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Introduction and Notation. A ring R is called a (von Neumann) regular
ring if for each a in R there exists an x in R such that a = axa. The notion of
regularity has been extended to modules by D. Fieldhouse [6], R. Ware [20] and
J. Zelmanowitz [21]. In this paper, following Zelmanowitz [21], we call a
right β-module M regular if given any w e M there exists/e HomR(M, R) with
m/(m) = ra. O. Villamayor has shown that every simple right R-module is
injective if and only if every right ideal of R is an intersection of maximal right
ideals. If a ring R satisfies these equivalent conditions, R is called a right F-ring.
The notion of F-rings has been extended to modules by V. S. Ramamurthi [16]

and H. Tominaga [19]. In this paper, following Tominaga [19], we call a
module MR a V-module if every .R-submodule is an intersection of maximal R-
submodules. Such a module MR has also been called "co-semisimple" by K. R.
Fuller [10]. The connections between the class of regular rings and the class of
F-rings are studied by many authors (see the references of [7]).

In this paper, we shall consider the connections between the class of regular
modules and the class of F-modules, and we shall study the relationship between
these modules and their endomorphism rings. J. Fisher and R. Snider [9,
Corollary 1.3] proved that a ring R is regular if and only if R is fully idempotent
and every prime factor ring of R is regular. In § 2, we shall extend this result to
modules (Theorem 2.3). In § 3, we consider F-modules and their endomor-
phism rings. We prove that a finitely generated projective module MR is a
F-module if and only if EnάR (M) is a right F-ring and MR is a self-generator. In
§ 4, we prove that a module MR over a P./.-ring R is regular if and only if it is a
locally projective F-module (Theorem 4.4). R. Ware [20, Proposition 2.5] proved
that if a projective module MR over a commutative ring R is regular, then every

simple homomorphic image of MR is injective. The converse assertion was
proved by V. S. Ramamurthi [16, Theorem 4] and Z. Maoulaoui [14, Propo-
sition 1]. We shall prove this result for general regular modules over commuta-
tive rings. Finally, in § 5, we consider fixed subrings of automorphisms. We
prove that if G is a finite group of automorphisms of a ring ,R such that |G|-1 6 jR
and J(R/I) = Q for every G-invariant right ideal / of R9 then the fixed subring RG

is a right F-ring.
Throughout this paper, R will denote an associative ring with identity and

all modules considered are unitary right jR-modules. Homomorphisms will be
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written on the side opposite to that of scalars. For any module M, M* denotes
HomΛ(M, R), and S = S(M) denotes EndΛ(M). We denote by Z(M) and J(M)
the singular submodule of M and the Jacobson radical of M, respectively. And
we say that M is semίsίmple if J(M) = 0. The annihilator ideal of M will be
denoted by AnnΛ(M): AnnR(M) = {reJR | Mr = 0}. The homomorphisms ( , ):
M*®sM-»# with (/, m)=/(m) and [ , ]: M®RM*->S with [m,/] = m/ are
R-R-lineaΐ and S-S-linear, respectively. As is well known, (5, M*, M, R) with
these homomorphisms forms a Morita context. The images (M*, M) and
[M, M*] will be denoted by Γand /d, respectively. We denote by U(SMR) (resp.
U(MR}) the lattice of S-^-submodules (resp. K-submodules) of M, and by UT(RR)
(resp. UT(RRR)) the lattice of all left ideals (resp. ideals) / of R with 77 = 7. Fur-
ther, UA(Ss) (resp. U^(SSS)) denotes the lattice of all right ideals (resp. ideals) K

of S with KA=K. Given ^-module M and A, we set TM(A) = Σ {I

1. Preliminaries. Let #' be a ring (with or without identity). Following
Tominaga [19], we say that a right ^'-module M ̂ 0 is s-unital if u e uR' for any
u e M. If *!,..., xrt are arbitrary elements of an s-unital module MR>, then there
exists e e R' such that xie = xi for all xf ([19, Theorem 1]). Following B. Zimmer-
man-Huisgen [24], we say that a right ^-module M is locally projectίve if M
satisfies the following condition : For all diagrams

A-1-+B - > 0

\9

Ft—>M

with exact upper row and a finitely generated submodule F of M there is g' 6
Hom^M, A) such that g \F=fgf \F. It is known that MR is locally projective
if and only if M is s-unital as a left A -module (see [24]). MR is called a self-
generator (resp. a Σ-self-generator) if TM(yl)==^4 for all .R-submodules A of M
(resp. for all ^R-submodules A of M" where n is any positive integer) (see [23]).
Now, we begin with the following proposition.

PROPOSITION 1.1. Let M be a right R-module. Then the following are
equivalent:

1) M is s-unital as a right T-module.
2) The mapping UA(SS)^U(MR)'9 I-+IM, is a lattice isomorphism.
3) M is a self-generator and AM = M (or equivalently MT=M).

If MR is locally projectίve, we may add:
4) Every simple homomorphic image of any submodule of MR is a homo-

morphic image of MR.

PROOF. 1)=>2). It is clear that for any LeU(MR), L=[L, M*]M. Then
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we have [L, M*] = [L, M*] [M, M*] = [L, M*]zl, and so [L, M*] e C/j(Ss). If
IM = KM for /, KeUΛ(Ss), we have / = (/M, M*) = (KM, M*) = K. Therefore,
UA(SS)^U(MR)'9 7->/M, is a lattice isomorphism.

2)=>3) and 4). Trivial.
3)=>1). Since MΛ is a self-generator and M = MT9 for each m e M, we have

m e mR = TM(mR)=TM(mR)T^mT.
Next, we assume that MΛ is a locally projective module.
4)=>3). It suffices to show that M is a self-generator. Assume that there is

an N E U(MR) such that TM(N)^N. Let x = x+ TM(N) be a non-zero element of
N/TM(N) and let 7 be a maximal submodule of 5c#. By hypothesis, there is a
non-zero .R-homomorphism h: M-+xR/Y. Now, we take an meM such that
A(w)^0. Since MR is locally projective, there is an /ι'eHomΛ(M, xR+TM(N))
such that /i I mR = πh'\ mR9 where π is the natural epimorphism: xR + TM(N)->

In particular, we have 0 = π/τ'(m) = /ί(m). This is a contradiction.

A ring R is called fully right (resp. left) idempotent if I2 — I for every right
(resp. left) ideal / of R. And R is fully idempotent if I2 = 1 for every ideal / of R.
Let us call a module MR fully idempotent if for every meM, m e S[m, M*]m#.
Further MΛ is called fully right idempotent (resp. fully left idempotent) if me
[m, M*]mJR (resp. meS[m, M*]m) (cf. [13], [16]). A ring R is fully idem-
potent, fully right idempotent or fully left idempotent, according as RR is .

PROPOSITION 1.2 (cf. [13, Theorem 7]). (1) The following conditions are
equivalent:

1) MR is a fully right idempotent module.
2) For every R-submodule N of M, JV = [ΛΓ, Λί*]Λf.
3) Mτ is s-unital and I2 = I for every I e UΔ(SS).
4) Mτ is s-unital and N Π IM = IN for every S-R-submodule N of M and

every right ideal I of S.
5) Mτ is s-unital and SM/N is flat for each S-R-submodule N of M.
6) Mτ is s-unital and the functor HomR/Annκ(M/N) (M/N, -) from the

category Mod-R/AnnR (M/ΛΓ) to the category Mod-S preserves injective modules
for each S-R-submodule N of M.

(2) The following conditions are equivalent:

1) MR is a fully idempotent module.
2) For every S-R-submodule N of M, N = [N, M*]W.

3) The mapping UT(RRR)^U(SMR); /->M/, is a lattice isomorphism and

4) The mapping UT(RRR)-^U(SMR):> /-»M/, is a lattice isomorphism and
N n MI = NI for every S-R-submodule N of M and for every ideal I of R.

5) The mapping UA(SSS)-+ t/(sMΛ); K-+KM, is a lattice isomorphism and
K2 = Kfor every KeUA(sSs).
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6) The mapping UA(SSS)-^U(SMR); X->XM, is a lattice isomorphism and
N Π KM = KN for every S-R-submodule N of M and for every ideal K of S.

PROOF. (1). l)<s>2) is clear.

2)=>3). For each raeM, we have that mem(M*, mR)^mT. Let / be in
UA(SS). Then 7M = [/M, M*]/M = Ld/M = /2M, and therefore / = [/M, M*] =
[/2M, M*]=/2.

3)=>4). Let N be an S-Λ-submodule of M, and / a right ideal of 5. It is
clear that N n IM^IN. By Proposition LI, TV n IM = KM for some X e UΔ(SS).
Since / 2 / J 2 X J = X, it follows that IN^KN^ X(XM) = XM = TV n /M . There-
fore, 7TV = TV Π /M.

4)<^>5). Since MΓ is s-unital, SM is locally projective, and hence SM is flat
(see [24]). Then, it is well known that SM/N is flat if and only if N n IM = IN
for each right ideal / of S.

5)o6). This follows from the well known fact that for a .R'-#"-bimodule
R'WR»9 R'W is flat if and only if HomR»(W, -): Mod-#"->Mod-#' preserves injec-
tive modules ([5, Proposition 6.28, p. 318]).

4)=>3). If IeUA(Ss), then IM = SIM n IM = ISIM = I2M. Therefore we
obtain 7 = /[M, M*]=/2[M, M*]=/2.

3)=>2). If N is an ^-submodule of M, then by Proposition 1.1 there exists
some IeUΔ(Ss) such that N = IM, and therefore [JV, M*]JV=[/M, M*]/M =

(2). I)o2) is clear.
2)=*3). For each N e U(SMR), we have that N= [N, M*]N = M(M*, TV) and

(M^9N)eUT(RRR). If / is in Uj(RRR), then M/ = [M7, M*]M/ = M/2, and
hence / = (M*, M)/ = (M*, M/2) = /2.

3)=>4). Let TV be an S-Λ-submodule of M, and / an ideal of #. Then
Nf}MI = ML for some LeUT(RRR\ Since / 2 77 3 TL = L, we see that N/2

,VL 2 (ML)L = ML = N n MI. Therefore, N7 = JV n M /.
4)=>3). If / e UJ^RR), then MI = MI n M/ = M/2, and hence /2 = /.
3)=>2). For each S-Λ-submodule N of M, we can find some / e UT(RRR\

such that N = MI. Then [TV, M*]TV = [M/, M *]M / = M/2 = MI = N.
Similarly, interchanging R and 5, we can prove 2)=>5)=>6)=>5)=>2).

Finally we state the following propositions without proofs. The proofs of
them are similar to those of corresponding propositions in [13] and [21].

PROPOSITION 1.3. If MR is fully idempotent, then there hold the following :
(1) S = EndR(M) is a semiprίme ring.
(2) The center of S is a regular ring.

(3) If S = Si®S2®'-®Sn with two-sided simple rings Si9 then Mi =
is S-R-simple and M = M 10 0Λfn.
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PROPOSITION 1.4. (1) MR = ®ΛeAMQl is fully right idempotent (resp.
fully idempotent) if and only if each MΛ is fully right idempotent (resp. fully
idempotent).

(2) If R is fully right idempotent (resp. fully idempotent) then a projectiυe
module MR is fully right idempotent (resp. fully idempotent).

2. Regular modules. Following Zelmanowitz [21], we call a module MR

regular if given any raeM there exists /eHomR(M, R) with mf(m) = m. Ob-
viously, every regular module is locally projective. Moreover, we have the
following

PROPOSITION 2.1. The following conditions are equivalent:
1.) MR is a regular module.

2) MR is locally projectiυe and every homomorphic image of MR is flat.
3) MR is locally projective and for any submodule N of MR and any left

R-module L, the natural homomorphism N®RL-+M®RL is a monomorphism.
4) MR is locally projective and MIΓ\N = NI for every submodule N of

MR and every left ideal I of R.

PROOF. By [6, Proposition 8.1] and [21, Theorem 2.3], 1)=>2)=>3)=>4).
We show that 4) implies 1). Let m be an element of M. Then m e mR Γ)
Aί(M*, m) = m(M*, m).

A module MR is prime (resp. semiprime) if for every non-zero elements
m, mi in M there holds m(M*, ra^O (resp. m(M*, m)^0) (see [22]). It is
well known that a ring R is fully idempotent if and only if every factor ring of
R is semiprime. For locally projective modules, we have

PROPOSITION 2.2. Let MR be a locally projective module. Then the follow-
ing conditions are equivalent:

1) MR is a fully idempotent module.

2) For any S-R-submodule N of M, M/N is a semiprime R/ΔnnR(M/N)-
module.

3) For any S-R-submodule N of M, R/AnnR (M/N) is semiprime.

PROOF. 1)=>2). If M is fully idempotent, then the R/AnnR (M/N)-module
M/N is also fully idempotent and so semiprime.

2)=>1). If MR is not fully idempotent, there is an w e M such that
m£S(m)M*(m)R. We set MR = M/N, where N = S(m)M*(m)R and R = R/
AnnR(M). Since MR is semiprime, there exists an/e(M^)* such that m(/, m)^0.
Then, by hypothesis, there is an/*eM* such that πf*\mR=fg\mR where π and
g are natural epimorphisms R-+R and M-+M, respectively. But ra(/*, m)eN
implies m(/, m) = 0. This is a contradiction.
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2)<=>3). Let N be a proper S-β-submodule of M and let n = n + N be a non-
zero element of M = M/N. Since MR is locally projective, there are m1?..., mke
M,fί9...,fkeM* such that Σf=ι mifi(n) = n. Each /^ induces an element Ji in
Honitf (M, £), where R = R/λnnR (M). Then, 0 Φ n = Σ *= i ^ J,(n) e [M, M*] (ή).
Now, 2)o3) is clear by [22, Proposition 1.1].

The following theorem is an extension of [9, Corollary 1.3] to modules.

THEOREM 2.3. The following conditions are equivalent:
1) MR is a regular module.
2) MR is locally projective and fully idempotent, and for each prime

ideal P of R> M/MP is a regular R/P-module.
3) MR is locally projective and fully idempotent, and each prime factor

module M/NR (N^SMR) is a regular R-module, where R =

PROOF. A proof involves a slight modification of that of [9, Theorem 1.1].
1)=>2). Trivial.
2)=>3). If M = M/NR is prime for an S-β-submodule N, then R = R/ΔnnR

(M)is a prime ring by [22, Proposition 1.1]. Hence M/N is a regular ^-module
by 2).

3)=>1). We have to show that for each meM there exists an/eM* such
that m = m/(m). Assume, to the contrary, that there exists an meM such that
m = mx(m) has no solution in M*. Then, by making use of the fact that MR is
locally projective and Zorn's lemma, we can choose an S-Λ-submodule N of M
which is maximal with respect to the property that m = inx(m) has no solution in
HomR(M/N, R) where R — R/A,nnR(M/N), i.e. m — mx(m) is not in N for every
xeM*. By hypothesis, M = MINK is not prime. Therefore, there exist non-
zero elements ϊnί and m2 in M such that [m1? (M^)*]m2 = 0. Since M^ is semi-
prime by Proposition 2, it follows that Sm^R n Sm2# = 0. By the choice of N
and the fact that MR is locally projective, there exist x and y in M* with
m — m(x9m)eSmίR + N and m — m(j, m) e Sm2R + N. Thus m — m(x + y —
x[m, y~\)m is in (Sm1R + N)Γ\(Sm2R + N) = N. This contradicts the choice of
N. Consequently MR is regular and the proof is complete.

COROLLARY 2.4. Let R be a ring all of whose prime factor rings are regu-
lar. Then every locally projective, fully idempotent module is regular.

PROOF. Since every locally projective module over a regular ring is regular
by [24, 2.3, 4)], our assertion is clear by Theorem 2.3.

3. F-modules. It was proved in [15] that for a ring R the following state-
ments are equivalent :

1) Every simple right .R-module is injective.
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2) Every right .R-module is semisimple.

3) Every right ideal of R is an intersection of maximal right ideals of R.
A ring R is called a right F-ring if R satisfies the above equivalent con-

ditions. Following Tominaga [19], we call a module MR a V-module if every
Λ-submodule of M is an intersection of maximal .R-submodules. Obviously,
a ring jR is a right F-ring if and only if the right .R-module RR is a F-module.

Let M be a right .R-module. A right .R-module N is defined to be M-injec-
tive in case for each monomorphism /: KR-+MR and each homomorphism
g: KR^NR there is an ^-homomorphism g: MR^NR such that g = g f :

0 > KR -^ MR

9 .-*

The following proposition has been proved in [10, Proposition 3.1]. How-
ever we shall reprove it here because of the connection with the proof of Theorem
3.15.

PROPOSITION 3.1. For a right R-module M the following conditions are
equivalent:

1) MR is a V-module.
2) Every simple right R-module is M-injective.

3) Every homomorphic image of MR is cogenerated by a direct sum of
simple modules.

PROOF. l)<s>3). Trivial.

1)=>2). Let 17 be a simple right .R-module and let / be a nonzero .R-homo-
morphism from a submodule N of M to U. If N' = Ker/, then there is a maxi-
mal submodule K of MR such that K^N' but K^N. Since N/N'R is simple, it
follows that N Π K = N'. Then M/K = (N + K)/KR~(N/N Π K)R = N/N'R~ UR,
and therefore/can be extended to an/in HomΛ (M, U). Hence U is M-injective.

2)=>1). Let AT be a proper submodule of MR9 and x a nonzero element of
M = M/N. Then by Zorn's lemma, there is a submodule Y of MR which is
maximal among the submodules X of MR with x^X. Let D denote the inter-
section of all submodules Q of MR with g=2 Y. Obviously x is in D, and D/YR is
a simple module. Then by 2), D/Y is M-injective and so, M/Y-injective by [2,
Proposition 16.13, p. 188]. Therefore M/Y=D/Y@K/Y9 where K is a submodule
of MR. Since x does not belong to K, it follows that Y is a maximal submodule
of MR. This implies that MR is semisimple.

In case we restrict our attention to locally projective modules, we obtain the
following
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COROLLARY 3.2. Let MR be a locally projective module. Then the follow-
ing are equivalent:

1) MR is a V-module.

2) MR is a self-generator and every simple homomorphic image of MR is
M-injective.

3) MR is a self-generator and for any simple right R-module X,
ifl (M, X)s is injective.

PROOF. 1)=>2). Since every simple homomorphic image of any submodule
of MR is a homomorphic image of MR (Proposition 3.1), MR is a self-generator
by Proposition 1.1.

2)=>1). Obvious by Proposition 3.1.
2)o3). Since MR is a Γ-self-generator by [23, Theorem 2.4], the equivalence

of 2) and 3) is a consequence of [23, Corollary 1.5] and Proposition 3.1.

The following proposition, noted in [10], is immediate from Proposition 3.1
and [2, Proposition 16.13, p. 188].

PROPOSITION 3.3. (1) Every submodule and every homomorphic image
of a V-module are also V-modules.

(2) ®αeχ Mα is a V-module if and only if every Mα is a V-module.

As immediate corollaries to Proposition 3.3, we have the following

COROLLARY 3.4. Every module which is generated or finitely cogenerated
by a V-module is also a V-module.

COROLLARY 3.5. Let R be a commutative ring, and MR a finitely generated
V-module. Then R/AnnR(M) is a V-rίng (and hence a regular ring).

Let MR be a module. Then it is clear that J(M) = 0 if and only if M is
cogenerated by the class of simple modules. Therefore, by Proposition 3.3, we
have

PROPOSITION 3.6. Let MR be a V-module. Then for any submodule N
of MR, AnnR(JV) and AnnΛ(M/JV) are intersections of maximal right ideals of

R.

Every right F-ring is fully right idempotent ([15, Corollary 2.2]). However,
F-modules need not be fully right idempotent. For example, any simple right
.R-module which is not isomorphic to any right ideal of R is not a fully right
idempotent module but a F-module. However, we shall show that every locally
projective F-module is fully right idempotent. In advance of proving this we
shall give some definitions : Let MR and NR be two right ^-modules. Then NR
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is said to be p-M-injective if every Λ-homomorphism of any cyclic submodule of
MR into NR can be extended to an 7^-homomorphism of MR into NR. If every
simple right Λ-module is p-M-injective, MR is called a p-V-module. Needless
to say every K-module is a p-F-module.

PROPOSITION 3.7. // MR is a locally projective, p-V-module, then MR is
fully right idempotent. In particular, every locally projective V-module is
fully right idempotent.

PROOF. Assume, to the contrary, that there exists an meM such that
m^[m, M*]m£. Then, by Zorn's lemma, there is a submodule Y of MR which
is maximal among the submodules X of MR such that [m, M^mR^X^mR.
We consider the following diagram:

°^T~M"
mR/Y

where i is the inclusion map and p is the natural epimorphism. Since the simple
right jR-module mR/Y is /7-M-injective by hypothesis, there is q: M->m#/Ysuch
that p = qi. We consider also the following diagram:

0 > mR -U M

l«

where h is the natural epimorphism. Since MR is locally projective, there is j: M
->R such that qi = hj\mR. Then we have m+Y=qi(m)~hj(m) = h(ϊ)j(m).
Since h(l)j(m)£[m, M*]mK+y= Y, it follows that raeY. This is a contra-
diction.

By the above proof, we can easily see the following

PROPOSITION 3.8. The following are equivalent:
1) MR is regular.

2) MR is locally projective and every right R-module is p-M-injective.
3) MR is locally projective and for each meM, mR is p-M-injective.

For an ideal / of R, an /^-module M is called I-accessible in case M/ = M.

PROPOSITION 3.9. Assume that MR is quasί-projective or T-accessible. If
MR is a self-generator and S is a right V-ring, then MR is a V-module.

PROOF. By [23, Theorem 2.4], MR is a Σ-self-generator. If XR is simple,
then Homκ(M, X)s is simple or zero by [2, Exercise 18, p. 191] and by [23,
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Theorem 4.5], and so, by [23, Corollary 1.5], XR is M-injective. Therefore MR

is a F-module by Proposition 3.1.

The next corresponds to a theorem of R. Ware concerning regular modules
(see [20, Theorem 3.9]).

COROLLARY 3.10. Let R be a commutative ring, and MR a locally projec-
tive module. If S is a right V-ring, then MR is a V-module.

PROOF. Since MR is locally project!ve over a commutative ring R, M is
s-unital as a T-module by [24, 2.3, 3)], and hence MR is a self-generator by Propo-
sition 1.1. Therefore by Proposition 3.9, MR is a F-module.

Now we consider the endomorphism ring of a finitely generated, projective
F-module.

THEOREM 3.11. Let MR be a finitely generated, projective module. Then
the following are equivalent:

1) MR is a V-module.
2) MR is a self-generator (or equivalently Mτ is s-unital) and S is a right

V-ring.

PROOF. Recall first that every locally projective F-module is a self-generator
(Corollary 3.2). Since MR is finitely generated projective, we see that A=S.
Assume that MR is a self-generator. Then, by Proposition 1.1, the lattice U(SS)
is isomorphic to the lattice U(MR). Therefore S is a right F-ring if and only if
MR is a F-module.

COROLLARY 3.12 (cf. [15, Theorem 2.5]). // MR is a finitely generated,
projective module over a right V-ring R, then the endomorphism ring S is a

right V-ring.

By Proposition 1.2, we can easily see the following

PROPOSITION 3.13. Let MR be a finitely generated projective module. If
MR is fully (right) idempotent, then S is a fully (right) idempotent ring.

COROLLARY 3.14. If a finite dimensional, non-singular, projective module
MR is fully right idempotent, then it is a direct sum of finitely many S-R-simple
modules. In particular, a noetherian, projective, fully right idempotent module
is a direct sum of finitely many S-R-simple modules.

PROOF. By [22, Theorem 3.5], S is a semiprime right Goldie ring. On the
other hand, S is fully right idempotent by Proposition 3.13. Hence 5 is a direct
sum of finitely many simple rings by [15, Lemma 3.1]. Now, our assertion is



Regular modules and K-modules 135

clear by (3) of Proposition 1.3 and [22, Proposition 3.1].

Rings all of whose singular simple modules are injective are studied in [1]
and [17]. For a right ^-module M, we obtain the following

THEOREM 3.15. The following are equivalent:
1) Every singular simple right R-module is M-injective.
2) Z(M) n J(M) = 0 and J(M/N) = Ofor any essential submodule N of MR.
3) Every singular simple submodule of MR is a direct summand of MR

and J(M/N) = Qfor any essential submodule N of MR.

PROOF. 1)=>2). If N is an essential submodule of MR then, by making use
of the same argument as in the proof of 2)=>1) of Proposition 3.1, we can prove
that J(M/AΓ) = 0. Now suppose that Z(M) n ./(M) contains a nonzero element
m. Then by Zorn's lemma, there is a submodule Y of MR which is maximal
among the submodules X of MR with m^X. Since mR = (mR+ Y)/7is a singu-
lar simple module, by hypothesis we have M/y=mΛ0y7^for some submodule
Y' of MR. Since m&Y', Y'— Y, and hence Y is a maximal submodule of MR.
This contradicts the choice of m.

2)=>3). Let X be a singular simple submodule of MR. Since Z(M) n J(M)
= 0, there is a maximal submodule Y of MR such that X n Y=0. Then there
holds that M = X®Y.

3)=>1). Let XR be a singular simple module, and N an essential submodule
of MR with a nonzero K-homomorphism /: N-+X. If X = Ker/is not essential
in M, then K is a direct summand of NR, and so N = K®I for some submodule /
of MR. Since / (^X) is a singular simple submodule of MR, by hypothesis we
see that M = /0L for some submodule LR. Then / can be extended to an R-
homomorphism of M to X. If X = Ker/is essential in M, we can also extend /
to an K-homomorphism of M to X (see the proof of 1)=>2) of Proposition 3.1).

A ring R is called in [17] a generalized F-ring or, for short, a GF-ring if every
singular simple right JR-module is injective. We call a module MR a GV-module
if one of the equivalent conditions in Theorem 3.15 is satisfied. Again by [2,
Proposition 16.13, p. 188], we obtain the following

PROPOSITION 3.16. (1) Every submodule and every homomorphic image
of a GV-module are also GV-modules.

(2) Θαex^α IS a GV-module if and only if every Mα is a GV-module.

Since a module MR is a GF-module if and only if every simple right .R-module
is either projective or M-injective (see Theorem 3.15), the proof of [17, Propo-
sition 3.4] enables us to obtain the following

PROPOSITION 3.17. Let R be a ring in which every primitive idempotent is
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central. Then MR is a V-module if and only if it is a GV-module.

4. Regular modules versus F-modules. We shall begin this section with
the following theorem which corresponds to [7, Theorem 14].

THEOREM 4.1. Let MR be a fully right idempotent module. If M/MPR is
a V-module for each primitive ideal P of R, then MR is a V-module.

PROOF. Let XR be a simple module, and NR a submodule of MR. Let/be
a nonzero element of HomΛ (AT, X). Then P = AnnΛ (X) is a right primitive ideal
of R. By Proposition 1.1, N = AM for some A e UA(SS) and MP = BM for some
ideal B of S. Noting that AM Π BM = ABM = AMP (Proposition 1.2 (1)), one
will easily see that the map /' defined by a + b *-+f(a) (a e AM, b e BM) is an ex-
tension o f / i n HomR(AM + BM, X). Since R/P is a right primitive ring and
M/Ker/' can be regarded as an R/P-module, we can prove that X is M-injective
(see the proof of 1)=>2) of Proposition 3.1).

We say that R is a P.I.-ring if R satisfies a polynomial identity with co-
efficients in the centroid and at least one coefficient is invertible. Since every
primitive factor ring of a P./.-ring R is simple artinian by Kaplansky [12], we
obtain the following

COROLLARY 4.2. Let R be a P.I.-ring. If MR is fully right idempotent,
then MR is a V-module.

Now we intend to extend the results in [3] to modules. First, we require
the following lemma.

LEMMA 4.3. Let MR be a locally projectίve module. If S is regular and
M is s-unital as a right T-module, then MR is regular.

PROOF. By Proposition 1.1, for any raeM, there is / in UA(SS) with mR =

IM. Then m = Σ a^i with some 0 f e / and m^M. If we set /' = Σ flt S, it is
easy to see that mR = ΓM. Since S is regular, the right ideal /' is generated by
an idempotent e. Then mR ( = eM) is a direct summand of MR and is projective.
Thus we conclude that MR is regular by [21, Theorem 2.2].

THEOREM 4.4. Let R be a P.I.-ring, and M a right R-module. Then the
following conditions are equivalent:

1) MR is a regular module.
2) MR is a locally projective V-module.
3) MR is locally projective and fully right idempotent.

PROOF. 1)=>2). By Corollary 4.2.
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2)=>3). By Proposition 3.7.
3)=>1). If MR is prime, then jR/Annκ (M) is a prime ring by [22, Proposition

1.1]. Hence, according to Theorem 2.3, it is sufficient to show that a faithful,
prime and fully right idempotent module M over a prime P.I.-ring R is regular.
Let C be the center of R. First we shall show that M is C-torsion-free. Suppose
there exists a nonzero m' e M and a nonzero c' e C such that ra'c' = 0. Since MR

is faithful, there is a nonzero m" e M such that m"cVO. Then, we have m'(M*,
ra"c') = m'c'(M*, w") = 0. This contradicts the primeness of MΛ. Since MR is
fully right idempotent, for each m e M and each nonzero ceC, there are/!,...,/„

eM* and rί,...,rneR such that mc = Σ?=ι mc/i(mc)H = (Z"=i m/i(m)ri)c2

Hence we can define me"1 = Σ?=ι w//(m)rΐ> and then M has a Q-module structure,
where β is the ring of central quotients of R. By [18, Corollary 1], Q is a simple
artinian ring. Since MQ is completely reducible, by [21, Theorem 2.8] we may
assume that M is an irreducible β-module. Since EndR (M) c± EndQ (M) is a
division ring by Shur's lemma, MR is a regular module by Lemma 4.3.

A module MR is said to be semi-artinίan if every nonzero homomorphic
image of MR has the nonzero socle. The next is an extension of [7, Theorem 17]
to modules.

PROPOSITION 4.5. Let MR be a finitely generated, projective, semi-artinian
module. Then the following conditions are equivalent:

1) MR is a regular module.

2) MR is a fully right idempotent module.

PROOF. 1)=>2). Trivial.
2)=>1). By Proposition 1.1, the lattice U(SS) is isomorphic to the lattice

U(MR\ Therefore Ss is also semi-artinian. Since S is fully right idempotent
(Proposition 3.13), S is regular by [7, Theorem 17], and hence MR is regular by

Lemma 4.3.

As an immediate consequence of Propositions 3.7 and 4.5, we obtain

COROLLARY 4.6. Let MR be a finitely generated, projective, semi-artinian
module. If MR is a V-module, then MR is regular.

A ring R is said to be normal if every idempotent is central. For example,
reduced rings and right and left duo rings are normal.

LEMMA 4.7. Let R be normal. If MR is a regular module, then every sim-
ple homomorphic image of MR is injective. In particular, MR is a V-module.

PROOF. If MR is regular, then for every m E M, mR is projective and is a
direct summand of MR by [21, Theorem 2.2]. Therefore we may assume that
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MR is cyclic (and protective). Since R is normal, MR~eRR for some central
idempotent e e R. Since the ring eR is regular and normal, it is a strongly regular
ring, and hence a right F-ring by [4, Theorem]. The second assertion is clear
by Corollary 3.2.

For a locally projective module M over a commutative ring R, we have

THEOREM 4.8. Let R be a commutative ring. Then the following conditions

are equivalent:
1) MR is regular.
2) MR is a locally projective V-module.
3) MR is a locally projective GV-module.
4) MR is fully right idempotent.
5) MR is locally projective and every simple homomorphic image of MR

is injective.
6) MR is locally projective and every simple homomorphic image of MR

is M-injective.

PROOF. 1)=>2). By Corollary 4.2.

2)=>4). By Proposition 3.7.
2)<=>3). This is included in Proposition 3.17.
4)=>1). Since MR is fully right idempotent, for any m e M we have that

m e [m, M*~]mR. Since R is commutative, the right multiplication of any
element of R is in S. Therefore me[m, M*]Sm = [m, M*]ra. Consequently,

MR is regular.
1)=>5). By Lemma 4.7.
5)=>6). Trivial.
6)=>2). Since MR is locally projective over a commutative ring R, M is

s-unital as a Γ-module by [24, 2.3, 3)], and hence M is a self-generator by Propo-
sition 1.1. Therefore MR is a K-module by Corollary 3.2.

REMARK. For a projective module MR, Ware [20, Proposition 2.5] has
proved that 1)=>5), Ramamurthi [16, Theorem 4] has proved that 5)=>4)=>1),
and Maoulaoui [14, Proposition 1] has also proved that 5)=>1).

Tn case R is a P. /.-ring, the implication 1)=>5) in Theorem 4.8 does not re-
main valid (in spite of the assertion in Maoulaoui [14, Proposition 2]).

EXAMPLE. Let K be a field. If we set R = ( Π and I = ® \ then R

is a P./.-ring and I is a minimal right ideal and is a direct summand of RR. There-
fore IR is a regular module ([20, Proposition 2.1]). However, IR is not injective,

because the homomorphism/:^ Q J -»/R defined by/(g n) = (θ k) can ίnot

be extended to a homomorphism of RR into IR.
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Ware [20, Theorem 3.8] proved that if M is a project! ve module over a com-
mutative ring R and 5 is a regular ring, then MR is regular. We shall generalize
this result to locally projective modules (see also [21, Theorem 3.8]).

THEOREM 4.9. Let R be a commutative ring. If M is a locally projective
R-module and S is a regular ring, then MR is a regular module.

PROOF. By [24, 2.3, 3)], M is s-unital as a right T-module. Then by Lemma
4.3, MR is regular.

We conclude this section with the following

PROPOSITION 4.10. Let MR be a projective V-module. If MR is quasi-
injective, then MR is regular.

PROOF. By [20, Proposition 1.1 (2)], J(S) c Horn/? (M , -/(M*)). Then
) = 0 implies J(S) = 0. Since MR is quasi-injective, it is well known that S

( = 5/J(S)) is von Neumann regular ([2, Exercise 28, p. 217]). Hence MR is
regular by Lemma 4.3.

5. Fixed subrings. Let G be a finite group which acts on R (by means of a
homomorphism into the automorphism group of R). For r 6 R and g e G we
will let rg denote the image of r under g. The skew group ring R*G is defined
to be ®geGgR with multiplication given as follows: If r, seR and g, /ιeG, then
(gr)(hs) = ghrhs. Throughout this section, U will represent a skew group ring of
R with G.

We say that U is R-projective if N is a U-submodule of a right U-module M
such that N, when viewed as an ^-module, is an R direct summand of M, then N
is a U direct summand. If the order of G is invertible in R then by the proof of
[8, Theorem 1.3] we can easily see that U is .R-projective.

THEOREM 5.1. Assume that \G\ is invertible in R. Then the following
conditions are equivalent:

1) Mυ is a V-module.
2) For any U-submodule N of Mv, J(M/NR) = Q.

PROOF. 1)=>2). Let X be a maximal L/-submodule of M. Since the simple
U-module M/XV is finitely generated over R, there is a maximal #-submodule Y
of M such that Y^X. Then Yg is a maximal Λ-submodule for every g e G and
there holds that Γ\geGYg = X. Therefore J(M/NR) <= J(MJNU) = 0 for every
U-submodule N of M.

2)=>1). Let X be a U-submodule of M and let x be an element of M such
that x&X. Then by Zorn's lemma, there is a U-submodule 7 of M which is
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maximal among the (7-submodules B of M with x^B. Since J(M/YR) = Q, there
is a maximal β-submodule L such that x^L^Y. Since Γ\geGLg = Y, we can
regard M / Y a s an ^-submodule of the completely reducible module ®geG M/Lg.
Let D denote the intersection of all (7-submodules P of M with P^Y. Then
xeD, and D / Y i s a simple ^/-module. Since 17 is Λ-projective, D / Y i s a direct
summand of M/YV. So we can write D/Y®E/Y=M/Y with some l/-submodule
E of M. Since x does not belong to £, it follows that E= Y9 and therefore Y is a
maximal (7-submodule of M.

COROLLARY 5.2. Assume that \G\ is invertible in R. If R is a right V-
ring, then U is also a right V-ring.

Now, we shall consider the fixed subring of automorphisms. In what follows
G will be a finite group of automorphisms of R. Then .R is a right ^/-module,

where the multiplication of u = ΣgeG 9toE U and reR is given by £geG rgtg. If the
order of G is invertible in R, e = \G\~l ΣgeG g is an idempotent of U and Rυ~eUυ

by [8, Corollary 1.4]. A right ideal / of R is said to be G-invariant if Id^I for

all g e G.

THEOREM 5.3. Assume that \G\ is invertible in R. Then the following are
equivalent:

1) For any G-invariant right ideal I of R, J(R/I) = Q.
2) The fixed subring RG is a right V-ring and R is s-unital as a right

ReR-module.

PROOF. 1)=>2). By 1) and Theorem 5.1 Rv is a F-module. Then, by
Theorem 3.11, End^^R) is a right F-ring and R is s-unital as a right ReR-modulε,
because Rv is a cyclic, projective (/-module and the trace ideal of Rv is UeU =
ReR. Since Enάυ(R) is isomorphic to RG by [8, Lemma 1.2], RG is a right V-
ring.

2)=>1). Reversing the above process, we can easily see that 2) implies 1).

COROLLARY 5.4. Assume that R is a fully right idempotent ring without
\G\-torsion. If RG is a right V-ring, then J(R/I) = Qfor every G-invariant right
ideal I of R.

PROOF. Since R is fully right idempotent, there are ri9 st in R such that
\G\ = Σι\G\ri\G\si. Since R has no |G|-torsion, we have IG^1 in R. By [11,
Theorem 1], U is also fully right idempotent. Then by (2) of Proposition 1.4,
RU is fully right idempotent. Therefore, by Theorem 5.3, we see that J(R/I) = 0
for every G-invariant ideal I of R.

By the above proof and Lemma 1.1, we have
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PROPOSITION 5.5. Assume that R is a fully right idempotent ring without

\G\-torsion. Then the lattice of right ideals of RG is isomorphic to the lattice of

G-invariant right ideal of R by the homomorphism: I-+IR.

Corresponding to Theorem 5.3, we obtain the following

THEOREM 5.6. If R has no \G\-torsion, then the following are equivalent:
1) Every finitely generated G-ίnvariant right ideal of R is a direct sum-

mand of RR.

2) Every cyclic G-invariant right ideal of R is a direct summand of RR.

3) RG is regular and R is s-unital as a right ReR-module.

PROOF. 1)=>2). Trivial.

2)=>3). By 2), \G\RR is a direct summand of RR. Since R has no |G|-torsion,
we have \G\R = R, and hence |G| is invertible in R. Since U is ^R-projective and
RU is projective, 2) is equivalent to that Rv is regular ([21, Theorem 2.2]). There-

fore, RG (~Endv (R)) is regular by [20, Theorem 3.6], and .R is s-unital as a right
ReR-module by Proposition 1.2.

3)=>1). Since RG is a regular ring without |G|-torsion, |G| is invertible in

R. By Theorem 4.3, Rv is regular, and hence 1) holds by [21, Theorem 2.2].

COROLLARY 5.7. Assume that R is a fully right idempotent ring without

\G\-torsion. If RG is regular, then every finitely generated G-invariant right

ideal is a direct summand of RR.

PROOF. As was seen in the proof of Corollary 5.4, Rv is fully right idem-

potent. Therefore by Theorem 5.6, the proof is complete.
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