
HIROSHIMA MATH. J.
11 (1981), 81-96
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Bui HUY Qui
(Received July 31, 1980)

We propose to give non-homogeneous versions of some results on Fourier
transforms and translation invariant operators of homogeneous Besov and Hardy
spaces. Our first aim is to derive an analogue of Herz's version of Bernstein's
theorem ([8]) for the non-homogeneous Besov spaces of Taibleson ([15]). Two
proofs of this theorem will be presented. The first proof is quite elementary; the
main tool is an inequality due to Flett ([5]). Our second proof is based on a
relation linking non-homogeneous and homogeneous spaces, which allows us to
pass from non-homogeneous to homogeneous spaces and then to use the theorem
of Herz. As it turns out, the spaces describing integrability of Fourier trans-
forms of distributions in non-homogeneous Besov spaces arise naturally as inter-
mediate spaces between weighted Lp spaces ([6]), and they also generalize some
algebras of Beurling ([2]).

Our second group of results concerns translation invariant operators. It is
a known fact that Besov spaces can be used to measure smoothness of translation
invariant operators on Lebesgue or Besov spaces ([15], [14]). The results of
Johnson ([10], [11]) give necessary and/or sufficient conditions, in terms of
homogeneous Besov spaces, for operators on Hardy spaces to be bounded and
translation invariant. We generalize these results to the local Hardy spaces
defined in [7], and improve or supplement some results of Taibleson and Stein-
Zygmund ([15], [14]).

ACKNOWLEDGMENT. The author is grateful to Professor Hans Triebel for
useful suggestions.

NOTATION. Our notation is standard. We use Rn to denote the n-dimen-
sional euclidean space and R^+ί to denote the cartesian product #"x]0, oo[.

An element of R^+1 is denoted by (x, f)> where xεR" and 0<ί<oo. The
Fourier transform is defined by

=/(*) = (*-*-"

where x-y = xίy1-i hxπ^n, and the integral is extended over all of Rn unless
otherwise indicated. If u is an infinitely differentiate function on R++1

9 then
D*+1u stands for (d/dt)ku. For measurable functions u on #?.+1, we write
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Mp(w;ί)= ||fi( , O I I P , 0 < p < α o .

The Gauss- Weierstrass kernel on Rl+1 is denoted by W, i.e.,

W(x, 0 = Wt(x) = (4πO-M/2exp(-|x|2/40.

If /e<^', l<p<oo and w( , t)=Wt*f, then Mp(u; ί) is non-increasing in ί; we
call M the Gauss- Weierstrass integral of/.

We adopt the current notation BΛ

PΛ and B^Λ to denote the non-homogeneous
and homogeneous Besov spaces considered by Taibleson ([15]) and Herz ([8]),
respectively. We shall mainly use the characterizations via traces of temperatures
on Rl.+ i given by Flett ([4]) and Johnson ([9]). Let — oo<α<oo, l<p, q<co
and k be a non-negative integer greater than α/2. Then

< oo

and

0 \ l / p
|^(x)|pdv(x)J means v-esssupjr|#| if

p = oo and v is a measure on X.
All immaterial constants are denoted by C, c,... hereafter; they are not

necessarily the same on any two consecutive occurrences.

§ 1. The spaces K*p> q and K*tq

In the paper [8], Herz introduced a space K*tq which is very useful in the
study of Fourier transforms of distributions in B%q. (We use a dot in the no-
tation for Herz's spaces in accordance with the current usage of notation to
indicate that they are "homogeneous" spaces.) We shall adopt a characterization
of K"ptq given by Johnson [10] as its definition (cf. also [5]). Let -oo<α<oo,

, q< oo and 0<y<(5<oo. A measurable function /is in the space Kp>q if

It was proved in [10] that if {λj}™^^ is a sequence of positive numbers such that
l<p<λj+1/λj<σ<co for; = 0, ±1, ±2,..., then
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where F(/ι)«G(/z), for h in some class K, means that there exist positive constants

C and c such that

cG(h)<F(h)<CG(h).

Various other families of equivalent norms for K* q were given in [8], [5] and

[10].

Now we turn to the non-homogeneous version of K^q. Let α, p, q, y and δ

be as above. We define K*)(J as the space of those measurable functions / with

ΰ
00/ C \«/P V/ίl

(t*p\ \f(χ)\*>dx) rldt] <oo.
1 \ Jγt£\x\£δt / /

A repeated application of change of variables shows that if 0<y<δ<oo and

0<?7<μ<oo, then k*fqt7tδ(f)&k*tqtηtμ(f). An argument similar to the proof of

Theorem 2 of [10] gives another family of equivalent norms for K%>q.

LEMMA 1. Let {λj}f==l be a sequence of positive numbers such that l<p

<λj+l/λj<σ<aoforj=\, 2,.... Then

\fWdx)1"
λi /

We also need an inequality due to Flett.

LEMMA 2 ([5; Theorem 4]). Let a, μ be positive numbers, and 0<jp<oo.

Then for every measurable function H: ]0, oo[-»[0, oo[ we have

ox -"««
The same result holds if each inner integral in the above is replaced by the

essential supremum of its integrand over the same range.

LEMMA 3. Let β>a, α>0, l<p, <?<oo, / = {|x|<x/2}, J = {|x|>V2) and

It = {^2<\x\<t}for t>^/2. Then

\x\p
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PROOF (cf. [5; p. 544]). The proof is carried out only in the case p< oo and
q < oo since the other cases are similar, in fact simpler. Let γ = 1 and δ = ̂ 2 in

the definition of k% tf(/). For simplicity put G(r)= \ \f(rσ)\pdσ. Then
JM=I

/Γ V/P /Γ0 0/ CtJ2 \9/P V/4
£?,,(/) =(\ι\f(x)\'dx) + ()1('αp)t G(r)r--Mr) r'dί) .

Denoting the second term of the right hand side of the above by A, we see that

A

Letting

ί G^r"***-1 if r > J2
H(r)=\

[ 0 if r < 72

in Lemma 2 and P = {|x| <2}, we have

l/p0 p

G
\ l / α /Too/ TOO \

|/(x)|*dxj +(\ Γ/'W-«)/2\ H(r)e-ar1' dr\

which implies the conclusion of the lemma.

We shall list elementary properties of the spaces K*Λ. They either are easily
proved or can be derived from the corresponding properties of the spaces K*>q

in [8] (cf. also [5]). Let ί^p, q, r<oo and -oo<α, β«x>.
(a) K*Λ is a Banach space.

(b) K°,=IA
(c) Ka

fΛ<=LP if α>0.
(d) The dual space of K^Λ is K~.">q if p and ^ are finite (l/p+l/p' = l/q

+ W=i)
(e) K'p^K-,r if ί£r.
(f) KZfl'sK'-;* if p^r.
(g) K?,βc:X?)4 if α>0.

(h) J%>4 <=££,, if α<0.

(i) ^s^if
(j) ^Λ£X»Λ if

(k) /e X-., if and only if (1 + |x|//e K -f.
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§ 2. Bernstein's theorem

LEMMA 4. Let α<0, l<p<2, l<g<oo and f be a distribution in EΛ

pq.
Assume that u is the Gauss-Weierstrass integral of f and 0<δ<co. Then
f(ξ) = ύ(ξ, ^)exp(4π2|ξ|2(5) and it is a function of temperate growth. Actually,
for any β<oc we have

PROOF. Since Mf(u; t) is non-increasing in ί, it follows from the charac-
terization for B*Λ given before Section 1 that for t< 1/2

(1) Mp(u ί)<CB

(2) Mp(u 0 < CB°fΛ(f} log (1/ί) (α = 0) .

Put g(ξ)=ύ(ξ, δ)exp(4π2\ξ\2δ). Since u( , t + δ)=Wt*u( , <5)= Ws*u( , t), ί>0,
we see that

= β(ξ, 0, < > 0.

Therefore, it follows from Hausdorff- Young's theorem that

l/pG
On the other hand, for every ί<l/2, HausdorfF- Young's theorem, (1) and (2)
imply that

CMp(«; ί)

CB«pΛ(f}t*l* (α < 0)

where Ij = {2J<\ξ\2<2J+l} and j = l, 2 ..... Let α<0. Taking t=2~J in the
above, we have

Now

ί _
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Similarly, we obtain (4) for the case α = 0. These estimates, combined with (3),
complete the proof of the lemma if we can show that f=g. In fact, the last
assertion follows easily by noting that for any

ιι(x, f)ψ(x)dx = ύ(ξ,

as

by Lebesgue's dominated convergence theorem.

Now we are ready to prove our main result of this section.

THEOREM 1. // 1<^<2, !<:#<oo and — oo<α<oo, then the Fourier
transform is a continuous map of B*q into K*>tq and of K*tq into B*>tq.

PROOF. Let / be a distribution in B*Λ and k be a non-negative integer
greater than α/2. Set u=Wt*f and v = Dk

n + ίu. Noting that ϋ(ξ, t) = (-4n2\ξ\2)k

exp (-4π2\ξ\2i)f(ξ)9 we derive from Hausdorff- Young's theorem that

(»; 0
(5)

for any j = l, 2,..., where /j is as in the proof of Lemma 4. Letting
2,..., in (5) and summing up, we obtain

This, combined with Lemma 4 and Lemma 1, proves the first part of the theorem.
Conversely, assume that g e K^q and fc is a non-negative integer greater

than α/2. Let w = Wt*g and s=£>* + Ίw. Since ^[(-4π2|ί|2)*exp(-4π2|ξ|2ί)^]
= s, Hausdorff- Young's theorem gives

Mp.(s; ί) <

where / = {|ξ| < ̂ 2} and J = {\ξ\ > J2}. Thus, it follows from Lemma 3 that
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Similarly, ^[exρ(-4π2|£|2%] = w( , t) and

M^w; 0 < C/cJ», ί > l / 2

by Lemma 3. The proof of the theorem is hence complete.

COROLLARY 1. Let —oo<α<oo, l<p<2 and l<q<co.
(i) The Fourier transform ίs an isomorphism between B%q and K%>q.

(ii) The Fourier transform is a continuous map of Lp into B°,fp and of

B°p>p, into Lp'.
(iii) The Fourier transform is a continuous map of /j«+^/p-«/2 ιnto K*tq

and ofK«p,9(l into Bfflp'~n/2.

PROOF. Part (iii) follows from Theorem 1 and (f) in Section 1.

REMARK 1. In the above corollary, part (ii) and part (iii) in some particular

cases were obtained earlier by Taibleson [15; III, Theorem 1]. We note that

(ii) gives our Theorem 1 for — oo <α< oo and q = p' by using (h) in Section 1 and

the fact that Bessel potentials generate Besov spaces. A similar remark can be

made for (iii).

REMARK 2. (i) Since B^q=Lp nJ3^ and Bp*q^Bp?q for α>0, the result

of Herz [8] implies that the Fourier transform is a continuous map of Bptq into

K$,ίq and of K~fq into Bp^q if \<p<2 and α>0. We refer to [10] for further

applications of Herz's results as well as their relations to results of Peetre and

others.

(ii) In the paper [12], Mizuhara stated that the Fourier transform is a

continuous map of B*PΛ into K**^ and of K~^q into B~^q for l<p<2 and — oo

<α<oo. However, as also noted by the author (see the Autorreferat in [Zbl.

Math. 381(1979), #42012]), his proof is only valid for α>0; in fact, it is not

difficult to give counterexamples in case α<0. In view of (i), the above men-

tioned results of Mizuhara are corollaries of those of Herz. The author recently

learned that substantially the same results as those in Theorem 1 were also ob-

tained by Mizuhara by a somewhat different method ([18]).

REMARK 3. If we extend the definitions of B*^ and K*)q to 0<g<l, then

Theorem 1 is still valid.

§ 3. Other proofs and some applications of Theorem 1

Our second proof of Theorem 1 is derived by using a special case of the next

proposition, which is very useful in passing from non-homogeneous to homo-

geneous spaces.



88 Bui HUY Qui

PROPOSITION 1. Let -oo<α<oo and l<p,q<ao. Let Φe^ be such

that \Φ(x)dx—l and \xκΦ(x)dx = Q for all multi-indexes K with Qι£\κ\<N,

where N is the greatest non-negative integer not exceeding — α. Then

B*P,q(f - Φ*f) < CB JJ) for all feB*p<q.

PROOF. Let u = W,*/and w = W,*(f— Φ*f). First, observe that for any
non-negative integer r we have

Mp(D^lW; f) < (1 + IIΦUJM^^u; t).

Hence, it follows that

sup, s l / 2Mp(w;f) <££?,,(/),

df)"4 < CB Jf),

where k is a non-negative integer greater than α/2. It is easily seen that

(7) Mp(D£ + 1w; i) < CB"p,q(f)\\Dk

n + l(W( , t/2) - W( , t/2^Φ)\\, for all t>L

Now let xeR" and s>l/2 be fixed, and \l/(y) = (4π}-n'2 exp(-|j|2/4). Then it
follows from the assumptions on Φ that

where z is a point on the segment joining x and x — y. Taking 0<y<l. such
that ΛΓ+ 1 >y — α and noting that ψ e ̂ , we obtain

if

Consequently,

\\Dk

n + ί(W( 9 s) - ^(,,-5)^)11!.^ C^

which, together with (6) and (7), implies the conclusion of the proposition.
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REMARK 4. (i) The author partially owes the idea of the proof to [7].
(ii) Since B^q is contained in B*q if α>0, the proposition is of interest only

in the case α<0.

(iii) The integer N in the proposition is in some sense best possible. For

if \xγΦ(x)dx^O for some |y |<Λf^O, then it is not difficult to find a function

fe&* (and hence E B^q) such that /— Φ*/ί B\ Λ (α<0, q<co). Our proposition
may be also considered as a generalization of a known result of Besov spaces
(cf. [1 Theorem 6.3.2]).

SECOND PROOF OF THEOREM 1. Let Φ e &> be such that Φ = 1 on {\ξ\ < 1/2},

Φ=0 on {|ξ|>l}. Let/e£« f β. Proposition 1 then implies that f-Φ*feB%tg.
Therefore, it follows from a result of Herz that # = (1 — Φ)/e K%>tq (cf. [8; Propo-
sition 3.1]). This fact and Lemma 4 give the first part of the theorem.

Conversely, let heK*tq. Let φ be a bounded function such that φ = 0 on

{|x|<l/2} and φ = l on {|x|>l}. Then φhe£*tq. Therefore, Proposition 3.1'
of [8] implies that (φh)* e B^tq. Let k be a non-negative integer greater than

α/2. Set u=Wt*ίι ana v=Wt*(φhΓ. Since

we obtain

Consequently,

v l / P

|Λ(x)|'Λc -

Next, let ί>l/2 and /y = {2^<|x|2<2^+1}, j = l, 2,.... Observing that M( , ί)

= J5"[exp( — 4π2|x|2ί)Ί]> we derive that

l/p / Γ \l/p\ l / p / Γ

\h(x)\'dx) +(Σ?=i
} / \ J ϊ j

The proof of the converse part is thus complete.

Let ω be a measurable function such that ω(x)>0 for almost every x in Rn.
Define

For quasi-Banach spaces X0 and Aί9 let (^0, ^O^^ and [^40, ^IJ^, 0<Θ<1 and
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0<g<oo, denote the intermediate spaces between A0 and Aί by the real method

and the complex method, respectively.

LEMMA 5 ([6; Theorem (3.7)]). Let l<p, q<vo and 0<0<1. Then each

of the following quantities gives an equivalent norm for (ί/,

( i ) (Σy—o (rJΘ"\rJ.t<ω τ ̂  \f(x)\'<*x

O
00/ Γ \«/P

(/u-*)ιΛ [|/W|ω(x)]pdx) r1*
0 V Jrco(x)^;i

(iϋ) (JJ(r"J l/WIPd^

The connection with interpolation theory is given by

PROPOSITION 2. (i) If ω(x) = (l + \x\)β (or (1-f |x|2//2), β^O, 0<0<1 and

( C λ 1 // 7 / Γ
rΛ \f(x)\pdx) « sup^oί α + ί")-^ \f(x)\pdx

)(l + \x\)"£t J \ J | jc |^ί

(ii) 7/l< Jp«χ>, ί/ien J2/P = X^} 1/p) and ^p — Kp

n^^ where <stfp and 8$p

are the algebras defined by Beurling [2; pp. 9-10].

PROOF. The assertion (i) follows from Lemmas 1 and 5.

To prove (ii) let ω(x) = (l + |x|)~". Then, by (i) and Lemma 5(iii), an

equivalent norm for K~^P = (LP

9 L£)1/p>00 is given by

supt>

Thus, we conclude from a result of Beurling [2; p. 10] that K~ltJ0

p = &p. The

fact that K^\~1/p) = jtfp follows by duality.

REMARK 5. In view of (ii) of the above proposition, Corollary 1 (i) for α

= 1/2 and q = l in the 1-dimensional case was obtained earlier by Beurling [2;

Theorem IX].

REMARK 6. Another proof of Theorem 1, communicated to the author by

Professor H. Triebel, can be obtained by using Proposition 2(i) and interpolation

theorems for Besov spaces (cf. [1 Theorem 6.2.4] or [16; Theorem 2.2.10]).

One can equally obtain as much information by using the characterization of

Besov spaces via the spectral decomposition of Peetre (cf. [16]).

A tempered distribution/is in the local Hardy space hp, 0<Jp<oo, if u+(x)

= sup0<ί<1 \Φt*f(x)\eLp, where Φe&> with (φ(x)dx = l and Φt(y) = ΓnΦ(y/t)

(cf. [7]). The space hp is equipped with the quasi-norm ||/||ΛP = \\u+\\p.

LEMMA 6. (i) hP cB^1^ for 0<p<l, and
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(ii) (hp, ft%. = ftr, 0<p, q<oo and l/r = (\-

PROOF. It was proved in [3] that hp is identical with the Triebel-Lizorkin
space F°>2 defined in [16] for 0<p< oo. The assertion (i) then follows from this
and the inclusion relations between Besov and Triebel-Lizorkin spaces (cf. [1.6;
p. 103]), whereas (ii) was already observed in [3].

Our next corollary gives non-homogeneous version of results of Fefferman,
Peetre and Johnson (cf. [13], [11]).

COROLLARY 2. (i) ///eft", 0</7<2, then
(ii) // /e ftp, 0</?<1, then the least decreasing radial majorant of

(iii) ///eft 1 , then the least decreasing radial majorant of (l + \ξ\)~n/2f
is in L2.

PROOF. We begin with the proof of (i) (cf. [13]). If /eft 2 = L2, then

/elA If /eftp, 0<p<l, then |/(<DI<C(l + l£l)'l(1//'~1) since ftPcBjJ}-1/^ by
Lemma 6. It follows that (l + \ξ\)*feL* *(v)9 where dv(ξ) = (l + \ξ\Γ2Hdξ.
(Here Z/'°°(v) stands for the Marcinkiewicz space ( = weak Lp(v)).) Hence, the
result follows by interpolation on account of Lemma 6.

Before proceeding on with the proofs of (ii) and (iii), we make an observation.
Let α>0. Then for any /?>α, it follows from Proposition 2 that

l/q

'esssupi + i,,

(8)

Ooo

Q

Now let /e hp, 0<p< 1. Lemma 6 and Theorem 1 imply that /e Xjf/f1/^.
Noting that / is continuous and by taking β>a = n(l/p—l) with n + a — β>Q in
(8), we obtain

>

which implies (ii).
Finally, let /eft 1 . Since ft1^/??^, we derive that /eKg> j 2 Therefore,

(l + |ξ|)α/eX^2 f°Γ any α>0. The rest follows from (8) in a way similar to
the proof of (ii).

§ 4. Translation invariant operators

Let X and Y be Banach or quasi-Banach spaces continuously embedded in
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&" such that & is contained in X. Adopting the notation of Johnson ([10]),
we let

Cυ(X, 7) = {Te&Ί \\T*ψ\\γ < C\\ψ\\x for all ̂ e^},

M(X, 7) = {f Te Cυ(X, 7)} .

Most of the results in this section are non-homogeneous versions of those of
Johnson ([10], [11]). A common technique used in the proofs of many state-
ments on Cv(X, 7) is to apply to the operators in Cv(X, 7) two sets of test func-

tions in X: {Dk

t + 1W(-, s)}0<s<rι for some appropriate k and {W( , s)}5^1/2.
Another useful tool is the relation between local Hardy spaces and non-homo-
geneous Besov spaces given in Lemma 6. We shall be rather brief and leave
details to the interested reader. We should remark that the idea of using the
Gauss-Weierstrass kernel to study translation invariant operators is Johnson's.
First, we prepare some lemmas.

LEMMA 7. (i) Let l<p, q, r, s<oo, -oo<α, /?<oo, 0<l/w = l/p+ 1/r— 1
< 1, 0< 1/v = 1 /q + J /s < 1, /e B*PΛ and g e Bβ

r>s. Then f*g e B^v

β and

(cf. [15; II, Lemma 1]).
(ii) 7/l<r<2<s<oo and l/s = l / r+l/p- l , then

55.00 £ Cυ(L'9 Ls)

(cf. [15; III, Theorem 2]).

(iii) [/zp, hq~]θ = hr, where 0<Θ<1, 0<p, q<oo and l/r = (l-
(cf. [17; p. 1158], [3]).

LEMMAS. Let — oo<α<oo and l<p,q<oo. If k is a non-negative
integer and s>0, then

c(s+lΓk~n/2p' < B«p,q(Dk

n + lW( , s ) ) < Ct

PROOF. Simple computations.

LEMMA 9. Let k be a non-negative integer and s>0. Then

s-k-n/2P' if P> n/(n

log((5 + l)/s)] if p = n/(n

PROOF. First, we note that \\Dk

ί+lW(-, s)\\hP ^ \\u+\\p, where iφc, *) =

+ i ̂ (x, s + 0 = (s + tγkW(x, s + t)P(\x\2/4(s + ί)), P is a polynomial of degree
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k and H+(x) = sup0<f<1 |w(x, ί)|. It can be proved that there exist two positive
numbers (possibly equal) Q<λί <λ2 < oo such that

)| if |x|2 > λ2(s+l),

u+(x) K s-*-"/2|P(|x|2/4s) exp (- |x|2/4s)| if |x|2 < λ^,

w+(x) < C|x|-2*-" if λ,s< |x|2< A2(s+l).

The conclusion of the lemma follows from these estimates.

Let bmo denote the space of locally integrable functions b with

l l&l l^ = max(sup | Q | < 1 |Q|-i ( \b(x)-bQ\dx, sup|Q,^ \Q\~* \ \b(x)\dx) < oo,
\ J Q J Q /

where the supremum is taken over the family of cubes Q with sides parallel to

coordinate axes, bQ = \Q\~1 \ b(x)dx and \Q\ denotes the Lebesgue measure of

Q. Let Lp'°° denote the Marcinkiewicz space with norm || ||p00.

THEOREM 2. (i) IfQ<δ<n, p = n/δ,feBδ

lt00, geLp^ and he bmo, then

(ii) //l<α, b, d, p, q<oo, -oo<α, β<ao and 0< l/d=l/α + l/b- 1, then

Cv(B*aίp9Beb>q)^Bβ

d:*-2"/"'.

In particular, if a = l and p<q, then

Cv(B«lip9Bt>q) = Bt*.

(iii) // — oo <α, β<co, l<α, p<oo, l<g<oo and p<q, then

Cv(B^B^q) = B^.

(iv) Ifl<p<q<co, — oo<α<oo and l<s<oo, then

CitL'.L^cCitB ^B J.

Consequently, if l<p<2<q<co, then

Cv(U, L«) = Cv(B^2, B9qt2) = Cι<A° 2, Aj§ 2).

PROOF. The proof of the first assertion of (i) can be done by modifying the
argument in the proof of Theorem 2(i) of [14]. For the second assertion, ob-
serve that ^cβj^ci/ϊ1 by Lemma 6. Since & is dense in both E\Λ and ft1, by

considering dual spaces (cf. [4; Theorem 26] and [7; Lemma 4, Corollary 1]),
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we see that bmociB^^. The second assertion of (i) then follows from this
inclusion and Lemma 7(i).

To prove (ii) let TeCv(B$tp9 Bβ

btq) and u = Wt*T. Take a non-negative in-
teger k greater than - α/2, and let /= Dk

n + 1 W ( , s), s > 0. Let r be a non-negative
integer greater than β/2. Then Young's inequality gives

< Cr"/2β'Mft(I)Jiϊιι; s+t/2).

Since Wt*T*f=Dk

n + lu( , 5 + 0 and TeCv(B«a>p9 Bβ

biq), we derive that

CB tp(f) > Bβ

b>q(T*f) > c(£/2 [r-*/2+"/2«'Md(D*ίϊM;

which, together with Lemma 8, implies that

sup0<«£i s'+'-tf- - '̂ '^MΛDΪίϊii; 5) < C.

Similarly, taking/! = W( , 5) and arguing as above, we see that

s)< C.

The remaining part of (ii) is then derived by using Lemma 7 (i).
The assertion (iii) follows from (ii) and duality results of Besov spaces.
Finally, let Te Cv(Lp, Lq\ ψ e ̂ , u = Wt*ψ and w = Wt*T*ψ. Since Mβ(w ί)

< CMp(u 0, it follows that

; 0

ιι; 0

and hence TeCυ(BΛ

p)S, B*q>s) for any α<0. Since Cυ(B*^ B«>s) is invariant with
respect to α, we obtain the inclusion relation in (iv). Now, if l< Jp<2<^<oo,
then Lp^B°p>2 and BQ

q^Lq (cf. [15; I, Theorem 15]). Hence the converse
inclusion Cv(B°p>2, Bl^Cv(Lp, Lq) follows. The identity Cυ(B°t2, B%t2) =
Cv(B°p>2ί B°qi2) is finally deduced from this and the fact that Cv(Lp, Lq) = Cυ(B(

p)2,

B°q>2)(cL [11; Theorem 12]).

THEOREMS, (i) Cυ(hl, hp) = Cυ(h\ Lp) s Bjf00, 1 < p < oo.

(ii) Cv(h\ U} = B»^ 2<p<oo.

(iii) B°ptf c CK/i1, A'), 1 < p < 2 and 1/r = 1/p - 1/2.

(iv) Cυ(h\ hp) c Ct;(Lr, Ls), l < p < 2 , l < r < 2

and 1/s = 1/r + 1/p - 1.

PROOF. The equality Cv(hl, hp) = Cv(h1

9 Lp) for l<p<oo is obvious since
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hp = Lp in this case. For p=l, this equality follows from the characterization of
/ί1 by the n "Riesz transforms" {rί9...9 rn} and the fact that rj9j=l9...9 n, are
bounded on h1 (cf. [7; Theorems 2 and 4]). The remaining part of (i) as well
as (ii) and (iii) is verified by applying to the operator in question two sets of test
functions {Dn+ίW( 9 s)} and {W(-9 s)}, and by using the inclusion relations in
Lemma 6.

To prove (iv), let TeCfi/z 1, hp). Then we derive from (i) and Lemma 7(ii)
that TeCv(L2,Lλ)9 \ / λ = l / p - \ / 2 . Therefore, the desired result follows by
interpolation (Lemma 7 (iii)).

THEOREM 4. If either 0<p<l<q<oo or p = i and 2<g<oo, then

( i ) Cv(hp, &Lq) = {T; f e K«\U'-»} ,

(ii) Cv(hp, J3;tq) = B^l'^p\ 1 < a < oo and - o o < α < o o ,

(iii) Cv(hp, Lq) = Bn

q[Up-^.

PROOF. Assume that TeCv(hp, ^Lq\ 0<p<l<^f<oo. Let k be a non-
negative integer so that p>n/(n + 2k) and f=D* + 1 W ( - , s). Then an argument
similar to the proof of Lemma 4 and the assumption on T show that f is a
function of temperate growth and (T*/Γ(0 = (-4π2|^|2)fcexp(-4π2|ξ|2s)f (ξ).
Since Te Cv(hp, &Lq\ we obtain

< C

by Lemma 9. On the other hand, by taking fv = W( - , 1), we see that

Hence feK^i7*^ by Lemma 3.
Conversely, let TeKn

q

(

tU
p~l} and όr6/ίp. I fO<p<l<^f<oo, then Lemma 6

implies that ^eK^{~l/p\ Therefore f§eLq by an easy computation. For
p = l and 2<q<co, by using the inclusion hlc2B^2>

 w^ obtain the same con-
clusion.

The proofs of (ii) and (iii) can be carried out in the same spirit by exploiting
the inclusion relations between local Hardy spaces and Besov spaces given in
Lemma 6 and by using Lemma 9. These arguments are familiar by now.

REMARK 7. Theorems 2, 3 and 4, combined with Theorem 1, give useful
criteria for multipliers in M(X, 7), where X and Ύ are either local Hardy or
Besov spaces considered in the theorems.
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