessible. If
My is a self-generator and S is a right V-ring, then My is a V-module.

ProoF. By [23, Theorem 2.4], My is a X-self-generator. If Xy is simple,
then Hompg (M, X)s is simple or zero by [2, Exercise 18, p. 191] and by [23,
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Theorem 4.5], and so, by [23, Corollary 1.5], Xy is M-injective. Therefore My
is a V-module by Proposition 3.1.

The next corresponds to a theorem of R. Ware concerning regular modules
(see [20, Theorem 3.9]).

COROLLARY 3.10. Let R be a commutative ring, and My a locally projec-
tive module. If S is a right V-ring, then My is a V-module.

PrOOF. Since My is locally projective over a commutative ring R, M is
s-unital as a T-module by [24, 2.3, 3)], and hence My, is a self-generator by Propo-
sition 1.1. Therefore by Proposition 3.9, My is a V-module.

Now we consider the endomorphism ring of a finitely generated, projective
V-module.

THEOREM 3.11. Let My be a finitely generated, projective module. Then
the following are equivalent:

1) Mg is a V-module.

2) My is a self-generator (or equivalently My is s-unital) and S is a right
V-ring.

ProoF. Recall first that every locally projective V-module is a self-generator
(Corollary 3.2). Since My is finitely generated projective, we see that 4A=S.
Assume that My is a self-generator. Then, by Proposition 1.1, the lattice U(Ss)
is isomorphic to the lattice U(Mg). Therefore S is a right V-ring if and only if
My is a V-module.

COROLLARY 3.12 (cf. [15, Theorem 2.5]). If My is a finitely generated,
projective module over a right V-ring R, then the endomorphism ring S is a
right V-ring.

By Proposition 1.2, we can easily see the following

PROPOSITION 3.13. Let My be a finitely generated projective module. If
My is fully (right) idempotent, then S is a fully (right) idempotent ring.

COROLLARY 3.14. If a finite dimensional, non-singular, projective module
My is fully right idempotent, then it is a direct sum of finitely many S-R-simple
modules. In particular, a noetherian, projective, fully right idempotent module
is a direct sum of finitely many S-R-simple modules.

ProOOF. By [22, Theorem 3.5], S is a semiprime right Goldie ring. On the
other hand, S is fully right idempotent by Proposition 3.13. Hence S is a direct
sum of finitely many simple rings by [15, Lemma 3.1]. Now, our assertion is
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clear by (3) of Proposition 1.3 and [22, Proposition 3.1].

Rings all of whose singular simple modules are injective are studied in [1]
and [17]. For a right R-module M, we obtain the following

THEOREM 3.15. The following are equivalent:

1) Every singular simple right R-module is M-injective.

2) Z(M)nJ(M)=0 and J(M/N)=0 for any essential submodule N of Mpg.

3) Every singular simple submodule of My is a direct summand of My
and J(M/N)=0 for any essential submodule N of Mg.

Proor. 1)=2). If N is an essential submodule of M then, by making use
of the same argument as in the proof of 2)=>1) of Proposition 3.1, we can prove
that J(M/N)=0. Now suppose that Z(M)n J(M) contains a nonzero element
m. Then by Zorn’s lemma, there is a submodule Y of My which is maximal
among the submodules X of My with me& X. Since mR=(mR+Y)/Y is a singu-
lar simple module, by hypothesis we have M/Y=mR@®Y'/Y for some submodule
Y’ of Mg. Since me&Y’, Y'=Y, and hence Y is a maximal submodule of M.
This contradicts the choice of m.

2)=>3). Let X be a singular simple submodule of M. Since Z(M)n J(M)
=0, there is a maximal submodule Y of My such that X n Y=0. Then there
holds that M=X@Y.

3)=1). Let Xy be a singular simple module, and N an essential submodule
of My with a nonzero R-homomorphism f: N-X. If K=Kerfis not essential
in M, then K is a direct summand of N, and so N=K@®@]I for some submodule I
of M. Since I (~X) is a singular simple submodule of Mg, by hypothesis we
see that M=I®L for some submodule Lg. Then f can be extended to an R-
homomorphism of M to X. If K=Kerf is essential in M, we can also extend f
to an R-homomorphism of M to X (see the proof of 1)=-2) of Proposition 3.1).

A ring R is called in [17] a generalized V-ring or, for short, a GV-ring if every
singular simple right R-module is injective. We call a module My a GV-module
if one of the equivalent conditions in Theorem 3.15 is satisfied. Again by [2,
Proposition 16.13, p. 188], we obtain the following

PROPOSITION 3.16. (1) Every submodule and every homomorphic image
of a GV-module are also GV-modules.

(2) ®ueu M, is a GV-module if and only if every M, is a GV-module.

Since a module My is a GV-module if and only if every simple right R-module
is either projective or M-injective (see Theorem 3.15), the proof of [17, Propo-
sition 3.4] enables us to obtain the following

PROPOSITION 3.17. Let R be a ring in which every primitive idempotent is
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central. Then My is a V-module if and only if it is a GV-module.

4. Regular modules versus »-modules. We shall begin this section with
the following theorem which corresponds to [7, Theorem 14].

THEOREM 4.1. Let My be a fully right idempotent module. If M/MPy is
a V-module for each primitive ideal P of R, then My is a V-module.

PrOOF. Let Xy be a simple module, and Ny a submodule of Mg. Let f be
a nonzero element of Homg (N, X). Then P=Anng (X) is a right primitive ideal
of R. By Proposition 1.1, N=AM for some A e U,(Ss) and MP=BM for some
ideal B of S. Noting that AM n BM=ABM = AMP (Proposition 1.2 (1)), one
will easily see that the map f’ defined by a+b — f(a) (a€ AM, be BM) is an ex-
tension of f in Homg (AM +BM, X). Since R/P is a right primitive ring and
M/Ker f’ can be regarded as an R/P-module, we can prove that X is M-injective
(see the proof of 1)=-2) of Proposition 3.1).

We say that R is a P.I.-ring if R satisfies a polynomial identity with co-
efficients in the centroid and at least one coefficient is invertible. Since every
primitive factor ring of a P.I.-ring R is simple artinian by Kaplansky [12], we
obtain the following

COROLLARY 4.2. Let R be a P..-ring. If My is fully right idempotent,
then My is a V-module.

Now we intend to extend the results in [3] to modules. First, we require
the following lemma.

LemMA 4.3. Let My be a locally projective module. If S is regular and
M is s-unital as a right T-module, then My is regular.

Proor. By Proposition 1.1, for any m e M, there is I in U 4(Sg) with mR=
IM. Then m=73 a;m; with some a;el and m;e M. If weset I'=Y a;S, it is
easy to see that mR=I'M. Since S is regular, the right ideal I’ is generated by
an idempotent e. Then mR (=eM) is a direct summand of My and is projective.
Thus we conclude that My is regular by [21, Theorem 2.2].

THEOREM 4.4. Let R be a P.I.-ring, and M a right R-module. Then the
following conditions are equivalent:

1) My is a regular module.

2) My is a locally projective V-module.

3) My is locally projective and fully right idempotent.

Proor. 1)=2). By Corollary 4.2.
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2)=>3). By Proposition 3.7.

3)=1). If Mg is prime, then R/Anng (M) is a prime ring by [22, Proposition
1.1]. Hence, according to Theorem 2.3, it is sufficient to show that a faithful,
prime and fully right idempotent module M over a prime P.I.-ring R is regular.
Let C be the center of R. First we shall show that M is C-torsion-free. Suppose
there exists a nonzero m’ e M and a nonzero ¢’ € C such that m’¢’=0. Since My
is faithful, there is a nonzero m” € M such that m”c¢’#0. Then, we have m'(M*,
m"c)=m'c'(M*, m")=0. This contradicts the primeness of Mg. Since My is
fully right idempotent, for each m e M and each nonzero ¢ € C, there are f,..., f,
eM* and ry,...,r,eR such that mc=3Y"1_, mef(me)r,;=(X 1=, mf{m)r)c2.
Hence we can define mc™1=32_, mf,(m)r;, and then M has a Q-module structure,
where Q is the ring of central quotients of R. By [18, Corollary 1], Q is a simple
artinian ring. Since My, is completely reducible, by [21, Theorem 2.8] we may
assume that M is an irreducible Q-module. Since Endg (M)~End, (M) is a
division ring by Shur’s lemma, My is a regular module by Lemma 4.3.

A module My is said to be semi-artinian if every nonzero homomorphic
image of My has the nonzero socle. The next is an extension of [7, Theorem 17]
to modules.

PROPOSITION 4.5. Let My be a finitely generated, projective, semi-artinian
module. Then the following conditions are equivalent:

1) Mgy is a regular module.

2) My is a fully right idempotent module.

Proor. 1)=-2). Trivial.

2)=-1). By Proposition 1.1, the lattice U(Ss) is isomorphic to the lattice
U(Mpg). Therefore Sg is also semi-artinian. Since S is fully right idempotent
(Proposition 3.13), S is regular by [7, Theorem 17], and hence M is regular by
Lemma 4.3.

As an immediate consequence of Propositions 3.7 and 4.5, we obtain

COROLLARY 4.6. Let My be a finitely generated, projective, semi-artinian
module. If Mg is a V-module, then My is regular.

A ring R is said to be normal if every idempotent is central. For example,
reduced rings and right and left duo rings are normal.

LEMMA 4.7. Let R be normal. If My is a regular module, then every sim-
ple homomorphic image of My is injective. In particular, My is a V-module.

Proor. If My is regular, then for every me M, mR is projective and is a
direct summand of Mz by [21, Theorem 2.2]. Therefore we may assume that
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My is cyclic (and projective). Since R is normal, Mg~eRy for some central
idempotent ee R. Since the ring eR is regular and normal, it is a strongly regular
ring, and hence a right V-ring by [4, Theorem]. The second assertion is clear
by Corollary 3.2.

For a locally projective module M over a commutative ring R, we have

THEOREM 4.8. Let R be a commutative ring. Then the following conditions
are equivalent:

1) My is regular.

2) My is a locally projective V-module.

3) My is a locally projective GV-module.

4) My is fully right idempotent.

5) My is locally projective and every simple homomorphic image of My
is injective.

6) My is locally projective and every simple homomorphic image of Mg
is M-injective.

Proor. 1)=2). By Corollary 4.2.

2)=>4). By Proposition 3.7.

2)<«>3). This is included in Proposition 3.17.

4)=>1). Since My is fully right idempotent, for any me M we have that
me[m, M¥]JmR. Since R is commutative, the right multiplication of any
element of R is in S. Therefore me[m, M*]Sm=[m, M*]m. Consequently,
My, is regular.

1)=5). By Lemma 4.7.

5)=>6). Trivial.

6)=2). Since My is locally projective over a commutative ring R, M is
s-unital as a T-module by [24, 2.3, 3)], and hence M is a self-generator by Propo-
sition 1.1. Therefore My is a V-module by Corollary 3.2.

REMARK. For a projective module Mg, Ware [20, Proposition 2.5] has
proved that 1)=-5), Ramamurthi [16, Theorem 4] has proved that 5)=4)=-1),
and Maoulaoui [14, Proposition 1] has also proved that 5)=>-1).

In case R is a P.I.-ring, the implication 1)=-5) in Theorem 4.8 does not re-
main valid (in spite of the assertion in Maoulaoui [14, Proposition 2]).

ExAMPLE. Let K be a field. If we set R=(OK § and =<8 2.), then R

is a P.I.-ring and I is a minimal right ideal and is a direct summand of R;. There-

fore I is a regular module ([20, Proposition 2.1]). However, I is not injective,

because the homomorphism f': 0 K — [ defined by f 0 ky_(00 can not
0 0/g 00 0k

be extended to a homomorphism of Ry into Ig.
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Ware [20, Theorem 3.8] proved that if M is a projective module over a com-
mutative ring R and S is a regular ring, then My is regular. We shall generalize
this result to locally projective modules (see also [21, Theorem 3.8]).

THEOREM 4.9. Let R be a commutative ring. If M is a locally projective
R-module and S is a regular ring, then My is a regular module.

Proor. By [24, 2.3, 3)], M is s-unital as a right T-module. Then by Lemma
4.3, My is regular.

We conclude this section with the following

PROPOSITION 4.10. Let My be a projective V-module. If My is quasi-
injective, then My is regular.

Proor. By [20, Proposition 1.1 (2)], J(S)sHompg (M, J(Mg)). Then
J(Mg)=0 implies J(S)=0. Since My is quasi-injective, it is well known that S
(=S/J(S)) is von Neumann regular ([2, Exercise 28, p.217]). Hence Mjy is
regular by Lemma 4.3.

5. Fixed subrings. Let G be a finite group which acts on R (by means of a
homomorphism into the automorphism group of R). For reR and ge G we
will let r¢ denote the image of  under g. The skew group ring R*G is defined
to be @, gR with multiplication given as follows: If r, se R and g, he G, then
(gr)(hs)=ghrts. Throughout this section, U will represent a skew group ring of
R with G.

We say that U is R-projective if N is a U-submodule of a right U-module M
such that N, when viewed as an R-module, is an R direct summand of M, then N
is a U direct summand. If the order of G is invertible in R then by the proof of
[8, Theorem 1.3] we can easily see that U is R-projective.

THEOREM 5.1. Assume that |G| is invertible in R. Then the following
conditions are equivalent:

1) My is a V-module.

2) For any U-submodule N of My, J(M/Ng)=0.

PrOOF. 1)=-2). Let X be a maximal U-submodule of M. Since the simple
U-module M/X/ is finitely generated over R, there is a maximal R-submodule Y
of M such that Y2 X. Then Yy is a maximal R-submodule for every g € G and
there holds that N, Yg=X. Therefore J(M/Ng)=J(M/Ny)=0 for every
U-submodule N of M.

2)=1). Let X be a U-submodule of M and let x be an element of M such
that x¢& X. Then by Zorn’s lemma, there is a U-submodule Y of M which is
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maximal among the U-submodules B of M with xe& B. Since J(M/Yg)=0, there
is a maximal R-submodule L such that x¢&L=2Y. Since N, Lg=Y, we can
regard M/Y as an R-submodule of the completely reducible module @, M/Lg.
Let D denote the intersection of all U-submodules P of M with P2Y. Then
x€D, and D/Y is a simple U-module. Since U is R-projective, D/Y is a direct
summand of M/Y,. So we can write D/Y@®E/Y=M/Y with some U-submodule
E of M. Since x does not belong to E, it follows that E=Y, and therefore Yis a
maximal U-submodule of M.

COROLLARY 5.2. Assume that |G| is invertible in R. If R is a right V-
ring, then U is also a right V-ring.

Now, we shall consider the fixed subring of automorphisms. In what follows
G will be a finite group of automorphisms of R. Then R is a right U-module,
where the multiplication of u=3_ ; gt,e U and reR is given by 3 r9t,. If the
order of G is invertible in R, e=|G|™' 3 ; g is an idempotent of U and Ry~eUy,
by [8, Corollary 1.4]. A right ideal I of R is said to be G-invariant if I9< [ for
all geG.

THEOREM 5.3.  Assume that |G| is invertible in R. Then the following are
equivalent:

1) For any G-invariant right ideal I of R, J(R/I)=0.

2) The fixed subring RS is a right V-ring and R is s-unital as a right
ReR-module.

Proor. 1)=-2). By 1) and Theorem 5.1 Ry, is a V-module. Then, by
Theorem 3.11, Endy (R) is a right V-ring and R is s-unital as a right ReR-module,
because Ry is a cyclic, projective U-module and the trace ideal of Ry is UeU =
ReR. Since Endy (R) is isomorphic to R¢ by [8, Lemma 1.2], RC is a right V-
ring.

2)=>1). Reversing the above process, we can easily see that 2) implies 1).

COROLLARY 5.4. Assume that R is a fully right idempotent ring without
|Gl-torsion. If RC is a right V-ring, then J(R/I)=0 for every G-invariant right
ideal I of R.

ProOE. Since R is fully right idempotent, there are r;, s; in R such that
|Gl=3;|G|r;|Gls;. Since R has no |Gl|-torsion, we have |G|™! in R. By [11,
Theorem 1], U is also fully right idempotent. Then by (2) of Proposition 1.4,
Ry is fully right idempotent. Therefore, by Theorem 5.3, we see that J(R/I)=0
for every G-invariant ideal I of R.

By the above proof and Lemma 1.1, we have
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PROPOSITION 5.5.  Assume that R is a fully right idempotent ring without
|G|-torsion. Then the lattice of right ideals of RC is isomorphic to the lattice of
G-invariant right ideal of R by the homomorphism: I—IR.

Corresponding to Theorem 5.3, we obtain the following

THEOREM 5.6. If R has no |G|-torsion, then the following are equivalent:

1) Every finitely generated G-invariant right ideal of R is a direct sum-
mand of Rg.

2) Every cyclic G-invariant right ideal of R is a direct summand of Rg.

3) RO is regular and R is s-unital as a right ReR-module.

Proor. 1)=2). Trivial.

2)=>3). By 2), |G|Ry is a direct summand of Rg. Since R has no |G|-torsion,
we have |G|R=R, and hence |G| is invertible in R. Since U is R-projective and
Ry is projective, 2) is equivalent to that Ry, is regular ([21, Theorem 2.2]). There-
fore, R¢ (~Endy (R)) is regular by [20, Theorem 3.6], and R is s-unital as a right
ReR-module by Proposition 1.2.

3)=>1). Since RS is a regular ring without |G|-torsion, |G| is invertible in
R. By Theorem 4.3, Ry is regular, and hence 1) holds by [21, Theorem 2.2].

COROLLARY 5.7. Assume that R is a fully right idempotent ring without
|G|-torsion. If RS is regular, then every finitely generated G-invariant right
ideal is a direct summand of Rpy.

PrOOF. As was seen in the proof of Corollary 5.4, Ry is fully right idem-
potent. Therefore by Theorem 5.6, the proof is complete.

Acknowledgement. The author would like to express his thanks to Professor
S. Togd and Professor H. Tominaga for their valuable comments in preparing this
paper.

References

[1] J.S. Alin and E. P. Armendariz: A class of rings having all singular simple modules
injective, Math. Scand. 23 (1968), 233-240.

[2] F.W. Anderson and K. R. Fuller: Rings and Categories of Modules, Graduate Texts
in Mathematics, Springer-Verlag, 1973.

[3]  E.P. Armendariz and J. W. Fisher: Regular P.l.-rings, Proc. Amer. Math. Soc. 39
(1973), 247-251.

[4] K. Chiba and H. Tominaga: On strongly regular rings, Proc. Japan Acad. 49 (1973),
435-437.

[5] C. Faith: Algebra: Rings, Modules and Categories, Grundl. Math. Wiss. 190, Springer-
Verlag, Berlin, 1973.



142

[6]
[71

(8]
(91
[10]
[t1]
(12]
(13]
[14]
[15]
[16]
(17
(18]

[19]
[20]

[21]
[22]

[23]

[24]

Yasuyuki HIRANO

D. J. Fieldhouse: Pure theories, Math. Ann. 184 (1969), 1-18.

J. W. Fisher: Von Neumann regular rings versus V-rings, Ring Theory: Proc. Univ.
Oklahoma Conference, Marcel Dekker, 1974, 101-119.

J. W. Fisher and J. Osterburg: Some results on rings with finite group actions, Ring
Theory: Proc. Ohio Univ. Conference, Marcel Dekker, 1976, 95-111.

J. W. Fisher and R. L. Snider: On the von Neumann regularity of rings with regular
prime factor rings, Pacific J. Math. 54 (1974), 135-144.

K. R. Fuller: Relative projectivity and injectivity classes determined by simple modules,
J. London Math. Soc. (2), 5 (1972), 423-431.

Y. Hirano: On fully right idempotent rings and direct sums of simple rings, Math. J.
Okayama Univ. 22 (1980), 43-49.

I. Kaplansky: Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948),
575-580.

T. Mabuchi: Weakly regular modules, Osaka J. Math. 17 (1980), 35-40.

Z. Maoulaoui: Sur les modules réguliers, Arch. Math. 30 (1978), 469-472.

G. Michler and O. Villamayor: On rings whose simple modules are injective, J. Algebra
25 (1973), 185-201.

V. S. Ramamurthi: A note on regular modules, Bull. Austral. Math. Soc. 11 (1974),
359-364.

V. S. Ramamurthi and K. M. Rangaswamy: Generalized V-rings, Math. Scand. 31
(1972), 69-77.

L. Rowen: Some results on the center of a ring with polynomial identity, Bull. Amer.
Math. Soc. 79 (1973), 219-223. .

H. Tominaga: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

R. Ware: Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155
(1971), 233-256.

J. Zelmanowitz: Regular modules, Trans. Amer. Math. Soc. 163 (1972), 341-355.

J. Zelmanowitz: Semiprime modules with maximum conditions, J. Algebra 25 (1973),
554-574.

B. Zimmermann-Huisgen: Endomorphism rings of self-generators, Pacific J. Math.
61 (1975), 587-602.

B. Zimmermann-Huisgen: Pure submodules of direct products of free modules, Math.
Ann. 224 (1976), 233-245.

Department of Mathematics,
Faculty of Science,
Hiroshima University





