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§ 1. Introduction

We introduce the four dimensional linear space R4 with the bilinear form

[x, jO = x1y1 + x2y2

defined on it. Let H3 (resp. Hj} be the set of all lines passing through the origin
of R4 and lying inside (resp. outside) the cone whose equation is [x, x] = xf + x^

+ x§ — x| = 0, that is, all lines whose points satisfy the inequality [x, x] <0 (resp.
[x, x]>0). Then naturally they may be interpreted as open submanifolds of the

three dimensional projective space P3(Λ), and moreover they are homogeneous

spaces :

H3 = S0(3, 1)/S(0(3) x O(l)) and H] = 50(3, 1)/S(0(1) x O(2, 1)).

H3 and H] are called the Lobachevskian space and the imaginary Lobachevskian

space respectively. As is well known, in each SO(3, l)-invariant riemannian
structure on H3 (such a structure exists) the space H3 is a riemannian symmetric

space. However, the imaginary Lobachevskian space H] has not an SO(3, 1)-

invariant riemannian structure. Let us now go on to discuss "affine symmetric
structure" on the space H}.

For this purpose we consider the involutive automorphism σ of SO(3, 1)
defined by σ: g->J(tg)~1J9 where J = diag. (—1, 1, 1, —1). Then a simple cal-

culation shows that the isotropy subgroup 5(0(1) x O(2, 1)) is exactly the set of

all fixed points of σ.
On the other hand a manifold M with an affine connection is called an affine

symmetric space if each p e M is an isolated fixed point of an involutive affine

transformation sp of M, which is called the symmetry at p. It is well known that

the group of affine transformations A(M) of M is a Lie group (see, [12]). Let
G = A(M) and let H be the isotropy subgroup at p e M. Then M can be identified

with G/H and sp induces an involutive automorphism σ: g-+sp°g°sp of G such
that (Hσ)0c:Hc:Hσ, where Hσ denotes the subgroup of G consisting of fixed

points of σ and (Hσ)0 is the identity component of Hσ.

Conversely, let G be a Lie group with an involutive automorphism σ and let
H be a closed subgroup such that (H^Q^H^H^ Then the coset space G/H

carries a canonical affine connection. Furthermore the manifold G/H is an affine
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symmetric space with symmetry derived from σ in an obvious manner (see, [20]).
Thus the imaginary Lobachevskian space can be regarded as an afrine sym-

metric space.

In harmonic analysis on homogeneous spaces, riemannian symmetric spaces
have been extensively studied. But when "riemannian" is replaced by "affine",
systematic studies have been done only for some special cases. For the imaginary
Lobachevskian space the work of I. M. Gelfand, M. I. Graef and N. Ya. Vilenkin
[5] makes the Plancherel theorem quite explicit. It is very interesting for us to

prove the analogue of the Plancherel theorem for a fairly general class of afrine
symmetric spaces.

From now on, we shall restrict ourselves to an afrine symmetric space G/H
such that (1) G is a connected non compact semisimple Lie group with finite
center, and (2) H = Hσ. We note that such an affine symmetric space G/Hσ has
a G-invariant measure.

Now for a semisimple Lie group G, which may be identified with the affine
symmetric space G x G/{(g, g): g e G}, the Plancherel formula has been proved by
Harish-Chandra. The first and basic step is the identification of the discrete part
of L2(G). Similarly, when we approach to the Plancherel theorem for an affine
symmetric space G/Hσ, we should start with the discrete part of L2(G///σ).

By the discrete series for G/Hσ, we shall mean the set of all equivalence
classes of the representations of G on minimal closed invariant subspaces of
L2(G/Hσ). In this paper we shall prove (Theorem 3 in § 7) that if the four as-
sumptions AI~AIV (see, §2) are satisfied, then some representations of the
holomorphic discrete series of G occur in the discrete series for G/Hσ.

The paper is arranged as follows. In Section 2 we introduce the four assump-
tions AI~AIV under which we shall discuss the discrete series. Further, for
such a space G/Hσ, we fix a Cartan subalgebra t of the Lie algebra g of G and
we define a set L of integral forms on t. At the end of Section 2, to each element
A G L we associate in a natural way an irreducible unitary representation J^Λ,
which is an element of holomorphic discrete series of G. In Section 3 we define a
distinguished function fA (A e L) on H/Gσ. In section 4 we consider an integra-
tion formula on G/Hσ. In Section 5 we obtain the next result: if A e L is suffi-
ciently regular, then fΛ is in L2(G/#σ). In Section 6 we assume that fΛ (A e L) is
in L2(G/Hσ). Let HΛ be the closed invariant subspace of L2(G/Hσ) generated by
fA. Then we assert that HΛ is irreducible. In Section 7 we obtain the final result:
if A e L is sufficiently regular, then jj?Λ is a representation of the discrete series
for G/Hσ. We shall obtain this by showing that jfA^HA.

Throughout the paper let Z, R and C be the sets of integers, real numbers

and complex numbers respectively. Set ι = (-l)1/2. For any z in C, the com-
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plex conjugate will be referred to as z or {z}~. For a real vector space, we use
the superscript c in referring to its complexification. We denote the dual space
of a vector space Vby V*.

It is a pleasant duty to express my gratitude to Professor K. Okamoto for
his guidance and encouragement.

§ 2. Preliminary arguments

Let G be a connected noncompact semisimple Lie group with finite center.
We assume, for convenience, that G has a simply connected complex form Gc.
Let 9 be the Lie algebra of G. Let σ be a fixed involutive automorphism of G
(σ^I). We extend σ to an automorphism of Gc and the differential of it will
then be denoted by the same letter σ.

PutHσ = {gεG: σg = g}, ί) = {Xeg: σX = X}, q = {Xeg: σX=-X}. Then

ί) is the Lie algebra of the closed subgroup Hσ and g = ί) + q (direct sum). Let θ
be a fixed Cartan involution of g commuting with σ (for the existence, see [14, I,
p. 153]) and let g = l + p be the corresponding Cartan decomposition. Then

0(1)) = ί), so ί) is reductive. Furthermore since Hσ has only a finite number of
connected components ([14, I, p. 171]), the space G/Hσ has an invariant measure
dx. We denote by L2(G/Hσ) the Hubert space of square integrable functions
on G/Hσ with respect to dx. Let π be the left regular representation of G on
L*(G/Hσ).

DEFINITION 1. By the discrete series for G/Hσ, we shall mean the set of all
equivalence classes of the representations of G on minimal closed invariant
subspaces of (π, L2(G/Hσ)).

DEFINITION 2. A Cartan subalgebra of G/Hσ is an abelian subspace αq of
q satisfying the following conditions:

(1) αq is maximal subject to the condition that [X, Y] = 0 for X, Y in αq,

and
(2) for each H e αq, the endomorphism ad H of gc is semisimple.

In broad outline the main results concerning the Cartan subalgebra may be
listed as follows (see, [22]):

(1) There exists at least one Cartan subalgebra of G/Hσ.
(2) Each Cartan subalgebra of G/Hσ is //σ-conjugate to 0-stable one.
(3) There are only a finite number of /fσ-conjugacy classes of Cartan

subalgebras.
(4) Select a maximal set α q ) ί (lgι^r) of Cartan subalgebras no two of

which are /ίσ-conjugate. Then \jt Ad (#σ)αq>ί is dense in q.
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DEFINITION 3. A Cartan subalgebra αq of G/Hσ is said to be compact if for
each H e αq the eigenvalues of ad H are all pure imaginary.

A compact Cartan subalgebra is always /ίσ-conjugate to one which is con-
tained in q n ϊ (see the statement (2) listed above). On the other hand, when we
denote by K the analytic subgroup of G corresponding to !, (K, K Π Hσ) is a
riemannian symmetric pair. Hence all maximal abelian subalgebras of q (Ί f are
K n /^-conjugate ([9, Ch. V, Lemma 6.3]). Therefore all compact Cartan sub-
algebras of G/Hσ are //^-conjugate.

Now we describe the four assumptions AI~AIV for the space G/Hσ.

AI: G/Hσ has a compact Cartan subalgebra.

We fix a compact Cartan subalgebra tq of G/Hσ such that tq c q n !.

All: ZG(tq) ( = the centralizer of tq in G) is compact.

As was mentioned above, any two compact Cartan subalgebras are conjugate
under Ad(//σ). Hence the assumption All is independent of the choice of tq.

Furthermore from All we can conclude that SgO^)^ where 30(tq) is the
centralizer of tq in g. We fix a maximal abelian subalgebra tj, of 3ί,(tq) ( = the
centralizer of tq in I)), and put t = tq + t^. Then t is a Cartan subalgebra of g in
the usual sense, and tcif. Let c be the center of I and let f = [!,!]. Then
f = c + f (direct sum) and cct. Since σ(c) = c and σ(f) = ϊ' it follows that tq

= cq + t'q and t^^-ft;, where c q = c f i q , c ^ = c n ί ) a n d t'q=tq Π F, t ^ = t ^ n f .

AIII: cq^0.

Let Φ be the set of non zero roots of (gc, tc). gα be the root space cor-
responding to αeΦ. Then gα<=ϊc or gαcιpc, and we call α compact or non
compact accordingly. Let Φk and Φn be the sets of compact and non compact
roots, respectively.

AIV: If β is a non compact root then it is not identically zero on cιr

REMARK. // G is simple, AIV holds automatically under the assumptions
AI, All and AIII. This may be proved as follows. If G is simple, then dim c
?gl. Therefore it follows from AIII that dimc = l and c q =c. Now let Q be
the set of all roots in Φ which are not identically zero on c. Then Q is contained

in Φn and, since g has center {0}, Q is not empty. Put pβ = Σ«eQ 9α

 and let (pg)1

be the orthogonal complement of pβ in pc (under the Hermitian form B(X, ΘX),
where B is the Killing form of gc and θ is the conjugate linear mapping of gc such

that θ\ g = 0). Let 1Q be the centralizer of (p )̂1 in !c, and let gQ = ϊβ + P(2 Then
we shall prove that [pβ, (pβ)

c] =0. Let X e pQ, 7e (pg)1 and Z 6 !c. Then since
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B(tX, Y], ΘZ) = B(Y9 [ΘZ9 X]) = 0.

But pf, Y]e f c and so [X, Y]=0. We next prove that gQ is an ideal in gc.
Since pQ is invariant under adϊc, we have that [fc, (pQ)1]c=(pQ)J- and [ϊc, !Q]

cif^. This implies that [fc, QQ]^QQ. Moreover [(pg)1, 9Q] = 0. On the other

hand, gc = ϊc + (pe)1 + pQ. Therefore we have only to show that [pQ, $Q]<^QQ.
But gQ = ΪQ + pQ and [pQ, !c]c=pρ, so it is enough to prove that [pβ, pQ]c:!Q.
Let X, Ye pQ and let Z e (p^1. Then [X, Y] lies in !c and

Y], Z] = [[*, Z], Y] + [X, [Y, Z]] = 0

since [pQ, (pQ)1]=0. This implies that [X, Y]e!Q and therefore gβ is an ideal
in gc as asserted. So it follows from the simplicity of G that ge = cjc. This im-
plies that Q = Φn. Therefore, since c = c q, each non compact root does not vanish

on c q.

EXAMPLE. From among the affine symmetric spaces in the M. Berger's list
[1, p. 157], we choose the spaces which satisfy the our assumptions AI~AIV.
(We restrict ourselves to the case that G is a simple classical group.) They

are as follows: SU(p, q)/SO(p9 q\ SU(n, n)/SL(n, C) + K, SO*(2n)/SO(n, C),

S0(2, g)/SO(l, «-fc)xSO(l, fe), Sp(n, K)/SL(n, /?) + /?, St/(2p, 2^)/Sp(p, q\
SO*(4n)/Sί/*(2n) + jR, Sp(2n, R)/Sp(n, C). (This result was pointed out to me
by H. Doi. See [2].)

From now on, in all our discussions we shall always assume the assumptions

AI-AIV.
We fix a basis for the real vector space it, the first rί members and the second

r2 members of which span ΐc q and itq respectively (r 1=dimc q, r2 = dimt q).
Taking the lexicographic order relative to this basis, we obtain an ordering of Φ
such that if αeΦ, α>0 and α | t q ^0, then -α°σ>0. Set P = {αeΦ: α>0},

Pk = P n Φfc and Pn = P Π Φπ. Put u=!+zp. Then u is a compact real form of
gc. We denote by θ and η the conjugations of gc with respect to it and g re-
spectively. We extend #, θ and η to automorphisms of Gc.

LEMMA 1. For each root OLE Φ we can choose an element J^αegα such that

(1) <x(HJ = 2 where H. = ίX.,X-J,
(2) η(XΛ) = εΛX _α where εα= — 1 or 1 according as α is compact or not,
(3) 0Xα=-X_α, and
(4) z/α is not identically zero on tq then σXx= —XΛθσ

PROOF. For the various roots α e Φ we can choose the elements X'Λ e gα

such that
(a) α(Hβ) = 2 where Hβ= [X;, XLJ, and
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(b) X'Λ - XLa and i(X'Λ + XLΛ) both lie in u ([9, p. 219]).

It follows from (b) that ΘX'Λ = — X-Λ. Since σgα = gαoσ there exist complex num-

bers cα (α 6 Φ) such that σX'a = cΆX'ΛOσ. We claim that \CΛ\ = 1. We denote by B

the Killing form of gc. Then

B(HΛ9 HJ = B(HΛ9 [*;, XLΛ) = 2B(X'Λ9 XLa).

On the other hand σHΛ = σ[X'Λ9 XLΛ]eCίX'Λ.σ, XLΛOσ]=CH'Λ.σ. Moreover

(αoσ) (σίfα) — α(Hα) = 2, therefore σHΛ = HΛOσ. Hence

B(X'Λ, XLΛ) = 2-*B(HΛ9 HΛ) = 2'^B(Hm9 Haoσ) = B(X'aoσ, XLΛθσ).

It is well known that (X9 Y) = -B(X, 0Y) (X, 7egc) is a positive definite inner

product in gc. Put \\X\\ =(X9 X)1/2 (X E gc). Since ΘX'Λ = -XLa (for all α e Φ)

\\σX'Λ\\2 = B(X'a, XLJ = B(X'ΛOσ, XLΛθσ) = \\X'aoσ\\2.

This implies that |cj = 1 .

Now σXlβ=-σ3x;=-fox;=-5(crY;β<r)=cβA^ββσ, hence C_Λ = CΛ. More-

over σΛΓlββσ= -σθX'^σ= -θ(c^Xf

Λ) = cΛX
t_Λ, hence c_αoσ = cα. We know that if

α is positive and not identically zero on tq then —αoσ is positive. Therefore, for

each root α which does not vanish on tq, we can take a number aa such that

Set XΛ = aΛX'Λ or X'Λ according as α | tq ^0 or =0, respectively. If α | tq 7^0, then

σXΛ = αασZ; = ααcαZ;o<7 = - ααX;o<τ = - aΛθσX'Λθσ = - Xαo<r

and [Xβ,X.J = [δβx;,5.βXlJ = [X;,Xlβ] = Hβ, moreover ΘXΛ = aΛΘX'Λ =

-a-ΛX'-Λ=-X-x. Hence the conditions (1), (3) and (4) hold. Since η = θoθ,

(2) is immediate. The proof is now complete.

Choose and fix the elements XΛ (α e Φ) as in Lemma 1 .

LEMMA 2. Any non compact positive root is totally positive.

PROOF. Let β be a non compact positive root. Then β \ cq ^0. Let α lv..,

αk be all the positive compact roots of gc, and suppose that y = j5 + n 1α 1H —

+ nkak(njEZ) is a root. Then since α,- are all identically zero on cq, y — β

vanishes on cq. Hence it follows from our definition of the order on Φ that y is

positive. This shows that β is totally positive (see, p. 759 of [6]).

LEMMA 3.

(1) Let β and y be non compact positive roots. Then \_Xβ, Xγ"]=Q, that

is,
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and P- = ΣvepnCX-r

 Then PC>
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and(2) Put p+ = Σye
[F,p_]c=p_.

(3) Let β be a non compact positive root. Then sβ (s e Wk) is also non
compact positive, where Wk denotes the Weyl group of (!c, tc).

For a proof, see [6, §4].

Let Σ be the set of all non zero roots of gc with respect to t£. Then Σ is
exactly the set of restrictions to tjf of the elements of Φ which do not vanish on
t£. Fix an ordering of Σ which satisfies the condition:

If α e P and α 1 1£ Φ 0, then α 1 1£ > 0 in Σ.

SεtΣ+={λeΣ: λ>0}. For each λeΣ, set gλ = {JTegc: [#, X]=λ(H)X, for all
Bet*-;} and take the element H'λetc such that B(H'λ, ) = λ. Put Hλ =

2{A(Hi)}-Ήί.

LEMMA 4. If λ el, then gΛ is contained either in tc or in pc.

PROOF. For each λ e Σ, put Σ(λ) = {α e Φ: α 11£ = A}. Then g A = Σ αeκ A> 9α

On the other hand a root α e Φ is identically zero on cq or not according as α e Φk

or αeΦ π . Therefore gAc:fc or gA<=pc according as λ | c q = 0 or ^0. This im-
plies our assertion.

Let {β!,..., βt] be the set of all simple roots in P. We may assume that

βjEPn(l^j<^t), βjePk(t<j^l) and that βj\t^0 (l^j^q), βj\t% = Q(q<j
^/), where l^t^q^l. There exists a permutation i^i' of order 2 of the set
{!,..., q} such that

- βfσ = β, + Σlj=q+ι ntfj (ιι« 6Z, nj ^ 0)

(see, [28, p. 23]). It is obvious that the sets {!,..., t} and {f+1,..., ςf} are stable
under the assignment ί-»f. So we may assume that

for 1 ̂  / <; ί l 5

for ίi < ί ^ ίi + ί2,

for tί + ί2 < i ̂  ί,

for ί + 1 g ί g t + 51?

for ί +

for ί +

ί -f ί2

- ί

< i +

where ί = ί1+2ί2, ^-ί = 5l + 2s2. Set μ^^ltf

s2). Let p = r1 + ί2 and r = ί1 + s1 +s2. Then it
follows from the definition of μ, that the set {Ήμι,.;., Hμr} is linearly independent
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and spans t^. It is obvious that every element in Σ+ can be written as an integral
linear combination of {μ1?..., μr} where the integers are all non negative. From
the 0— 1 property of coefficients of the non compact simple roots ([6, p. 761]) we
obtain the following lemma.

LEMMA 5. Suppose λ = nlμl-{ ----- \-nrμr (n^ are all non negative integers) is
a root in Σ+. Then n{-\ ----- \-np = 0 or 1 according as Qλ<^ϊc or gAc=p

c

Now set Γt = { H e t : e x p # = l } and set Γ i ( ] = {Hεtq: exp#e//σ). Let 17
be the analytic subgroup of Gc corresponding to u. Then since Gc is simply
connected, U is simply connected (note that U is a maximal compact subgroup of
Gc). Therefore Theorem 4.6.7 of [27] says that Γt is the lattice generated by

{2πiHβί,..., 2πiHβl}. We define the roots λj (; = !,..., r) in Σ by

_ c μj if 2μj <£ Σ ,

3 * 2μf if 2μj e Σ .

LEMMA 6. Γ t q is the lattice generated by [πiHλί,..., πiHλr}.

PROOF. Let Hv = {ge U: σg = g}. Then Hυ is connected [9, p. 272] and
so U/HU is simply connected. Therefore we conclude from [14, II, p. 77] that
the lattice Γ t ( ] is generated by the vectors πiHλ (λeΣ). Hence it is enough to

prove that Hλ is in Σ;=ι ZHλj for each λ in Σ. If λ and 2λ are both in Σ then,
obviously, Hλ = 2H2λ. Therefore we need only to show that Hλ is in Σy=ι ZHλ.
for each λeΣ*. Here Σ* = {λeΣ: 2λ&Σ}. Let WΣ be the Weyl group of (cf\
t^). Then one can show by standard arguments that

(a) WΣ acts transitively on the Weyl chambers of t£,
(b) WΣ is generated by the sλj (7 = !,..., r), where sλj is the Weyl reflection

with respect to λj9 and
(c) if λ and cλ (c E C) are in Σ* then c—+\.

Fix λ in I*. By (c) there exists an element H0 in ztq so that (1) λ(H0) = Q, (2) if
μ^±λ (μel*) then μ(//0)^0. Let B be a sufficiently small open ball (//0eB)
in /tq such that if μΦ ±λ (μeΣ*) then the real numbers μ(/f) and μ(H0) have the
same sign for each H in B. Let Q be the Weyl chamber containing B n {H e /tq :

λ(H)> 0). Let Q+ = {//e/ t q : μ(H)>0 for all μ in Σ+}. Then by (a) one can
choose an element s in WΣ so that sQ+ = Q. We assert that λ — sλj or —sλj for
some j (l^j^r). For otherwise suppose λ^ ±sλj for all j. Then since sλj(H)

= λj(s~1H)>0 for any /f in B n {He itq : A(j^)>0}, sA/H0)>0 (j= 1,..., r). But
this means that s^f/oeQ"*", and so H0esQ+ = Q. This is a contradiction, and
therefore our assertion is true. Thus Hλ — sHλ. or —sHλ. for some j. This
combined with (b) says that Hλ is in ^ΣZHλj. Our proof is now complete.

We say that A e (tc)* is an integral form on tc if Λ(H) e 2πiZ for all H e Γt.
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Similarly Ae(V*)* is called an integral form on tf if Λ(H)ε2πiZ for all /f eΓ t q.

If we extend an integral form A on t£ to all of tc by rendering it trivial on t£, we
get an integral form on tc. Thus we can regard integral forms on t£ as those on
tc.

Let L be the set of all integral forms A on t£ such that

(1) A(HJ^Q for all α in Pk9 and

(2) (Λ + p)(#y)<0 for all γ in Pn9 where 2p = Σ«epα

Then it follows from Lemma 5 that L is an infinite set.

Put n = ΣαepC*α and n = Σ« epCX_α. We denote by T, Tc, N, N the real
analytic subgroups of Gc corresponding to t, tc, n, n respectively. Then GTCN
is open in Gc (see, [7, p. 3]). For any A in L we can define the character ξΛ on

Tc so that ξA(expH) = eAw (#etc). Let ΓΛ be the set of all holomorphic
functions ψ on GΓCN such that ψ(wtn) = ξΛ(Γi)\l/(w) (we GΓCJV, ί e Tc, n e JV).

For each φ in Γ, let ||^||2 = \ \Ψ(g)\2dg9 where Jα is an invariant measure on G.
JG

Let tff A be the subspace of ΓA of functions of finite norm. Then 3? A is a Hubert

space and we can define the action of G on it by UA(g)\l/(x) = \l/(g^ίx). The
work of Harish-Chandra [8] tells us that if A is in L then (UΛ9 JFΛ) is an ir-
reducible unitary representation of G.

§3. Construction of fΛ

We define Λ, e(t£)* by Aj(Hλk) = 2δjk ( ig j , fe^r). Then Aί9...9Ar are
integral forms on t£. Clearly /l///A) ̂  0 for all λ e Σ+ (1 ̂  7 ̂  r).

Now let A be an element in L. Define a linear form A0 on t£ by the con-

ditions A0(Hλj) = Q(l^j^p) and A0(Hλj) = A(Hλj) (p<j£r). Then >10 is an
integral form on t£, and furthermore yi0(//A)^0 for all λ eΣ +. Put A_=A — A09

then A_(Hλj) = A(Hλj)e2Z (l^j^p) and /ί_(//A.) = 0 (p<j^r). So if we put
mj = 2~1A(Hλj) (l^j^p), then m7 are integers and A_=mlAί-\ ----- t-mpAp. On
the other hand p(#α) > 0 for α e P, hence Λ(#α) < - p(#α) < 0 for α e Pπ and there-
fore nij (l^j^p) are negative.

LEMMA 7. Lei X be a connected simply connected Lie group. Then the
fixed point set of any inυolutiυe automorphism of X is connected.

For a proof, see [13, p. 293].

Now let G° = {g eGc: σoθ(g) = g}. Then Lemma 7 implies that G° is a
connected closed subgroup of Gc. Let g° = {Jfeg c: σ<>θ(X) = X}. Then g° is

the Lie algebra of G° and 9° = (ί) n ϊ) + i(ί) n p) + i(q Π ϊ) + (q Π p). Therefore G°
is a real form of Gc. Moreover the restriction σ° = σ | g° of σ to g° is a Cartan
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involution of g°. Put ί)° = (I) Π f) + /(f) (1 p) and put q° = ι'(q n ϊ) + (q Π p). Then
g° = t)0 + q0 js the Cartan decomposition of g° corresponding to σ° and itq is a

maximal abelian subspace of q°. Moreover t^ is a maximal abelian subalgebra
of 3$o(ιtq). Let H° be the analytic subgroup of Gc corresponding to ί)°.

For each dominant integral form μ on tc (i.e. integral form on tc such that
μ(//α)^0 for all α in P), we consider the irreducible holomorphic representation
τμ of Gc on the finite dimensional vector space Vμ with the highest weight μ.

Since U is compact, we can regard Vμ as a Hubert space in such a way that τμ

becomes unitary on U. (An inner product is assumed to be linear in the first
variable and conjugate linear in the second.) Set VμfHo = {φe Vμ: τμ(h)ψ = ψ for
all h in H°} and let φμ be the unit vector in Vμ belonging to the weight μ.

LEMMA 8. Fix a dominant integral form μ on tc which satisfies the con-
ditions

(1) μ|t£ = 0, and
(2) μ(Hλ)/2 is a non negative integer for each λ in Σ+.

Then Vμ)Ho^=ΰ and dim VμtHo = l. Moreover if ψ is a non zero vector in VμtHo,

PROOF. Theorem 3.3.1.1 of [28, p. 210] says that F^o^O. Now put n°

= (Σλei+ 9-λ) Π 9° then g° = n° +(itq) + i)° is an Iwasawa decomposition of g°
and therefore l/(g°)c = L/(nθ)cl7(/tq)

cl/(ί)0)c, where l/( ) denotes the corre-
sponding universal enveloping algebra. Observe that since τμ is unitary on 17,
the adjoint of the operator τμ(X) is — τμ(Θ(XJ) (X egc). Let ψ be a non zero
vector in VμtfJ0. We define the function F on L/(g°)c by

Since #(n^)cn( = Σ«epC*α) and φμ belongs to the highest weight, F(U(g°)c)

μ). Therefore if (ψ, </>μ) = 0 then F = 0. But τμ is irreducible and so
c)ίA= ^μ, this implies that F^O. Hence (ψ, φμ)^0. Now we consider

the linear mapping: VμίH03\j/-*(ψ, φμ)eC. Then it follows from the above argu-
ment that this mapping is injective and therefore dim Fμ>Ho = 1 . Hence the lemma
follows.

Recall that Λj(Q^j<>p) are all integral forms on t£ and that Λ/
(Og jgp, AeΓ+). Since Γt and Γ t q are generated by {2πiHβ: βeP} and {πiHλ:
λeΣ+} respectively, the forms Aj (O^j^p) satisfy the conditions in Lemma 8.
For simplicity we shall write τj9 VJ9 φj instead of τΛj, VΛj, φΛ. respectively. We
can choose elements φ j in Vj such that (1) τ/(/ϊ)ι/^ = ψj for all h in H°, and

(2) (ψj9 φj)=i (Lemma 8).

LEMMA 9. τ/ft)^ = ψj for all h in Hσ (0 ̂  j ^ p).
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PROOF. Let H% = {g e Gc : σg = g}. Then Hζ is a connected complex group
(Lemma 7). Clearly, the subgroups Hσ and H° are both real forms of //£. On
the other hand (τ,- 1 H%, Vj) is a holomorphic representation of H% and τ///0)^
= ψj. Hence τj(H%)ψj = ιl/j and therefore τj(Hσ)\j/j = ψj.

LEMMA 10. (φj9 τ/x)^,.) + 0 for all x in G (1 ̂  j ^ p).

PROOF. Fix an index y (l^jgp). It is known that the mapping: Kx
(q Π p) x (t) Π p) 3 (fc, Y, Z)->/c - exp Y exp Z e G is a diffeomorphism ([14, I, p.
161]). Therefore it is enough to prove (φj9 τ/fc exp 7)^)^0 for a pair (/c, 7)
in K x (q Π p). Let K' be the analytic subgroup of G corresponding to !'. Then
we can write k = k' - exp //0 where k' e K' and H0 e c. On the other hand Lemma
5 says that the set {//Ap+1,..., Hλr} spans (t^)c and so, from the definition of ΛJ9

we have Λ£H) = Q for all H in V*c (note: t' = t'q + φ. Since τ/XJφ^O for all α
in Pk, it follows from Lemma 1 of [6] that τ/CX'_α)φι/ = 0 for α in Pk. Hence

j = Q for X in fc, and so τj(k')φj = φj. Therefore

(ΦJ9 τ/fe exp 7)̂ 0 = e'^^o) (φ., τ.(exp

So we have only to prove that (φj9 τj(exp Y)ψj) Φ 0. If N? is the analytic sub-
group of G corresponding to n°, then G° = ΛΓ^ exp(ίtq) //° is an Iwasawa de-
composition of G°. Since exp 7 is in G°, we can find elements w° eΛΓ°, //et q

and ή°e//° such that exp 7=n^ exp(z7/)/ι°. Noting that ^(n2)cu and that
(φj, ^)= 1, we get (φy, τ/exp 7)ψJ ) = eίyl-'(H) ̂ 0. Our proof is now complete.

We recall the relation A — Λ0 = Λ-. = Σpj = ι mj^j (mj are all negative integers).
We define the function fΛ on G/Hσ by

/A(X) = (Φo, τ0(x)^0) ΠJ= i (̂  ^W^j)mj (* e G)

Then it is a well defined C°° function (Lemmas 9, 10). Let π be the representa-
tion of G on C^(GIHσ) given by π(g)f(x)=f(g-lx). Here C°°(G/Hσ) denotes
the space of C°° complex valued functions on

LEMMA 11. π(H)fΛ = Λ(H)fΛ (Hεtc)9 π(Xa)fΛ = 0 (αeP).

PROOF. For any H in t, (0y,
xeG). Since Λ = ΛQ + ΣmjΛj, it follows from the above that fΛ(exp( — H)x)
= e/4(H)//1(x), and so π(H)fΛ = Λ(H)fΛ. To prove the second assertion we define
Tc, JV, ξκ, ΓΛ as in Section 2. Let

= i (w e GTCN) .

Then Lemma 10 implies that the function FΛ is a well defined holomorphic
function on GTCN. A computation shows that FΛ(wtn) = ξΛ(i)~lFΛ(w) (we
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GTcN,teTc,neN\ that is, FΛeΓΛ. Moreover fA(x) = {FA(x~l)}~ (xeG).
For each α in P, we can write XΛ= Yx+iZa (7α, Zα e g). Therefore

iFΛ*-1 exp(ίZα))Π, = 0

/Zα))Γ|f=0

= 0 (note that Yα - iZα = ̂ Xα e n) .

§ 4. An integration formula

In this paragraph we give an integration formula given by M. F. Jensen [11,
Theorem 2.6].

Let b be a maximal abelian subspace of q n p. For each β in b*, let g^
= {X e g: [//, X~\=β(H)X for all H in b}. Put

Since σ°Θ | b = /, g^ is σo0-stable and so

g* = g* n {(i) n f) + (q n P)} + g" n {(I) n P) + (q n f)} .

For each β in Λ b , we put

pβ = dim {g^ n (ft n f) + (q fl p))} and qβ = dim {g^ n (ft n p) + (q Π !))} .

Let b/ = {Heb: β(H)^Q for each j5 in zlb so that /fy>0}, and we fix a connected
component b+ of b'. Put

D(exp H) = {Π 6̂ |sinh/ί(fl)lw|cosh/?(ίί)|«*}'/2 (/f eb).

Then the invariant measure dH on b can be normalized in such a way that for
all compactly supported continuous functions /,

f(x)dx = ( ( f(k exp H)D(exp H)dkdH
G/Hσ JKh +

where dk is the normalized Haar measure on K.

§ 5. Computation of || fΛ \\ 2

We shall define the sequences gc = g1=)g2=3 ••• of subalgebras of gc and Pn

= Q1=Dβ2

:D °f subsets of Pπ. The inductive definition is as follows. Put
g1 = gc and Qι=Pn. For ^l if g7 c!c, then gj.+ 1 = gj. and Qj+ί = φ. Otherwise
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let yj be the lowest root in Qj. Then $j+l is the centralizer of CHyj + CσHyj

+ CXy. + CX_y. + CσXyj + CσX-y. in g; and Qj+1 is the set of all yeQj such

that (1) γ^jj and γ^—yfσ, (2) y — y^Φ and y + (y/>σ)£Φ. Using Lemma
3(1), we can prove by induction on j that

9 . = QJ n F + ΣγeQj (cxy + c*-y) (j ^ i) .

ϊt is obvious that dim Qj+1 <dim QJ unless g, c=tc. Let s be the least integer such
that gs+1 c=fc. We define the elements W, X^ and χ-u (j = 1,..., s) as follows:

Hv = Hw X^ = XW χ-yj = χ_yj if y,. | t^=

/P; = #yj - σ/fyj, *^ = Xy j - σX_ y . , ^-^ = J\:_y j - σXy j otherwise.

It is easy to check that W* e t£ .

LEMMA 12.
X~γt) is an abelian subspace 0/q n p.

PROOF. If i<7, then g/ + 1^g7 and therefore [X±yι, Xy.] = [σJί±y., ^yj]=0.
This implies y^ + y^^Φ, yf + y^σ^Φ and that b is abelian. We know that ηXy

= X-y for any y in Φn (Lemma 1). Hence η(X^ + X~^} = X^ + χ-^, and so
χ n + χ-ytep (l^i^s). Moreover σXy=-Xyoσ for any y in Φπ (see, Lemma
1), therefore σ(X^+X"yt)= -(XΎi-\-X~^)9 that is, X^ + X"-^ eqc (l^/^

Hence bcq n p.

LEMMA 13. / / α e Φ ,

PROOF. Let α, j5 be two elements in Φ such that α + /?eΦ. We define the
number Na>β by [̂ ία, Xβ] = NΛfβXΛ+β. Applying θ to this identity, we have
N_ f i t j _ / ? = — Naiβ. Obviously NΛtβ=—Nβ)Λ. Now fix an element α in Φ. If

a | t£ = 0, then a + aoσ = 2a^Φ. This being so, assume that α | t j jVO. If α + αoσ
eΦ, then plainly (α + αoσ) 1 1̂  = 0, hence XΛ+ΛOσel)c. From Lemma 1, θ°σXΛ

= -ΘXΛθσ = X.ΛOσ and θoσX_Λ= -ΘX_Λθσ = XΛOσ. Therefore

[Xβ, 5oσA-_ J = IXΛ9 XΛθσ] = NΛiaoσXΛ+ΛOσ.

Applying θ<>σ to this identity, we have

[θ°σXΛ9 X-J = N^oσθoσχΛ+Λθσ = NΛtΛOσΘXa+ΛOσ = N_α,_α o < τX_α_α o σ .

On the other hand

Hence ΛΓ_ α _α o σ= — N_ α > _ α o σ and so N_α >_α o < 7 = 0. This is a contradiction.
Hence the lemma follows.
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LEMMA 14. Let β, δ be non compact positive roots such that β — δeΦ and
Then (β-δ)-δoσ£ξΦ.

PROOF. Let us suppose (β-δ)-δoσeΦ. Then [X-όoσ9 [Xβ, X-δ~\~\ ^0.

On the other hand [*_,.„, [Xβ9 *.,]] = [[*-» *-,.,], *,] + [[*-,.«,, XβΊ,
X-Λ"]. But δ + δ°σ cannot be a root nor zero (Lemma 13), and so [_X-δ, X-δoσ]
= 0. Furthermore [-Y_ίβσ, ^]=0 (Lemma 3). Thus \_X-δoσ, [Xβ, JT_J] =0.
This is a contradiction.

LEMMA 15. For each i (l^i^s), C(JT^ + χ->Ό + 9/+ι Γl (qc ΓΊ pc) is f/ie
of all elements in gt π (qc Π pc) which commute with X

PROOF. Let Qn = {yeQi\ y Φ y f and y ̂  — yi0^} . We have two cases :

In the first case X^ + χ-^ = XVi + X,7i. If Zeg f n (qc Π pc), we can write

X = cr

yiXyi + cLγiX-γi + ΣγeQi,ί(
cγXγ + c-γX-γ) where c .̂, c±y are complex num-

bers. Since σX= — X and σX± y.= — X?yi, we can write

X = cyi(Xn + Jί_yί) + ΣyeQM cy(Xy - σXy).

(Note that if yeQ j f l then —-yoσ is also in Qf)ι.) So if X commutes with XVi

+ χ-yt=:Xyi + X_yi, then ΣyeQ ί f l cy(Zy-σXy) also commutes with JΓy.

We have to prove that Σ^ cy(^y-σXy)egί+1. Put ρί>2 = {y e <2U !
It is enough to show that β^^βί+i Now using Lemma 3(1), we have

0 = LΣγeQitί

Cy(X

γ ~ σXγ)> Xγt + ̂ -y<] = ΣγeQi>2

 Cy([Xr ^-yj ~ Cσ^r ^yj) •

Since y/ is the lowest root of βf, if y — yt (yeβίj2) ^s a Γ00t then ^ is positive.
Moreover if y°a + yt is a root, then it is negative (for, yeβ f j l =>— 7°σeβί>1=>

— yoσ>yί=><yo(τ + );ί<0). Therefore the above equality implies that Σyeβί,2Cy[^y>
^_yi]=0, and hence y — yf is not a root for any γ in βίj2. This means β^^βi+i

Now consider the second case. Then

Jί = Cyi(Jίyi - σXy) + c_ y ί(X_ y ί - σX_yί)

Put βίj2 = {7eβί>1: cy7^0}. If X commutes with

0 = [X, Z - σJί. + X. - σX:\

_yί] - [_Xr
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Since yjlt^O, we have Hy. + σHy.^Q and so cy. = c_ y.. Hence it is enough to

prove that βu<=ρ/ + 1. Let Q^ = {yeQi>2: y\t^ = yi\t^} and let QiA = {ye Qi>2:

7|t^7.|tc}. If yeρ f i 3 , then [Xr, X_ 7 ί] and \Xr σXyJ are both in ί)c. On
the other hand if γ e QiA, then y — γl9 y°a + ji are not identically zero on tq and so
yocr — y.o<j<0, γ + γt°σ>Q (note that γt is the lowest root of Qi9 therefore y — 7i>0
>γoσ + γt). Combining these facts with the above equation, we find that

Now suppose Qi2^Qi+i- Then the above says that there exist two roots /?, 7
eί?ί,2 sucn tnat ^~ 7i = /y + 7/°creΦ. But this contradicts Lemma 14. Hence
the proof is now complete.

As a straightforward consequence of Lemmas 12 and 15, one can prove

COROLLARY, b is a maximal abelian subspace o/q Π p.

LEMMA 16.

PROOF. If γt 1 1̂  = 0, then the required relations follow from the definitions.
Suppose that yJt^O. Then it follows from Lemmas 3 and 13, that yi + y^a is
not a root nor zero. Therefore y,.(σ/ίyί) = 0 (for, σHγ. = Hyi0σ)9 and so yt(Hyi)
= y.(Hyi-σHγ) = 2. Moreover [̂ -, X1^] = [Xyί-σX_yί, X_ y ί-σX y ί] = Hyί-
σHy. = Hyi. Since // y ίet^, the last two equations are verified by a simple
calculation.

LEMMA 17. Lei v denote the automorphism of gc giί en fey

v = exp (π/4) ad (Σf = ! (Xyί - X-yO)

(X^t + X'Vt) = HVt (l^i^s). Moreover for any t in R we have

exp t(Xyi + X~yi) = exp ((tanh ί)X~yι) exp (log (cosh t)Wl) exp ((tanh ί)XVί) .

This lemma follows from Lemma 16 and [8, Lemma 9].

LEMMA 18. Let α f = {#et: B(//, Hy) = B(H, σHy) = 0 for all i} and let

αp = Σ ίK(Xyι + A'-y i) + ΣiΛ(σ-X'y l + σZ.yι). Pwί α = αf + αr T/ien α is a Car-
tan subalgebra of g αnJ v(αc) = tc. Moreover α f, αp are fooί/i σ-stable. ap Π q

= b.

PROOF. If # e af , y^//) = y^σH) = 0 (1 ̂  i ̂  s) and therefore v(H) = H. On

the other hand, for any index i such that y. |t^0 we have [Xyi — X-yi, σXyi

— σZ_y.]=0 (Lemma 13). So we can write
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er exp (π/4) ad (Xyi - X_y) Πw exp (π/4) ad (σXγi - σX _ y /) .

(Here, / = {/: γt |t£ = 0} and J = {i: yJtf^O}). Hence it follows from [8, Lemma
9] that (1) if 7,1^ = 0 then v(Xyi + X__γ) = Hyi, (2) if y J t f ^ O then v(

= #yί and v(σXy. + σXyί)==σ#y.. This implies that v(α£) = Σ; C// y ί+Σj
Since //yi e it (1 ̂  i^s), from the definition of αf we find that αf is the orthogonal
complement of v(α£) in tc with respect to the positive definite Hermitian form
-B(X, θY) (X, Ye gc). The above arguments imply that

tc = αf + v(α£) = v(αf) + v(α£) = v(αc).

As v is an automorphism and α is ^-stable, it follows that α is a Cartan subalgebra
of g. Clearly αf and αp are σ-stable. Moreover from the definition of b we

conclude αp n q = b.

LEMMA 19. y f (l^ϊ^s) are linearly independent on v(bc).

PROOF. Since v(X^-\-X~^) = H^y {/fyι,..., H?°} is a basis of v(bc). More-

over yi(Hγj) = 2δίj9 and so y f (l Sί'^s) are linearly independent on v(bc).

Let A be the set of non zero roots of (gc, αc). Since v(αc) = tc and v is an
automorphism of gc, it is obvious that

A = {αov: αe Φ} .

On the other hand b is a maximal abelian subspace of q n p (Corollary to Lemma
15), and therefore we can define Δ^ as in Section 4. Then

Finally

J6 = { α o v | b : α e Φ , α| v ( B ) ^0}.

LEMMA 20. Let α be any root in Φ such that α |v ( b ) = 0. Then α is compact.

PROOF. We may assume that α>0. Suppose that α is not compact. Then
Lemma 3(1) says that α -h γt and α — y^σ are not roots for any i (1 ̂  i ̂  s). There-
fore α(#yί)^0 and α(σ#7ί)^0 (l^i^s), and so α(Hyι) = a(σHy) = 0 (note: α(H^)
= 0). This implies that α — yί? a-hy^cr can never be a root nor zero. Hence for

any i we have [XΛ-σXa, X?i + χ-^~] = Q, and so Xa-σXΛebc. This implies
Jfα — σXα = 0. However XΛ — σXa = Xal + X0[0σ^Q (Lemma 1). Hence the lemma
follows.

Let λ and μ be two linear functions on tc. We write λ~μ if λ — μ vanishes
identically on v(bc) = ΣίCflr>'ί. For any index i (l^i^s), set Ci =
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α -- 2-1yί }, Pt = {yePn:y~2~1yi}, and Pi = {γePn: y~yj. For any pair of
indices /, j(l£i<j£s), set Q~{αeP f c: α~2-'(y;-y,.)}, P0 = {yePπ: y~

α~0}.

LEMMA 21. Pfc is ίΛβ disjoint union of C0, Cί9 C f j (l^i< j^s).

PROOF. The disjointness is a consequence of Lemma 19. Let α be a root in

Pk so that α^O. Then Jfα^g s + 1. Let i denote the least index (l^i^s) such

that Xα^g ί + 1. Since X_Λ( = — dXΛ)e$ί9 if y t — α is a root then yi — oL^Qi and

yι — <y.<yί. But this contradicts the definition of γi9 and so y^ — α is not a root.

Similarly y + αoσ is not a root. Therefore α(//y.)^0 and α(σ/fy.)^0, and so

α(//y')^0. If α(//?0 = 0, then it follows from the above inequalities that α(//y.)
= α(σ//y.) = 0. But this implies that X α eg ί + 1 which contradicts the choice of

the index i. So α(f/yί)<0 Now we claim that y/-hα, y/ — α°σ are not roots for
any y ̂  /. If y^ + α is a root, then

(γj + κ)(Hyt - σH7t) = α(Hyι - σHyι) < 0.

On the other hand since y7 is totally positive, y/ + α is non compact positive, and

therefore it follows from Lemma 3(1) that

- σHyt) = (yj + α)(Hyι) - (̂  + α)(σ/frf) ^ 0,

which conflicts with our conclusion above. By a similar method we can show

that 7y — αoσ is not a root. So we have the following two cases: (a) fy + α, y,-

±αoσ is never a root for jVi, (b) either y,- — α or y7 H-αoσ is a root for some yVz'

In the first case oc(H7j) = α(σ/f 7 j ) = 0 for all jV i Moreover we have the

following three possibilities: (1) y f 4 α e Φ and y^ — α°σ^Φ, (2) y^ + α^Φ and

γt — αoσeΦ, (3) yf + α e Φ and y f — a°σEΦ. We consider the case (1). Then

since γt and y/H-α are both in Pπ, α + Iyf is not a root (Lemma 3), and so α(//y.)

= -1. Since α(σHyί) = 0, α(H>Ό= - 1- -2~1yi(//^). Noting that α(H^) = 0
for al l^Vi, we get α^ — 2~1y ί . In the case (2), — y^σ and α — y^σ are both non

compact positive, and therefore α — 2y, oσ is not a root. This implies that α(σ//y.)

= 1. Since α(//7ί) = 0, <*(&*)= -1= -2-^^*). This means that α~ -2-^.
Now we consider the case (3). Then α(/fy.)= — 1 and α(σ/fy.)=l. We claim

that 7i | t f = 0. For otherwise if yJt^O, then <*(&<) = u(Hyt)-<x(σHyi)= -2

= —yί(Wi). This means that α + y^O. But OL + yt is non compact and so we

get a contradiction with Lemma 20. Hence y. |t£ = 0. This shows that α(#Vί)

= α(Hy£)= - 1 - -2-1vi(Hy)9 and therefore α- -2- .̂
Now we come to the second case (b). Let j be the least index such that

either y7 — α or yy + α°σ is a root. Then 7=^1 and in view of our definition of

i, j>i. Moreover a(Hγj) — <x(σHγj)>Q. First we show that y f c±α and yk±a°σ

can never be roots for any index fc ( l ίg fc gs) other than i, j. We have already
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seen this for yfc + α and yfc — αoσ. Suppose yk — α is a root. Then (yk — a)(Hγ.
— σHγj) = —tx(Hγj) + (x(σHγ.)<Q. On the other hand since yk — α is non compact
positive, (γk - α) (#y . - σHy) = (yk - α) (Hy) - (γk - α) (σHy .) ̂  0, which gives a con-
tradiction. Hence yk — α is not a root. Similarly, yfc + αoσ is not a root. There-
for we find that α(#yk) = 0 for any index k (1^/c^s) other than i, j. Now we
distinguish four cases: (1) there is exactly one root in {α + yt , α — y^σ}, and simi-
larly there is only one root in {α — γj9 u + yfσ}, (2) oί + yh oc — y^σ are both roots,
and only one in {α — y,-, α + yy°σ} is a root, (3) there is only one root in {α + y/,
α — y^σ), and α — yj9 α + y^σ are both roots, (4) u + yh α — y foσ, α — y/, a + yfσ are

all roots. In the case (1), we have that α(//^)=-l and α(#^)=l. Since

α(Hy*) = 0 (k^i,j), it is easy to see that α(Hyk) = 2-1(yJ -yi)(#yk) (1^/c^s) and
therefore α^2~1(7J — 7^. In the case (2), we assert that γt 1 1£ = 0. For otherwise
suppose yjt£^0, then u(H^) = oc(Hy)-a(σHy)= -2= -yt(H^\ that is, (α + yf)

(//yί) = 0 On the other hand since γi9 — y^σ, α + yf are all non compact positive
roots, neither (α + yί ) + yί nor (α + y^) — y^σ is a root (Lemma 3). But
is a root. Therefore

(α + γW) = (α + 7ί)(tfyι) « (α + y£)(σ/ί7l) > 0,

which is a contradiction. So y. | t£ = 0. Hence α(//yί) — α(^yi)= ~1 Since

α(H^) = l and α(/ί^) = 0 (k*i,j), we have α(/f^) = 2-1(yJ -7ί)(^Vίc) (1^/c^s).
This means that α^2~1(yj.~ y^. In the case (3), we can show that y7 |t£ = 0.
(If γj 1 1̂  0, then α(//^) = α(Hy .) - α(σH,,) = 2 = y/H^), that is, (α - yy) (fl^) = 0.

However we know that (α — y7 ) — y7 ̂  Φ, (α — y7 ) + y^ oσ ̂  Φ, (α — y,-) 4- y7 e Φ. There-
fore (α~yJ )(H>'0 = (α~yJ )(//yj.)-(α-y7)(σ//Vj.)<0. This is a contradiction.)
Hence α(/ί^) = α(fίyj.)=l. Since <*(&*)=-! and α(//^) = 0 (k^i,j), we get
α^2~1(yj — yf). In the case (4), we can show, as in the cases (2) and (3), that

y . I tf = y,. I tf = 0. Hence α(//^ 0 = α(//yί) = - 1 and α(H^) = oc(Hγ .) = 1 , and there-
fore α^2~1(y/ — yf). The proof is now complete.

LEMMA 22. Pn is the disjoint union of Pl, Ph Ptj (l^i< jgs).

PROOF. The disjointness follows from Lemma 19. Suppose yePπ. We
assume that y^PJ for all 7(1^7^5). Since X y ep c , X y^g s + 1. So we can

choose the least index i such that AΓ y ^g i + 1 . As y^P1 (especially, y^y t ), y>yi
Moreover it follows from Lemma 3 that y + y^ and y — y^σ are not roots. There-
fore, since Zy^gί+1, either y — yt or γ + y^σ is a root. We distinguish two cases:

(1) y — yt is a root, (2) y + y^σ is a root.
Consider the first case. Then α = y — y f is a compact positive root. Since

y^P% α^C0. Hence either α~ — 2~1yJ or ot~2~ί(yh — y^ ) for some j or (j, /c).

If α^-2-1^ then y^yί-2-1yJ and so y(/f^) = 2δy-l. On the other hand
Lemma 3(1) tells us that y(//y.)^0 and y(σ//y.)gO, which implies that
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Therefore i =j, y~2~ 1yί and γ e Pf. If α ~ 2~ ί(yk — yj) then y ~ yi 4- 2~ 1(yk — y; ) and

y(HvJ) = 2δu—l. Since y(//^)^0, we conclude that i =j and so y e Pίfe.
Now consider the second case (2). The definition of the index i implies that

X γ G Q i , and so σXye^t. Hence — y°σεQi. Moreover since y is not in P',
— yocr^y.. Therefore we find that — y°σ>yt. On the other hand —"ft — y°σ is
not identically zero on t£ (for, y^P') This implies that y + yf°σ is positive.
Set α = y + yi°σ. Then α is a positive compact root such that α^C0. Hence
Lemma 21 is applicable. Suppose that α e C y for some j. Then y^—y^σ
— 2~ 1y /~y / — 2~1y/ (for, v(bc)cqc), and therefore we can show, as in the case (1),

that i—j, But this implies that y~2~*yh that is, yeP j . Next we suppose that

ace,* for some 0, fc) (Ig j<k^s). Then y~ -yί°σ + 2-1(y*-y, )~y l +2-1(y*
— y/). This implies that i=j. Hence y~2~1(yjt + yί), that is, yePik.

LEMMA 23. For eαc/i index /, ί/iere ex/sfs α one-one mapping of Ct onto Pt.

PROOF. Lemma 19 and the proof of Lemma 21 imply: (a) Let α be in C{.
Then ί equals the least index such that XΛ^Qi+ί. (b) Put Cί = {αeQ: α + y; is

a root } and put C ' = {αe C f: α — y£°σ is a root}. Then Cί = C} U C?. Moreover
if y . i tή 96 0 then C; n Q = 0. (Clearly, if y f | tή = 0 then CJ = CJ)

On the other hand, the proof of Lemma 22 tells us: (c) If y is in Ph then i is

the least index such that Xγ <ξ gf + 1 . (d) Pt = Pf

t U P '{ where P'i = {γePi: y- yt is a
root} and P"i={yePi\ y + y^σ is a root}.

We assert that if yf | t^O then PJ n PJ = φ. Let y be an element in P\ n P ;.
Lemma 3(1) says that y + y f, y — y^σ are not roots. Moreover y — 2y f~ — (3/2)yf

and y + 2yfo<7~ — (3/2)yf. But these relations combined with Lemma 22 imply

that γ-2γi9 y + 2y^σ are not roots. Hence y(Hγ)=l and y(σ#y.)=-l, and
therefore y(Wi) = 2^2-ly^Wi). This contradicts with yeP f . Thus P't n P?
= 0 as asserted. We note that if γt 1 1̂  =0 then PJ = P". Now it is obvious that

the mapping α->α + y f (resp. α->α — y^σ) is a bijective correspondence between CJ
and P} (resp. C and P?) Hence the lemma follows.

LEMMA 24. There exists a one-one mapping of C^ onto P^ (l^J<y'^s).

PROOF. From the proof of Lemma 21 we get: (a) Let αeC^-. Then i
equals the least index such that XΛ<^$i+1. (b) Set Cf

ij = {oiECij: a + yte Φ}, and

set C"j = {α e GU : α - y^σ e Φ} . Then Cif = C^ U CJ'y . Moreover if yt \ t^ 0 then

C'tjnCJj^φ.
Similarly the proof of Lemma 22 implies : (c) Let y e Ptj. Then i is the

least index such that Xy^Qi+ί. (d) Pij = P'ij\j P'!. where P'iJ = {γePtJ: y-y £ e
Φ} and P"j = {yePij: y + y^σeΦ}. Moreover we can show, as in the proof of
Lemma 23, that if yt \ tή ̂ 0 then P'tj n P^ = (/>. Now it is easy to check that the
mapping a-»a + yt. (resp. a->a — y^σ) is a bijective correspondence between C'^
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and P'ij (resp. C"y and P"7 ). The lemma now follows.

Let rh rij9 pi be the number of roots in Ch Cij9 Pl respectively. Then

Lemmas 23 and 24 say that rf and r^ are also the numbers of roots in Pt and Ptj

respectively. Now we recall the maximal abelian subspace b = Σ?=ι R(XΎi +
X~γt) and we retain the notation of Section 4. Moreover we fix the Haar meas-

ure dk (on K) and dH (on b) such that

f(x)dx = f(kexpH)D(expH)dkdH for all /eL2(G///σ).
JG/Hσ

LEMMA 25. Let H = Σiti(Xyi + X~yί) (^eJR). TΛen

D(exρ/ί) g

Here e=Σί-ι P', Pί =

PROOF. Clearly D(exp H) <. {Π^b (cosh )8(/f )^+«/1}1/2. On the other hand

we have already seen that

Δ* = { α o v | b : α e Φ , α | v ( b ) ^0}.

Moreover for each /? in J6, p/s-f-^/j = dimR^=the number of those roots in Φ

which coincide with α on v(bc), where α is a root in Φ so that β = a°v |b. Noting

that v(H) = Σi ί«Hyι, we have

D(expfί) ^ {Π^b(c

= ni^ge(coshi,)2"rii^<^e (cosh (tt-tj) cosh (ίί + ίj )

= Πi (cosh ti)2n Tϊί<j {(cosh ί, cosh tj)2 - (sinh ίj sinh tj)2}rij

xΠiίίcoshί^ + ίsinhί,)2}'1

^ 2ε Π, (cosh if)
2ri Πi<y (cosh ti - cosh ίj)2''^ Πi(cosh ίf)

2pί

= 2 Πι(coshίf)
2' '+2 '+2 i+2i'1. (sf = Σy<iOί)

A simple calculation shows that

2p(#?0 = Σαepα(//^) = 2s> + 2pf.

Hence the lemma is true.

Recall that in Section 3 we constructed a C°° function /Λ (A e L) on G///σ.

We are now in a position to compute the norm o f f Λ . From the definition (Sec-

tion 3), we have τ0(H)φ0 = Λ0(H)φQ (#etc) and τ0(Xα)00 =0 for all α in Pk.

Moreover we assert that for each α in Pfe, τ0pf!Lα)φ0 = 0 for r sufficiently large.
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For the nonzero vectors among τ0(X'LΛ)φQ (r^O) are linearly independent since
they belong to the distinct weight Λ0 — rα. But the dimension of V0 is finite.
This implies our assertion. Therefore Lemma 2 of [6] tells us that the subspace
V0 of K0 spaned by τ0(X)φ0 (XeU(lc)) is irreducible under Kc. Let τ0 be the
corresponding representation of Kc on F0.

For each element H = Σ/ *«(**' H-*"71) in b, we put //' = £,- log (cosh ί,)#yί.

LEMMA 26. Let A be an element of L. Then there exists a positive constant
CΛ so that

\fΛ(kexpH)\ £ cjT^exp//')!^-'"') ( fceX, tf eb)

where ||τό(exp//')|| is ίΛe operator norm ofτ'0(expH').

PROOF. Recall, /,(/c exp //) = (00, τ0(fc exp H)ψ0) Up

j = ί (φj9 τ/k exp /f )ιA;)'"J -
Combining Lemma 17, Lemma 3(2) and the fact that $(X~yί)eP + (for the nota-
tion, see Lemma 3), we find

k'^φQ, τ0(exp Σί (tanh

Therefore we conclude that if c0 = Max_ 1^ x.^ 1 ||τ0(exp Σi^i^^O^oll tneπ

|(0o, τ0(/cexp//)ιA0)l ^ Collτiίexpί/'. fc-^oll ^ c0 | |τ0(exp//OH .

Now we fix the index j (l^j^p). We have shown in the proof of Lemma 10

that τj(X)φj = Q for any X in Γ = [ϊ, !]. So using Lemma 17, we have

\(ΦJ9 τ/fcexp//)^.)| = |(τχexpH')0, , τ/exp Σι(tanh

, τ/exp Σι(tanh ί£)X"

We recall the subgroups G°, //°, Λ^ί of Gc (see the proof of Lemma 8). It is
easy to see that σoθ(X^t) = X^t(l^i^s). This implies that exp(Σi^y<)eG°
for any xt (1^/^s) in R. Also we have already seen that G° = ]V^exp (itq)//°
is an Iwasawa decomposition of G° (see the proof of Lemma 8). We define the
element H(x) in itq for x = (x ls..., xs) in /?s by

exp (Σi *ι*yO e ̂ - exp H(x)H°.

Then

|(0y, τ/expΣiίtanhί,)^')^)! = \(Φj, τy(exp /f(x))^)|

where x = (tanh ί1?..., tanh ίs). This shows that if cj = Min_ί^x.^i eΛJ ( f f ( Λ ) ) then

Noting that /I- = Σy = i my^y we ^ιave shown that



74 Shuichi MATSUMOTO

where CΛ = c0 Π? =!<??•

LEMMA 27. Let Wk denote the Weyl group of (fc, tc). Set 2pk=ΣαePkα.
Then for all H in it we have

PROOF. Since the representation τ'0 is irreducible τ'Q(exp H) = eΛo(H) I for
any H in cc (by Schur's lemma). Moreover 5 1 cc =/ for all 5 in Wk. Hence we
have only to prove the lemma for H in it' (t' = t (Ί I'). Set (it')0 = {He it': α(#)
^0 for all α in Pk}9 and set (it') + ={//e it': α(//)>0 for all α in Pk}. Then (ΐt')0

is dense in ft', and (ft')0 = W s e^ks(ft')+.
Since θ\ it= — /, for each // in ft τό(exp//) is a self-adjoint operator in V0.

We remark that if T is a positive self-adjoint operator in a finite dimensional
vector space over C, then the operator norm ||T|| of T cannot exceed the largest

eigenvalue in its spectra. Also every weight of τ'Q is of the form Λ0 — Σαepfc

 nαα

where nΛ (α e Pk) are nonnegative integers (see, [6, Lemma 2]). Let μ be a weight
of TQ. Then s-1μ (se Wk) is also a weight (note that s~1μ = μ°s), and so we can
write

Hence we find that if H e s(ίt')+ then

μ(H) = sΛ0(H) - Σ^nJίsoίHH) £ sA0(H) .

Combining this with the above remark we find that

IK(exp H)\\2 ^ G2sA0(B) (5 e Wk9 H e s(it')+) .

On the other hand we know that pk(HΛ)^0 for any α in Pk. This implies that
spk^ρk (i.e. spk(H}^pk(H) for all H in (ft')+) for any s in Wk. Therefore sρk(H)

)^ (s eWk,Hε s(ϊt')+). We therefore see that

(s eWk9He s(it')+) .

But this implies that

||τί)(exp//)||2 g £se^e

2^o+pk)(H)-2pk(H) (//e(ft%).

Since (ft')0 is dense in ft' the result is true for any H in it'.

THEOREM 1. Assume the assumptions AI~AIV. Then there is a real
constant c(^0) so that if (Λ + ρ)(Hy}<c for all y in Pn then fΛ e L2(G/Hσ).

PROOF. Let H = Σitl{XVi+-X~Vi)eb.' Then //' = Σ log (cosh ί,.)̂  is in
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it. Hence combining Lemmas 26 and 27 we find

On the other hand Lemma 5 says that Λ_(//α) = 0 for all α in Pk, and so s/i_ = Λ_
for any s in Wk. Also it follows from Lemma 3(3) that sρn = pn for s in Wk.
Here 2pn = Σ γePn γ . Therefore

= ^{Σse^ ΓL (COSh f^ M+P)}'} Π, (COSh t^P\

Here {s(/l + p)}' = s(Λ + p ) ( H y i ) . This inequality combined with Lemma 25 implies
that

|/A(fcexp tf)|2D(exp #) £ c22*{ΣS6^ Πi(cosh f^+'^ΓLίcosh ί,)2"*2".

Now let c= — Max^Γf-fSi). Then noting Lemma 3(3), we find that if (Λ +

y) < c for all y in Pn then /Λ e L2(G//fσ).

§6. Irreducibility of HΛ

In this paragraph we assume: (1) ΛeL, (2) fλ e L2(G/Hσ). Let H^ be the
smallest closed subspace of L2(G/Hσ) containing fΛ which is invariant under
π(G). (π is the left regular representation of G on L2(G/Hσ)). Let n, n, N, T,
Γc, ξΛ9 ΓΛ be as in Section 2.

LEMMA 28 (Harish-Chandra [7, Lemma 6]). There exists a function φΛ e
ΓΛ such that

( φ(xhwh~l)dh = φ(x)φΛ(w) (x e G, w e GTCN)

/or et er^ φeΓΛ, (dh is the normalized Haar measure on T). This function is
unique and φΛ(l)=l.

Let EΛ be the subspace of HΛ spanned by π(k)fΛ (k e K). We have seen in
the proof of Lemma 10 that τj(X)φj = Q for all X in f c (l^j^p). But this
implies that τj(k)φjECφj for every /c in K (l^Jrgp), and therefore the definition
of /^ tells us that E^ is finite dimensional.

LEMMA 29. EΛ is irreducible under π(k) (keK).

PROOF. Let EΛ = Σΐ=ιEi be a decomposition of EΛ into the irreducible
components. Let fΛ = Σ ift (fi e Ej). We can write /f = Σ j Cy/i(fef/ ) where cί<7

are complex numbers and fe^ are in K. From Lemma 11, for each element h of
T we have
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Σ,fi = h = ξA(h-l)π(h)fΛ = ΣiUΛ-'

and therefore fί = ξΛ(h~l)π(h)fi (l gi ' rgn, he T). Now let FΛ be as in the proof
of Lemma 1 1. Since fΛ(x) = {FΛ(x~ *)}~ (x e G) and FΛ eΓΛ, we have for x in G

X) (heT)

We apply Lemma 28 and find

Thus

MX) = EΣ; ̂ {^(fcyJΠΛίx) (1 ̂  ί^n, x e G) .

But this means that there is an index i0 so that fΛ e C/ίo c £fo, that is, EΛ = Eio.
This implies the lemma.

Let K denote the set of all equivalence classes of finite dimensional irre-
ducible unitary representations of K. For each δ in X, let χδ denote the character

of (5, d(δ) the degree of δ. Put P(δ) = d(δ)( χδ(k)π(k)dk, dk normalized Haar

measure on K. Let H Λ(δ) = P(δ)H Λ. Then HΛ(δ) consists of those vectors in
HΛ9 the linear span of whose K-orbit is finite dimensional and splits into
irreducible X-submodules of type δ. Set HΛ^κ = ̂ δe^HΛ(δ}. Since HΛΓ\
C°°(G///σ) is dense in HΛ, HΛK is a dense subspace of HΛ (cf. [28, Proposition

4.4.3.5]). Set HΛt0 = π(l/(fl

c))/Λ, and set H^.oίδ) = HΛt0 n //^) (^ e K).

LEMMA 30. HΛOc:HΛK. HΛO is dense in HΛ. HAt0(δ) is a dense subspace
of HA(δ) for any 6 in K.

PROOF. If Z E U(gc) and keK9

π(k)π(Z)fΛ = π ( Z k ϊ π ( k ) f Λ ε π ( Z k ) E Λ .

Since EΛ is finite dimensional, this implies the first assertion. G is connected and
fΛ is analytic, so the second assertion is obtained by a standard argument.

For each / in HΛtθ9 the linear span of K-orbit of / is a finite dimensional
subspace of HM. Therefore P(δ)HΛi0dHΛί0n HΛ(δ) = HΛ>0(δ\ Using P(δ)\

HΛ(δ) = I, we get P(δ)HΛt0 = HΛ9θ(δ). Now letfεHA(δ) and suppose that /„->/
where /„ eHΛt0. Since P(δ) is continuous, P(δ)fn-»P(δ)f=f. Thus HΛt0(δ) is
dense in HΛ(δ).

LEMMA 31. Let δΛ denote the irreducible unitary representation of K with
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highest weight A. Then

HA,O(SA) = EA.

PROOF. Obviously HΛt0(δΛ)^EΛ. So we need only to prove that [HΛt0(δΛ);
<5J^1. Define

HA.0(δJh = {feHAt0(δA)ι (1) π(XΛ)f= 0 for all α in Pk9

(2) π(H)f = A(H)f for all H in tc} .

It is enough to prove that dimHΛtQ(δΛ)h^l. Put ^Γ = {ΣαePnαα : n<* are non

negative integers}. For each v in & ', let

l/(n)-v = {w e (7(n): [//, u] = - v(#)u for all H in tc} .

Then l/(n)=Σve^(tt)~v We remark that C/(ή)° = C. Now set KΛ = {ιιe
(7(n): w/yί = 0}. Then for each u in L/(n), we can choose the elements i^e t/(n)

and vte^ (i = l,..., n) such that

(a) w;eί/(n)-v< (Igi^n),

(b) u = Σ i w f modulo X^, and

(c) { W I/Λ> » M/I/Λ} is linearly independent.

Let/ be in HΛt0(δΛ)h. Since C/(gc)=ί/(gc)n+ l/(n)l/(tc), we can write
f=ufΛ where u is in (7(n). For each H in tc, we have

Hf = H(ufA) = H&iUjJ = ΣiίH, u«]Λ + Σi "i

Λ(H)f.

On the other hand, Jf//= Λ(H)f since / is in //^^C^)*- Hence Σ|Vί(H)wί/yl = 0
for all # in tc. This combined with (c) implies that vf = 0 (Irgirgn), and so

feCfA. Thus dimH^o^^^l, as we wished to prove.

THEOREM 2. Assume the assumptions AI~AIV. Lei Λ be an element of

L such that fΛ is in L2(G/Hσ). Let PIΛ be the smallest closed subspace of
L2(G/#σ) containing fΛ which is invariant under π(G). Then HΛ is irreducible
under π.

PROOF. First we assert that HΛ(δΛ) = EΛ. Indeed, HΛt0(δΛ) is a finite

dimensional dense subspace of HΛ(δΛ) (Lemmas 30, 31). Hence HΛ(δ^) = HΛfQ(δΛ)
= EΛ as asserted. Now let H^ be any closed invariant subspace of HΛ and let

H2 be the orthogonal complement of Hl in HΛ. Then HΛ = Hί +H2, and there-
fore either P(δΛ)H1^Q or P(δΛ)H2*Q. If P(δA)Hl^Q9 then P(δΛ)Hί=EA since

HΛ(δΛ) = EA is irreducible under π(K). But this implies that H ^ B f A 9 and hence

/ί1=Hyl. Similar reasoning shows that if P(δΛ)H2¥
ίO then H1=0. Hence the

theorem follows.
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§7. The final result

Let A be an element of L such that fΛ e L2(G///σ). Then from Lemmas 11,
29 and Theorem 2, we have

(a) π(XΛ)fΛ = Q for every positive root α in Φ,

(b) π(H)fA = Λ(H)fA for all H in tc, and
(c) HΛ is irreducible under π(G) and dim n(U(lc))fΛ is finite.

Now we recall the holomorphic discrete series representation (UΛ, J^A) (see the
last of Section 2). Lemma 29 of [8] says that \//A is in jfA. (For the definition
of ψΛ, see Lemma 28.) Moreover the following conditions hold:

(a') UA(XJ\I/Λ=Q for every α in P.
(b') UΛ(H)ψΛ = A(H)ψΛ for all H in tc.
(c') UΛ is irreducible and dim UA(U(ic))ψA is finite.

(For a proof, see [7, Lemmas 8 and 12].) Therefore HA and j^A are infinitesi-
mally equivalent. Consequently HA and jf Λ are unitarily equivalent (see, [6,
Theorem 2] and [28, p. 329]).

For a non positive real number c, let Lc denote the set of all A in L which
satisfy the following condition:

(Λ + ρ)(Hy)<c for all γ in Pn.

We remark that Lc is a infinite set for every c (see, Lemma 5).
On the basis of these observations and Theorem 1, we have

THEOREM 3. Assume the assumptions AI~AIV. Then there exists a real
constant c(^0) so that if A is in Lc, then (UA, jj?A) is a representation of the
discrete series for G/Hσ. Here (UΛ, J^Λ)9 which was defined at the end o/§2, is
an element of the holomorphic discrete series for G.
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