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§1. Introduction

We introduce the four dimensional linear space R* with the bilinear form

[x, ¥] = X1y1 + X202 + X3V3 — X4Va

defined on it. Let H?3 (resp. H3}) be the set of all lines passing through the origin
of R4 and lying inside (resp. outside) the cone whose equation is [x, x] = x? + x2
+x3—x%=0, that is, all lines whose points satisfy the inequality [x, x] <O (resp.
[x, x]>0). Then naturally they may be interpreted as open submanifolds of the
three dimensional projective space P3(R), and moreover they are homogeneous
spaces:

H3 = SO(3, 1)/S(0(3) x O(1)) and H} = SO(3, 1)/S(O(1) x 02, 1)).

H?3 and H} are called the Lobachevskian space and the imaginary Lobachevskian
space respectively. As is well known, in each SO(3, 1)-invariant riemannian
structure on H?3 (such a structure exists) the space H3 is a riemannian symmetric
space. However, the imaginary Lobachevskian space H3 has not an SO(3, 1)-
invariant riemannian structure. Let us now go on to discuss “affine symmetric
structure’” on the space H3.

For this purpose we consider the involutive automorphism ¢ of SO(3, 1)
defined by o: g—J(*g)~1J, where J=diag. (=1, 1,1, —1). Then a simple cal-
culation shows that the isotropy subgroup S(O(1) x O(2, 1)) is exactly the set of
all fixed points of o.

On the other hand a manifold M with an affine connection is called an affine
symmetric space if each pe M is an isolated fixed point of an involutive affine
transformation s, of M, which is called the symmetry at p. It is well known that
the group of affine transformations A(M) of M is a Lie group (see, [12]). Let
G=A(M) and let H be the isotropy subgroup at pe M. Then M can be identified
with G/H and s, induces an involutive automorphism ¢: g—s,°g°s, of G such
that (H,)o<cHc<H,, where H, denotes the subgroup of G consisting of fixed
points of ¢ and (H,), is the identity component of H,.

Conversely, let G be a Lie group with an involutive automorphism ¢ and let
H be a closed subgroup such that (H,)o=H<H,. Then the coset space G/H
carries a canonical affine connection. Furthermore the manifold G/H is an affine
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symmetric space with symmetry derived from o in an obvious manner (see, [20]).
Thus the imaginary Lobachevskian space can be regarded as an affine sym-
metric space.

In harmonic analysis on homogeneous spaces, riemannian symmetric spaces
have been extensively studied. But when “riemannian’’ is replaced by “affine’’,
systematic studies have been done only for some special cases. For the imaginary
Lobachevskian space the work of I. M. Gelfand, M. 1. Graef and N. Ya. Vilenkin
[5] makes the Plancherel theorem quite explicit. It is very interesting for us to
prove the analogue of the Plancherel theorem for a fairly general class of affine
symmetric spaces.

From now on, we shall restrict ourselves to an affine symmetric space G/H
such that (1) G is a connected non compact semisimple Lie group with finite
center, and (2) H=H,. We note that such an affine symmetric space G/H, has
a G-invariant measure.

Now for a semisimple Lie group G, which may be identified with the affine
symmetric space G x G/{(g, g): g € G}, the Plancherel formula has been proved by
Harish-Chandra. The first and basic step is the identification of the discrete part
of L%(G). Similarly, when we approach to the Plancherel theorem for an affine
symmetric space G/H,, we should start with the discrete part of L*(G/H,).

By the discrete series for G/H,, we shall mean the set of all equivalence
classes of the representations of G on minimal closed invariant subspaces of
L?*(G/H,). In this paper we shall prove (Theorem 3 in §7) that if the four as-
sumptions AI~AIV (see, §2) are satisfied, then some representations of the
holomorphic discrete series of G occur in the discrete series for G/H,.

The paper is arranged as follows. In Section 2 we introduce the four assump-
tions AI~AIV under which we shall discuss the discrete series. Further, for
such a space G/H,, we fix a Cartan subalgebra t of the Lie algebra g of G and
we define a set L of integral forms on t. At the end of Section 2, to each element
AeL we associate in a natural way an irreducible unitary representation 5 ,,
which is an element of holomorphic discrete series of G. In Section 3 we define a
distinguished function f, (A€ L) on H/G,. In section 4 we consider an integra-
tion formula on G/H,. In Section 5 we obtain the next result: if A4 €L is suffi-
ciently regular, then f, is in L2(G/H,). In Section 6 we assume that f, (A€ L) is
in L%(G/H,). Let H, be the closed invariant subspace of L?(G/H,) generated by
f4- Then we assert that H , is irreducible. In Section 7 we obtain the final result:
if AeL is sufficiently regular, then s, is a representation of the discrete series
for G/H,. We shall obtain this by showing that # ,~H ,.

Throughout the paper let Z, R and C be the sets of integers, real numbers
and complex numbers respectively. Set i=(—1)/2, For any z in C, the com-
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plex conjugate will be referred to as Z or {z}~. For a real vector space, we use
the superscript € in referring to its complexification. We denote the dual space
of a vector space V by V*.

It is a pleasant duty to express my gratitude to Professor K. Okamoto for
his guidance and encouragement.

§2. Preliminary arguments

Let G be a connected noncompact semisimple Lie group with finite center.
We assume, for convenience, that G has a simply connected complex form GC€.
Let g be the Lie algebra of G. Let o be a fixed involutive automorphism of G
(6#1). We extend o to an automorphism of G€ and the differential of it will
then be denoted by the same letter o.

Put H,={geG:09=g}, h)={X€eg: 6 X=X}, q={Xeg: 6X=—X}. Then
b is the Lie algebra of the closed subgroup H, and g=}+q (direct sum). Let 6
be a fixed Cartan involution of g commuting with ¢ (for the existence, see [14, I,
p. 153]) and let g=f+p be the corresponding Cartan decomposition. Then
0(H)="h, so b is reductive. Furthermore since H, has only a finite number of
connected components ([14, I, p. 171]), the space G/H, has an invariant measure
dx. We denote by L*(G/H,) the Hilbert space of square integrable functions
on G/H, with respect to dx. Let n be the left regular representation of G on
L*(G/H,).

DErINITION 1. By the discrete series for G/H,, we shall mean the set of all

equivalence classes of the representations of G on minimal closed invariant
subspaces of (z, L*(G/H,)).

DEFINITION 2. A Cartan subalgebra of G/H, is an abelian subspace a, of
q satisfying the following conditions:

(1) a, is maximal subject to the condition that [X, Y]=0 for X, Y in a,
and

(2) for each H ea,, the endomorphism ad H of g€ is semisimple.

In broad outline the main results concerning the Cartan subalgebra may be
listed as follows (see, [22]):

(1) There exists at least one Cartan subalgebra of G/H,,.

(2) Each Cartan subalgebra of G/H, is H,-conjugate to f-stable one.

(3) There are only a finite number of H,-conjugacy classes of Cartan
subalgebras.

(4) Select a maximal set a,; (1<i<r) of Cartan subalgebras no two of
which are H,-conjugate. Then \U; Ad (H,)a,; is dense in q.
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DerFINITION 3. A Cartan subalgebra a, of G/H, is said to be compact if for
each H € a, the eigenvalues of ad H are all pure imaginary.

A compact Cartan subalgebra is always H,-conjugate to one which is con-
tained in q N f (see the statement (2) listed above). On the other hand, when we
denote by K the analytic subgroup of G corresponding to f, (K, KNnH,) is a
riemannian symmetric pair. Hence all maximal abelian subalgebras of qn ¥ are
K n H,~conjugate ([9, Ch. V, Lemma 6.3]). Therefore all compact Cartan sub-
algebras of G/H, are H -conjugate.

Now we describe the four assumptions AI~ AlV for the space G/H,.

Al: G/H, has a compact Cartan subalgebra.
We fix a compact Cartan subalgebra t, of G/H, such that {,cqnt.
AIl:  Z4(t,) (=the centralizer of t, in G) is compact.

As was mentioned above, any two compact Cartan subalgebras are conjugate
under Ad (H,). Hence the assumption AII is independent of the choice of t,.
Furthermore from AIl we can conclude that J3,(t,)=f, where 3,(t,) is the
centralizer of t, in g. We fix a maximal abelian subalgebra t, of 3,(t,) (=the
centralizer of t, in ), and put t=t +1t,. Then tis a Cartan subalgebra of g in
the usual sense, and t<f. Let ¢ be the center of f and let ¥'=[%, f]. Then
f=c+¥t (direct sum) and cc=t. Since o(c)=c¢ and o(f')=t" it follows that t,

=¢,+1t; and ty=c, +t; where ¢c,=cnq, ¢cg,=cnband t;=t, n¥, ty=t, nTt.

AUIL: ¢, #0.

Let & be the set of non zero roots of (g€, t¢). g, be the root space cor-
responding to a«€®. Then g,=f¢ or g,=p€, and we call « compact or non
compact accordingly. Let &, and &, be the sets of compact and non compact
roots, respectively.

AIV: If B is a non compact root then it is not identically zero on ¢,.

REMARK. If G is simple, AIV holds automatically under the assumptions
Al, AIl and AlIl. This may be proved as follows. If G is simple, then dim ¢
<1. Therefore it follows from AIII that dimc¢=1 and ¢,=c. Now let Q be
the set of all roots in @ which are not identically zero on ¢. Then Q is contained
in @, and, since g has center {0}, Q is not empty. Put py=73 .09, and let (pp)*
be the orthogonal complement of p, in p€ (under the Hermitian form B(X, 0x),
where B is the Killing form of g€ and # is the conjugate linear mapping of g€ such
that §|g=0). Let fo be the centralizer of (py)* in €, and let go=F,+po. Then
we shall prove that [pg, (pg)1=0. Let X e py, Ye(pp): and ZeI€. Then since
[0z, X]e v,
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B([X, Y], 0Z) = B(Y, [0Z, X]) = 0.

But [X, Y]efC and so [X, Y]=0. We next prove that g, is an ideal in g°.
Since pg is invariant under ad f€, we have that [fC, (pg)t]=(po)t and [f€, f,]
cf,. This implies that [f€, g,]=g,. Moreover [(pg)t, go]1=0. On the other
hand, g€=fC+(py)t+po. Therefore we have only to show that [pg, go]<=go.
But go=%,+p, and [py, €] <py, so it is enough to prove that [pg, pol<=f,.
Let X, Yep, and let Ze(pg)t. Then [X, Y] lies in € and

(X, Y], Z] = [[X, Z], Y] + [X, [\, Z]] = 0

since [Py, (Pe)t]1=0. This implies that [X, Y]ef, and therefore g, is an ideal
in g€ as asserted. So it follows from the simplicity of G that g,=g¢. This im-
plies that Q =&,. Therefore, since ¢ =¢,, each non compact root does not vanish
on ¢,.

ExaMPLE. From among the affine symmetric spaces in the M. Berger’s list
[1, p. 157], we choose the spaces which satisfy the our assumptions AI~AIV.
(We restrict ourselves to the case that G is a simple classical group.) They
are as follows: SU(p, q)/SO(p, q), SU(n, n)/SL(n, C)+ R, SO*(2n)/SO(n, C),
S0(2, 9)/SO(1, g — k)x SO(1, k), Sp(n, R)/SL(n, R)+ R, SU(2p, 29)/Sp(p, 9),
SO*(4n)/SU*(2n)+ R, Sp(2n, R)/Sp(n, C). (This result was pointed out to me
by H. Doi. See [2].)

From now on, in all our discussions we shall always assume the assumptions
AI~AIV.

We fix a basis for the real vector space it, the first r; members and the second
r, members of which span ic, and it; respectively (r;=dimc,, r,=dimt;).
Taking the lexicographic order relative to this basis, we obtain an ordering of &
such that if ae®, >0 and «|t,#0, then —acc>0. Set P={axe®: a>0},
P,.=Pn®,and P,=Pn®P, Putu=f+ip. Then u is a compact real form of
g¢. We denote by § and 5 the conjugations of g€ with respect to u and g re-
spectively. We extend 60, § and # to automorphisms of GC.

LEMMA 1. For each root a € ® we can choose an element X € g, such that
(1) o(H,)=2 where H,=[X,, X_,],

2) n(X,)=¢,X_, where e,= —1 or 1 according as a is compact or not,
3) 0X,=-X_,, and

(4) if « is not identically zero on t, then 6X,= - X

acg*

Proor. For the various roots €@ we can choose the elements X g,
such that
(a) «(H,)=2 where H,=[X,, X_,], and
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(b) X,—X.,and i(X,+X"_,) both lie in u ([9, p. 219]).
It follows from (b) that X, = —X’,. Since og,=g,., there exist complex num-
bers ¢, (¢ € @) such that 6X,=c,X,.,. We claim that |[c,/]=1. We denote by B
the Killing form of g¢. Then

B(H,, H,) = B(H,, [X;, X_,]) = 2B(X,, X_,).

On the other hand oH,=o0[X,, X_,]€eC[X, s, X ..]=CH,.,., Moreover
(ao0) (6H,)=0o(H,) =2, therefore sH,=H,,,. Hence

B(X,, X_,) = 27'B(H,, H,) = 27'B(H o5y Hyop) = B(Xjogr X se0)-

It is well known that (X, Y)= —B(X, AY) (X, Yeg) is a positive definite inner
product in g€. Put | X | =(X, X)!/?2 (X €g€). Since X, =—X_, (for all a € D)
and |6 X[ =] X] (X €g°),

loXol> = B(Xg, X1,) = B(Xgop X goo) = [| Xoe0ll.

This implies that |c,|=1.

Now ¢X.,=—00X,=—06X,=—0(c,X..,)=¢,X"4,, hence c_,=¢, More-
over 6X',.,= —00X,,,= —0(c;'X.)=c,X",, hence c_,.,=c,. We know that if
a is positive and not identically zero on t, then —aeo is positive. Therefore, for
each root « which does not vanish on t,, we can take a number a, such that

Co = — aga a—a =0y = A_gog-
Set X,=a,X. or X/ according as «| t,#0 or =0, respectively. If «|t,#0, then
JXa = aaaX; = aacaX;oa = - aaX;Oa = - aazwrxz/zcva' = - Xaea

and [X, X_J=[a,X,, a_,X_]=[X., X_,]=H,, moreover #X,=a,0X.,=
—d_,X',=—X_, Hence the conditions (1), (3) and (4) hold. Since n=_0-0,
(2) is immediate. The proof is now complete.

Choose and fix the elements X, (x € @) as in Lemma 1.
LEMMA 2. Any non compact positive root is totally positive.

ProOF. Let B be a non compact positive root. Then B¢, #0. Let ay,...,
o, be all the positive compact roots of g€, and suppose that y=p+n o +---
+moy (njeZ) is a root. Then since «; are all identically zero on ¢,, y—p
vanishes on ¢,. Hence it follows from our definition of the order on @ that y is
positive. This shows that f is totally positive (see, p. 759 of [6]).

Lemma 3.
(1) Let B and y be non compact positive roots. Then [X,, X,]=0, that

is, B+y&.
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(2 Put p.=3%,p,CX, and p_=3,p CX_,. Then [, p,Jcp, and
[t p-J=p-.

(3) Let p be a non compact positive root. Then sf (s€ W,) is also non
compact positive, where W, denotes the Weyl group of (I°, t°).

For a proof, see [6, §4].

Let X be the set of all non zero roots of g€ with respect to t§. Then X is
exactly the set of restrictions to t$ of the elements of ¢ which do not vanish on
t¢. Fix an ordering of X which satisfies the condition:

If aeP and «ft$ #0, then aft >0 in X

Set £, ={LeZ:A>0}. Foreach AeZ, set g;={Xeg®: [H, X]=AH)X, for all
H et} and take the element Hj et$ such that B(H}, -)=A. Put H,=
2{A(H)} ™ H}.

LEMMA 4. If A€ X, then g, is contained either in € or in pC€.

ProOF. For each AeZ, put Z(A)={ae ®: «[t{=A}. Then g;=3 51 Ga-
On the other hand a root o € @ is identically zero on ¢, or not according as € @,
or ae€®P, Therefore g,<f¢ or g,=p€ according as A|¢,=0 or #0. This im-
plies our assertion.

Let {B,,..., B;} be the set of all simple roots in P. We may assume that
B;eP, (1S j<1), f;e P, (t<j<I) and that f,;[t5£0 (1Sj<q), f;11€=0(g<j
=<1I), where 1<t<qg=I. There exists a permutation i—i’ of order 2 of the set
{1,..., q} such that

— o = B + Xhogr i nip; (nteZ,ni 20)

(see, [28, p. 23]). It is obvious that the sets {1,..., t} and {t+1,..., q} are stable
under the assignment i—i’. So we may assume that

i for 1Zigt,,
i"'=(i+1t, for t,<ist, +1,,
i—t, for ty+t,<ist,

i for t+1=ZiZt+s,,

i"'=\{i+s, for t+s;,<iZt+s;+ s,

i—s, for t+s,+s,<i=Zgq,
where t=t;+2t;, q—t=s;+2s,. Set pu;=p;|tS (1=Sj<ty+1t5), uj=Pjsr, 1S

(ti+t,<jSt +t,+5,+s,). Let p=t,+t, and r=t,+t,+s,+s,. Then it
follows from the definition of y; that the set {H,,..., H, } is linearly independent
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and spans t€. It is obvious that every element in X, can be written as an integral
linear combination of {y,,..., u } where the integers are all non negative. From
the 0— 1 property of coefficients of the non compact simple roots ([6, p. 761]) we
obtain the following lemma.

LEMMA 5. Suppose A=nu;+---+n,u, (n; are all non negative integers) is
arootinX,. Thenn +---+n,=0or | according as g, <t or g, =pC.

Now set I''={Het:expH=1} and set I, ={Het,: expHeH,}. Let U
be the analytic subgroup of G€¢ corresponding to u. Then since G¢ is simply
connected, U is simply connected (note that U is a maximal compact subgroup of
GC). Therefore Theorem 4.6.7 of [27] says that I', is the lattice generated by
{2niH, ..., 2niH,}. We define the roots A; (j=1,..., r) in X by

Yol it 2ue s,

LEMMA 6. T is the lattice generated by {niH,,..., niH, }.

ProOOF. Let Hy={geU:o6g=g}. Then Hy is connected [9, p.272] and
so U/Hy is simply connected. Therefore we conclude from [14, II, p. 77] that
the lattice I',, is generated by the vectors niH, (A€ Z). Hence it is enough to
prove that H, isin 3.7-, ZH, for each Zin Z. If 1 and 2/ are both in X then,
obviously, H;=2H,;. Therefore we need only to show that H; is in 3%-; ZH,,
for each AeZX,. Here Z,={1eX:2l&X}. Let Wy be the Weyl group of (g,
t€). Then one can show by standard arguments that

(a) W; acts transitively on the Weyl chambers of t¢,

(b) Wy is generated by the s;, (j=1,..., r), where s, is the Weyl reflection
with respect to ;, and

(c) if Zand cA(ceC)arein X, then c=+1.

Fix 2 in XZ*. By (c) there exists an element H, in it, so that (1) A(H,)=0, (2) if
n#+A (e, then w(Hy)#0. Let B be a sufficiently small open ball (H, € B)
in it, such that if u# + 1 (ue Z,) then the real numbers u(H) and u(H,) have the
same sign for each H in B. Let Q be the Weyl chamber containing Bn {H e it,:
MH)>0}. Let Q*={Heit,: u(H)>0 for all p in Z,}. Then by (a) one can
choose an element s in Wy so that sQ*=Q. We assert that A=s4; or —s4; for
some j (1< j<r). For otherwise suppose A% +s4; for all j. Then since si;(H)
=A;(s"*H)>0 for any H in Bn {H €it,: A(H)>0}, sA{(Ho)>0 (j=1,...,7). But
this means that s™1H,e Q*, and so H,esQ*=Q. This is a contradiction, and
therefore our assertion is true. Thus H,=sH, or —sH; for some j. This
combined with (b) says that H; is in 3ZH,. Our proof is now complete.

We say that A e (t€)* is an integral form on t¢ if A(H)e2niZ for all HeI',.
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Similarly A e (t$)* is called an integral form on t$ if A(H)e2niZ for all He Iy,
If we extend an integral form A on t¢ to all of t€ by rendering it trivial on t{, we
get an integral form on t€. Thus we can regard integral forms on t as those on
tC.

Let L be the set of all integral forms A on t¢ such that

(1) A(HLY=O0 for all & in Py, and
(2) (A+p)(H,)<Ofor all y in P,, where 2p=3 ,pa.

Then it follows from Lemma 5 that L is an infinite set.

Put n=3,,CX,and i=Y,,CX_,. We denote by T, T, N, N the real
analytic subgroups of G€ corresponding to t, t€, n, 1t respectively. Then GTCN
is open in G€ (see, [7, p. 3]). For any A4 in L we can define the character £, on
TC so that &,(exp H)=e4!D (HetC€). Let I', be the set of all holomorphic
functions ¥ on GTCN such that y(wti)=¢ (" )Y(w) (we GTCN, te TS, n e N).
For each ¢ in I', let |¥|?= . [¥(g)|2dg, where dg is an invariant measure on G.

Let s#, be the subspace of I' ; of functions of finite norm. Then s# , is a Hilbert
space and we can define the action of G on it by U,(g)y(x)=y¥(g~'x).. The
work of Harish-Chandra [8] tells us that if A is in L then (U, 5#,) is an ir-
reducible unitary representation of G.

§3. Construction of f,

We define 4;e(t$)* by A;(H,;)=20; (1<j, k<r). Then A,..., A, are
integral forms on t¢. Clearly A;(H;)20 forall ieX, (1S j=<r).

Now let A4 be an element in L. Define a linear form A, on t¢ by the con-
ditions Ay(H;)=0(1=j<p) and A,(H;)=A(H,;) (p<j=r). Then A, is an
integral form on t¢, and furthermore Ay(H,;)=0 forall AeX,. Put A_=A—A,,
then A_(H;)=A(H,)€2Z (1< j<p) and A_(H,)=0(p<j=<r). So if we put
m;=2"1A(H,) (1= j=<p), then m; are integers and A_=m A, +---+m,4,. On
the other hand p(H,)>0 for « € P, hence A(H,)< —p(H,)<0 for a € P, and there-
fore m; (1= j<p) are negative.

LEMMA 7. Let X be a connected simply connected Lie group. Then the
fixed point set of any involutive automorphism of X is connected.

For a proof, see [13, p. 293].

Now let G°={ge G : 6o0(g)=g}. Then Lemma 7 implies that G° is a
connected closed subgroup of G€. Let g°={X €g: gof(X)=X}. Then ¢° is
the Lie algebra of G° and g°=®HnH+iHnp)+i(ani)+(qnp). Therefore G°
is a real form of G¢. Moreover the restriction 6°=0|g° of ¢ to ¢° is a Cartan
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involution of g°. Put h°={Hni+i(hnp) and put q°=i(qni+(qnyp). Then
g°=h%+q° is the Cartan decomposition of g° corresponding to ¢° and it, is a
maximal abelian subspace of q°. Moreover t, is a maximal abelian subalgebra
of 3yo(it,). Let H® be the analytic subgroup of G¢ corresponding to h°.

For each dominant integral form g on t¢ (i.e. integral form on t¢ such that
u(H,) =0 for all « in P), we consider the irreducible holomorphic representation
7, of G€ on the finite dimensional vector space V, with the highest weight u.
Since U is compact, we can regard V, as a Hilbert space in such a way that 7,
becomes unitary on U. (An inner product is assumed to be linear in the first
variable and conjugate linear in the second.) Set V, po={yeV,: 1, ()Y =y for
all h in H°} and let ¢, be the unit vector in ¥V, belonging to the weight .

LEmMMA 8. Fix a dominant integral form p on t€ which satisfies the con-
ditions

(1) ult§=0, and

(2) w(H,)/2 is a non negative integer for each A in 2 ..
Then V, go#0 and dim V, go=1. Moreover if Y is a non zero vector in V), go,

then (Y, ¢,)#0.

ProOF. Theorem 3.3.1.1 of [28, p. 210] says that V, go#0. Now put n?
=(X zez, 8-2) N @° then g®=n2+4(it,)+b° is an Iwasawa decomposition of g°
and therefore U(g%)¢=Un2)cU(it,)°U(H°)¢, where U(-) denotes the corre-
sponding universal enveloping algebra. Observe that since 7, is unitary on U,
the adjoint of the operator 7,(X) is —’tu(g(X)) (X eg®). Let y be a non zero
vector in ¥V, yo. We define the function F on U(g®)¢ by

Fu) = ()Y, 4,).

Since f(n%)=n(=3,pCX,) and ¢, belongs to the highest weight, F(U(g%)°)
<C®, ¢,). Therefore if (Y, $,)=0 then F=0. But 7, is irreducible and so
7,(U(g°) W =V,, this implies that F#0. Hence (¥, ¢,)#0. Now we consider
the linear mapping: V,, yo3 ¥ = (¥, ¢,) € C. Then it follows from the above argu-
ment that this mapping is injective and therefore dim V), yo=1. Hence the lemma
follows.

Recall that A4; (0< j<p) are all integral forms on t$ and that A;(H;)=0
(0=j=p,AeZX,). Sinceland I, are generated by {2niH,: fe P} and {miH:
AeZX,} respectively, the forms A; (0= j<p) satisfy the conditions in Lemma 8.
For simplicity we shall write t;, V}, ¢; instead of t,, V,,, ¢4, respectively. We
can choose elements y; in V; such that (1) t(h)y;=y; for all h in H°, and
(2) (¥, ¢)=1 (Lemma 8).

LEMMA 9. t;(h)y;=V; for all h in H, (0= j<p).
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Proor. Let HS={geGC: 6g=g}. Then H¢ is a connected complex group
(Lemma 7). Clearly, the subgroups H, and H° are both real forms of HS. On
the other hand (t;| HS, V;) is a holomorphic representation of HS and t;(HO)W;
=y ;. Hence 1, (HS)Y =y, and therefore 7,(H, )Y ;=y;.

LEMMA 10. (¢, T(x)¥)#0 for all x in G (1< j=<p).

Proor. Fix an index j(1<j<p). It is known that the mapping: K x
(gnp)x®np)a(k, Y, Z)ok-expY-expZeG is a diffeomorphism ([14, I, p.
161]). Therefore it is enough to prove (¢;, t;(k-exp Y);)#0 for a pair (k, Y)
in Kx(gnp). Let K’ be the analytic subgroup of G corresponding to ¥. Then
we can write k=k'-exp Hy, where k'€ K’ and Hyec. On the other hand Lemma
5 says that the set {H,_ . ,..., H; } spans (t;)¢ and so, from the definition of A,
we have 4;,(H)=0 for all H in t' (note: t'=t, +1;). Since 7,(X,)¢;=0 for all «
in P, it follows from Lemma 1 of [6] that t(X_,)¢;=0 for a in P,. Hence
7{(X)¢;=0 for X in ¥'C, and so 7;(k")¢;=¢;. Therefore

(¢, Tj(k-exp Vi) = e Ho) (¢, Ti(exp Y)Y )).

So we have only to prove that (¢;, tj(exp Y)§;)#0. If NO is the analytic sub-
group of G corresponding to n?, then G®=N%exp (it,)- H® is an Iwasawa de-
composition of G° Since exp Y is in G° we can find elements n® e N°, Het,
and h°e H° such that exp Y=n%exp (iH)h°. Noting that f(n®)cu and that
(0, ¥;)=1, we get (¢;, T(exp Y);)=e!4iH 5£0. Our proof is now complete.

We recall the relation A—Ay=A_=3F%_, m;A; (m; are all negative integers).
We define the function f, on G/H, by

Fa(x) = (¢o, To(xXWo) TT5=1 (¢, T ()Y )™ (x€G).

Then it is a well defined C* function (Lemmas 9, 10). Let n be the representa-
tion of G on C*(G/H,) given by n(g)f(x)=f(g~'x). Here C*(G/H,) denotes
the space of C* complex valued functions on G/H,.

Lemma 11. n(H)f, = AH)f, (Het), m(X)f,=0 (xeP).

ProOF. For any H in t, (¢;, 7;(exp (—H)x)Y))=e4/®(¢;, 1(x),) 0L j<p,
x€G). Since A=Ay+2Zm;A;, it follows from the above that f,(exp (—H)x)
=e4) f (x), and so n(H)f,=A(H)f,. To prove the second assertion we define
TC, N, &4, ', as in Section 2. Let

F4(w) = (toW™Wo, do) TT5=1 (r;(w )Y, d)m (we GTEN).

Then Lemma 10 implies that the function F, is a well defined holomorphic
function on GTCN. A computation shows that F (wtii)=¢ () 1F,(w) (we
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GTCN, te T¢, ieN), that is, F,el',. Moreover f(x)={F,(x )} (xeG).
For each « in P, we can write X,=Y,+iZ, (Y,, Z,eg). Therefore
(X )fa(X) = 1Y) fa(x) + in(Z,) f4(x)
= DAF,(x™1exp (1Y)} li=0 + IDAF (x7" exp (1Z,))} li=o
= D{Fo(x7"exp (tY,)) — iF s(x™ " exp (1Z))} l;=0
= D{F (x™ ' exp (Y, — iZ,))} li=0
=0 (note that Y,—iZ,=nX en).

§4. An integration formula

In this paragraph we give an integration formula given by M. F. Jensen [11,

Theorem 2.6].
Let b be a maximal abelian subspace of qnp. For each f§ in b*, let g#
={Xegqg: [H, X]=p(H)X for all H in b}. Put

Ay = {Beb*: B #0, gf # 0}.
Since 600 |b=1, g* is oo0-stable and so
= n{GnhH+@nm+g n{bnp+(@nib.
For each f§ in 4, we put
pp=dim{g’ n (b n H) +(q n p))} and g, =dim{g’ n (b n p)+ (q n D)}.

Let b'={H eb: B(H)#0 for each § in 4, so that p;>0}, and we fix a connected
component b* of b’. Put

D(exp H) = {I1ses; Isinh B(H)[P#|cosh B(H)|4#}/2  (H €D).

Then the invariant measure dH on b can be normalized in such a way that for
all compactly supported continuous functions f,

S f(x)dx = S S f(kexp H)D(exp H)dkdH
G/H, KJo+

where dk is the normalized Haar measure on K.

§5. Computation of | f,|?

We shall define the sequences g¢=g,>g,> - of subalgebras of g¢ and P,
=0;>0,>--- of subsets of P,. The inductive definition is as follows. Put
g;=¢%and Q;=P,. Forjz=1ifg;ciC theng;,;=g;and Q;,;=¢. Otherwise
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let y; be the lowest root in Q;. Then g;,, is the centralizer of CH, +CoH,,
+C€X, +CX_, +CoX, +CoX_, in g; and Q;,, is the set of all yeQ; such
that (1) y#y; and y# —y;e0, (2) y—7;&® and y+(y;c0)&P. Using Lemma
3(1), we can prove by induction on j that

gj = gl n fC + Z‘YEQJ(CX)’ + CX_),) (] g ].).

It is obvious that dim g;, ; <dim g; unless g;cf¢. Let s be the least integer such
that g,,, =f€. We define the elements H?s, X?i and X% (j=1,..., s) as follows:

Hyszyj, ij=ij, X_Yj=X lf yllth=0’

—v
H" =H, —oH oX

X=X, —oX X=X otherwise.

17l 7l - 17}

It is easy to check that H?s e t¢.

LEMMA 12. y,27;&®P, y;xy,00&P (1£i<j<s), and b=335., R(X"+
X=74) is an abelian subspace of q N p.

ProOOF. If i<, then g;,,>g; and therefore [X 4,, X, 1=[0X4,, X, ]=0.
This implies y;+7y;&®, y;£7;,00&® and that b is abelian. We know that X,
=X_, for any y in &, (Lemma 1). Hence n(X?i+ X 7)=X7+ X7, and so
X7+ X 7ep(1£i<s). Moreover 6X,=—X,., for any y in @, (see, Lemma
1), therefore o(X7i+ X "7)=— (X7 + X7, that is, X"+ X 71 eqf (1LiLs).
Hence boqnp.

LEMMA 13. If a € @, then a+oacoes .

ProoF. Let o, B be two elements in @ such that a+fe®. We define the
number N,,; by [X,, Xz]=N,;X,.5. Applying @ to this identity, we have
N_,-3=—N,4 Obviously N,z=—Nz,. Now fix an element « in &. If
o |t€ =0, then a+aco=2a& . This being so, assume that a[t{#0. If a+aco
e ®, then plainly («+ac0)[tS=0, hence X,,,,€h¢. From Lemma 1, focX,
=—-0X,.,=X_,.,and fooX _,= —0X _,.,=X,.,. Therefore

[Xe 0o0X _,] = [Xa Xuoo] = NogooXataeor
Applying foc to this identity, we have
(00X, X o] = Nugea0o0X s 00 = NoaoaOX a0 = N g, 26X —ao0-
On the other hand
[00Xs X ] = [X-mos X-a] = Noeg,-aX —gos—a = = NgoaeeX 4o

Hence N_, _4o0o=—N_4 -2 and so N_, _,.,=0. This is a contradiction.
Hence the lemma follows.



66 Shuichi MaTsumoTo

LEmMa 14. Let B, 6 be non compact positive roots such that f—d6e @ and
O|t§#0. Then (B—0)—doc& .

PROOF. Let us suppose (f—0)—doce®. Then [X_;.,, [Xp X_;]1]1#0.
On the other hand [X_,.,, [Xp X _;11=[[X-s5 X_s.], X1+ [[X 500 Xpl,
X_;]. But §+3de0 cannot be a root nor zero (Lemma 13), and so [X _; X _s.,]
=0. Furthermore [X_;.,, Xz]=0 (Lemma 3). Thus [X_,.,, [X; X_;]1]1=0.
This is a contradiction.

LEMMA 15. For'each i (15i<s), C(X?++X"7)+g;4, N(G° NpC) is the set
of all elements in g; 0 (q° N p€) which commute with X7+ X77i.

Proor. Let Q;,={yeQ;: y#y; and y# —y,c0}. We have two cases:
(D) %€ =0, () nltE0.

In the first case X7 4+ X"7i=X, +X_ . If Xeg;n(q€ npc), we can write
X=c, X, +c ) X, + 2,0, (¢} X,+c,X_,) where c},, c}, are complex num-
bers. Since 6X=—X and 06X, =—X5,, we can write

X = c’Yi(X'}'i + X"}'i) + ZYEQt,l cv(Xv - O-X)’)'

(Note that if yeQ;; then —yoo is also in Q;,.) So if X commutes with X7:
+X =X, +X_,, then ¥ . c/(X,—0X,) also commutes with X, +X_,.
We have to prove that 3,4  c(X,—0X,)€g; ;. Put Q;,={yeQ;,:c,#0}.
It is enough to show that Q; ,=Q;,,. Now using Lemma 3(1), we have

0=1[%,e,, (X, — 0X,), X,, + X_, ] = X )eq,, 0([X,, X, ] — [0X,, X, ]).

Since y; is the lowest root of Q;, if y—v; (y€Q;,) is a root then it is positive.

Moreover if yoo+y; is a root, then it is negative (for, yeQ,; ;= —yo0€Q, =

—7y00 >y;=>y°0+7;<0). Therefore the above equality implies that 3", , ¢,[X,,

X_,1=0, and hence y—7y; is not a root for any yin Q; ,. This means Q;,<=Q;,,.
Now consider the second case. Then

X7+ X7 = X)’i - aX“?i + X-‘h - O'X.“.
If Xeg;n(a®np°),
X = c'}’i(X)’( - O'Xy‘) + C_Yt(X_}’i - aX-vi) + 275Qi,1 C),(X), - GXY)'
Put Q;,={yeQ;:c,#0}. If X commutes with X7: 4 X"7¢,
0=[X, X, —0X_, +X_, —0X,]
= (Cw - c_')’i) (H)’i + GH)'i)
+ Z'yeQi_z C),([X.,, X—yi] - [Xya ava] - [O'X),, Xyi] + [O'X.,, O-X—m])'
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Since y;|t§#0, we have H, +¢H, #0 and so ¢, =c_,. Hence it is enough to
prove that Q;,<=0Q;,y. Let Q;3={yeQ;,: y[t{=y;[1¢} and let Q, ,={ye Q;>:
y1t€#y, 1t} If yeQ;3, then [X,, X_,] and [X,, 6X, ] are both in h¢. On
the other hand if y € Q; 4, then y—y,, yoo 4, are not identically zero on t, and so
yo0 —y;00 <0, Y+ 7,00 >0 (note that y; is the lowest root of Q;, therefore y—7y;>0
>7yo0+7;). Combining these facts with the above equation, we find that

zsti,a 2e,[X,, X, 1+ Zver,a o([X,, X, 1 — [Xv’ 0X,1)=0.

Now suppose Q;,&Q;.;. Then the above says that there exist two roots f, y
€Q,;, such that f—y;=y+7y,00€®. But this contradicts Lemma 14. Hence
the proof is now complete.

As a straightforward consequence of Lemmas 12 and 15, one can prove
COROLLARY. b is a maximal abelian subspace of q N p.

LEMMA 16. y(H")=2, [X7, X-7]=H», [H*, X»]=2X", and [H,
X-7]=—2X"7 (1<i<s).

Proor. If y;|t{ =0, then the required relations follow from the definitions.
Suppose that y;|t¢#0. Then it follows from Lemmas 3 and 13, that y;,%7y°0 is
not a root nor zero. Therefore y(sH,)=0 (for, ¢H,=H,.,), and so y,(H")
=y{(H,,—oH,)=2. Moreover [X":, X~"]=[X,—-0X_,,X_,—0X,]=H, —
oH,=H". Since H*'etS, the last two equations are verified by a simple
calculation.

LeEMMA 17. Let v denote the automorphism of g€ given by
v=-exp(n/4)ad (Xi-, (X7 — X771)).
Then v(X7i+ X"7)=H"i (1Zi<s). Moreover for any t in R we have
exp (X7 + X~7t) = exp ((tanh £)X~7¢) exp (log (cosh t)H?#) exp ((tanh 1) X7+).
This lemma follows from Lemma 16 and [8, Lemma 9].

Lemma 18. Let a;={Het: B(H, H,)=B(H, cH,)=0 for all i} and let
a,=;RX,+X_,)+2;R(6X,+0X_,). Puta=a,+a, Then a is a Car-
tan subalgebra of g and v(a€)=t¢. Moreover a,, a, are both o-stable. a,Nq
=b.

Proor. If Hea,, y(H)=7(cH)=0 (1<i<s) and therefore v(H)=H. On
the other hand, for any index i such that y;|t§#0 we have [X,-X_,, 0X,,
—0X_,]=0(Lemma 13). So we can write
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V= Hiel exp (ﬂ/4) ad (Xy.- - X—w)
X ITiesexp (n/4) ad (X,, — X _,) I'licy exp (n/4) ad (6X,, — 60X _,).

(Here, I={i: y;|t§=0} and J={i: y;[t{ #0}). Hence it follows from [8, Lemma
9] that (1) if y;|t§ =0 then (X, +X_,)=H,, (2) if y,[t§#0 then w(X, +X_,)
=H, and v(cX, +0X,)=0H,. This implies that v(a§)=3; CH, +3%; CoH,.
Since H,, € it (1=i<s), from the definition of a, we find that af is the orthogonal
complement of v(a§) in t¢ with respect to the positive definite Hermitian form
—B(X, 0Y) (X, Yeg®). The above arguments imply that

t€ = af + w(a$) = v(af) + v(aS) = v(a®).

As v is an automorphism and a is f-stable, it follows that a is a Cartan subalgebra
of g. Clearly a; and a, are o-stable. Moreover from the definition of b we
conclude a, N q=b.

LemMA 19. 9, (1Zi<s) are linearly independent on v(bC).

ProOF. Since w(X7:+ X~7i)=H7:, {H",..., H?s} is a basis of w(b€). More-
over y(H?)=26;;, and so y; (1=i<s) are linearly independent on w(bC).

Let 4 be the set of non zero roots of (g€, a€). Since v(a€)=1¢ and v is an
automorphism of g€, it is obvious that

A4 = {aov: a € D}.

On the other hand b is a maximal abelian subspace of q n p (Corollary to Lemma
15), and therefore we can define 4, as in Section 4. Then

4y = {Bls: Be4, Bl # 0}.
Finally
Ay = {aov|g: e P, a, ) # 0} .

LeEMMA 20. Let o be any root in @ such that «|,y=0. Then a is compact.

ProOF. We may assume that «>0. Suppose that a is not compact. Then
Lemma 3 (1) says that a+y; and «—y;00 are not roots for any i (1<i<s). There-
fore «(H,)=0 and a(¢H,)<0 (1=i<s), and so «(H,)=a(cH,)=0 (note: a(H"")
=0). This implies that a«—y;, «+ 7,00 can never be a root nor zero. Hence for
any i we have [X,—o0X,, X""+ X 7]=0, and so X,—0X,ebC. This implies
X,—0X,=0. However X,—0X,=X,+X,.,#0 (Lemma 1). Hence the lemma
follows.

Let A and u be two linear functions on t€. We write A~y if A—u vanishes
identically on v(b€)=3;CH":. For any index i (1Zi<s), set C,={aeP,;:
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o~ =271y}, Pi={yeP,: y~271,;}, and Pi={yeP,: y~v;}. For any pair of
indices i, j(1£i<j<s), set Cj={ae P a~271(y;—y)}, Pjj={yeP,: y~
27Yy;+y)}. Put Co={aeP;: a~0}.

LEMMA 21. Py is the disjoint union of Co, C;, C;; (1Si< j<5).

Proof. The disjointness is a consequence of Lemma 19. Let o be a root in
P, so that «~0. Then X,&g,,,. Let i denote the least index (I <i=<s) such
that X,&g;4,. Since X_,(=-0X,)eg;, if y,—a is a root then y,—aeQ; and
y;—a<y;. But this contradicts the definition of y,, and so y;,—a is not a root.
Similarly y;+aco is not a root. Therefore a(H,)<0 and a(cH,)=0, and so
a(H")=0. If a(H?1)=0, then it follows from the above inequalities that a(H,)
=a(ocH,)=0. But this implies that X, eg;,; which contradicts the choice of
the index i. So a(H?1)<0. Now we claim that y;+a, y;—aoc are not roots for
any j#i. If y;4+ais a root, then

(y; + 0)(H,,—oH,) = a(H,, — cH,) <O0.

On the other hand since y; is totally positive, y;+a is non compact positive, and
therefore it follows from Lemma 3 (1) that

(v; + @) (H,, = oH,) = (; + @)(H,) — (3, + 2) (oH,) 2 0,

which conflicts with our conclusion above. By a similar method we can show
that y;—aeco is not a root. So we have the following two cases: (a) y;+a, y;
+aog is never a root for j#i, (b) either y;—a or y;+ w00 is a root for some j#i.

In the first case a(H,)=a(cH,)=0 for all j#i. Moreover we have the
following three possibilities: (1) y,+oce@® and y,—aco&®P, (2) y;+a&® and
yi—occeP, (3) y;+aed and y;—acce®. We consider the case (1). Then
since y; and y;+« are both in P,, a+2y; is not a root (Lemma 3), and so a(H,)
=—1. Since a(cH,)=0, a(H?")=—1=—2"1y(H??). Noting that a(H")=0
for all j#i, we get a~ —27'y,. In the case (2), —y;00 and a—y;00 are both non
compact positive, and therefore o —2y;o0 is not a root. This implies that a(cH.,,)
=1. Since o(H,)=0, a(H")= —1=—2"1y(H?:). This means that o~ —271y,
Now we consider the case (3). Then o(H,)=—1 and a(cH,)=1. We claim
that y;[t€=0. For otherwise if y,[t{#0, then a(H?)=oa(H,)—a(cH,)= —2
= —v,(H7?). This means that a+7y;,~0. But a+y; is non compact and so we
get a contradiction with Lemma 20. Hence y;[t§=0. This shows that a(H?:)
=oa(H,)=—1=—2"1y(H"t), and therefore a~ —271y,.

Now we come to the second case (b). Let j be the least index such that
either y;—a or y;+acc is a root. Then j#i and in view of our definition of
i, j>i. Moreover «(H,)—a(cH,)>0. First we show that y,ta and y,taco
can never be roots for any index k (1<k<s) other than i, j. We have already
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seen this for y,+a and y,—aco. Suppose y,—a is a root. Then (y,—a)(H,,
—oH,)=—a(H,)+o(cH,)<0. On the other hand since y,—a is non compact
positive, (y,—a)(H,,—cH,)=(y—«)(H,)—(y—) (cH, ) =0, which gives a con-
tradiction. Hence y,—a is not a root. Similarly, y,+ ao0c is not a root. There-
for we find that «(H*)=0 for any index k (1<k<s) other than i, j. Now we
distinguish four cases: (1) there is exactly one root in {x+7y;, a—7;00}, and simi-
larly there is only one root in {&—y;, a+y,°0}, (2) a+y;, a—7y;00 are both roots,
and only one in {&—y;, a+7y;°0} is a root, (3) there is only one root in {a+7;,
a—y.0}, and a—y;, a+y;o0 are both roots, (4) a+7y;, x—y,0, a—y;, a+7;00 are
all roots. In the case (1), we have that a(H")=—1 and «(H?/)=1. Since
a(H?«)=0 (k#1, j), it is easy to see that a(H<)=2"1(y;—y,)(H"*) (1=k<s) and
therefore a~271(y;~7;). In the case (2), we assert that y;|t{ =0. For otherwise
suppose y;|t§ #0, then a(H")=a(H,)—a(cH,)= —2= —y(H"), that is, (a+7;)
(H7)=0. On the other hand since y;, —7;00, a+7; are all non compact positive
roots, neither (a+7,)+7; nor (a+7y;) —7y;c0 is a root (Lemma 3). But (x+7y)—7;
is a root. Therefore

(@ + y)(H?) = (¢ + y)(H,) — (x + 7)) (cH,) > 0,

which is a contradiction. So y;|t{=0. Hence a(H?)=a(H,)=—1. Since
a(H*)=1 and a(H?*)=0 (k#1i, j), we have a(H<)=2"1(y;—y)(H) (1= k<s).
This means that a~27!(y;—y;). In the case (3), we can show that y;[t{=0.
(If y;]t§ #0, then a(H?Y) =oc(H,,j)—<x(a'H),j) =2=y,(H"), that is, (a—y;)(H"/)=0.
However we know that (¢ —7y,)—7;& P, (a—y;)+7;00 &P, (x—7;)+y;€P. There-
fore (a—y;)(H")=(a—y,)(H,)—(2—7,)(6H,)<0. This is a contradiction.)
Hence a(H?)=o(H,)=1. Since a(H?")=—1 and o(H?*)=0 (k#i,j), we get
a~27Y(y;—7v). In the case (4), we can show, as in the cases (2) and (3), that
%1t =y;1t§=0. Hence a(H")=a(H,)=—1 and a(H?)= a(H,)=1, and there-
fore «a~271(y;—~7v;). The proof is now complete.

LEMMA 22. P, is the disjoint union of P!, P, P;; (1Si< j<5s).

Proor. The disjointness follows from Lemma 19. Suppose yeP, We
assume that y& P/ for all j(1<j<s). Since X,ep®, X,&g,,,. So we can
choose the least index i such that X, &gq;, . As y& P! (especially, y#v,), y>7;
Moreover it follows from Lemma 3 that y+7v; and y — 7,0 are not roots. There-
fore, since X, é&g;. ¢, either y—y; or y+7;00 is a root. We distinguish two cases:
(1) y—1y; is a root, (2) y+ 7,0 is a root.

Consider the first case. Then a=y—1y, is a compact positive root. Since
Y& P, a&Cy. Hence either a~ —271y; or a~271(y,—y;) for some j or (j, k).
If a~—271y; then y~y;—271y; and so p(H/)=26;;—1. On the other hand
Lemma 3(1) tells us that y(H, )20 and y(¢H, ) <0, which implies that y(H?/)=0.
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Therefore i=j, y~2~'y;and ye P,. If a~271(y,—y;) then y~y;+27(y,—7;) and
y(H')=28;;—1. Since y(H"/)20, we conclude that i=j and so y € Py,.

Now consider the second case (2). The definition of the index i implies that
X,egq;, and so gX,eg;. Hence —yooeQ; Moreover since y is not in P,
—vyog#7y;. Therefore we find that —yo6>7y;, On the other hand —y;,—yec is
not identically zero on t$ (for, y& Pf). This implies that y+7y,c0 is positive.
Set a=y+7pc0. Then « is a positive compact root such that a& C,. Hence
Lemma 21 is applicable. Suppose that aeC; for some j. Then y~ —y; 0
—271y;~y,—271y; (for, w(b€) = q°), and therefore we can show, as in the case (1),
that i=j, But this implies that y~2~1y,, that is, ye P;, Next we suppose that
aeCy for some (j, k) (1S j<k=<s). Then y~ —,00 4271y, —7,)~y:+ 27 (1
—7v;). This implies that i=j. Hence y~2~1(y,+7y,), that is, y € P;.

LeEMMA 23. For each index i, there exists a one-one mapping of C; onto P,

ProoF. Lemma 19 and the proof of Lemma 21 imply: (a) Let « be in C,.
Then i equals the least index such that X, &g;,,. (b) Put C;={aeC;: a+y; is
a root } and put C{ ={ae C;: a—7y,c0 is a root}. Then C;=C;U C/. Moreover
if y;/t,#0 then C; n C;=¢. (Clearly, if y;|t,=0 then C;=C}).

On the other hand, the proof of Lemma 22 tells us: (c) If y is in P;, then i is
the least index such that X, &g;,,. (d) P;=P;U P/ where P;j={yeP;: y—7;is a
root} and P;={ye P;: y+y;00 is a root}.

We assert that if y;|t; #0 then P;n P{=¢. Lety be an element in P;n Pj.
Lemma 3(1) says that y+y;, y—7y,c0 are not roots. Moreover y—2y,~ —(3/2)y;
and y+2y,00~ —(3/2)y;. But these relations combined with Lemma 22 imply
that y—2y;, y+2y,0 are not roots. Hence y(H,)=1 and yp(¢H,)=—1, and
therefore y(H?)=2#2"1y(H?). This contradicts with ye P, Thus Pjn P}
=¢ as asserted. We note that if y;|t, =0 then P;=P;. Now it is obvious that
the mapping a—a+y; (resp. a—a—y;,00) is a bijective correspondence between Cj
and P; (resp. C’; and P}). Hence the lemma follows.

LEMMA 24. There exists a one-one mapping of C;; onto P;; (1Si<j<s).

ProOF. From the proof of Lemma 21 we get: (a) Let aeC;;. Then i
equals the least index such that X,&gq;,,. (b) Set Cj;={xeC;;: a+y;e P}, and
set C;={aeCy;: a—ypoeP}. Then C;;=C;i;U Cj;. Moreover if y;|t;#0 then
Ci;nCi=¢.

Similarly the proof of Lemma 22 implies: (c) Let ye P;;. Then i is the
least index such that X,&gq;.;. (d) P;;=P;;U P}; where P;;={yeP,;: y—v;€
@} and Pj;={yeP;;: y+7y,00€ ®}. Moreover we can show, as in the proof of
Lemma 23, that if y;|t;#0 then P;; n P{;=¢. Now it is easy to check that the
mapping a—a+y; (resp. a—a—y;00) is a bijective correspondence between Ci;
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and P;; (resp. C}; and P{;). The lemma now follows.

ij i

Let r;, r;, p* be the number of roots in C;, C;;, P respectively. Then
Lemmas 23 and 24 say that r; and r;; are also the numbers of roots in P; and P;;
respectively. Now we recall the maximal abelian subspace b= Y3$_, R(X7i+
X~7t) and we retain the notation of Section 4. Moreover we fix the Haar meas-
ure dk (on K) and dH (on b) such that

S J(x)dx = S S f(kexp H)D(exp H)dkdH for all fe L*(G/H,).
G/Ho KJo+

LEMMA 25. Let H=Y,t(X"+ X ") (t;eR). Then
D(exp H) < 2:[; (cosh t;)?#'+2ri+2s:,
Here e= S.1 pi’ pi:p(HYi) and si=2i<j rij.

ProOF. Clearly D(exp H) < {[Tge4, (cosh f(H))Ps*4s}1/2, On the other hand
we have already seen that

Ab = {aovlb: ae¢’ G‘l\r(l’)) # O}'

Moreover for each f in 44, ps+q,=dimg ¢ =the number of those roots in @
which coincide with « on w(b®), where « is a root in @ so that f=aov|,. Noting
that v(H)=>_,t;H"i, we have
D(exp H) = {I1sea, (cosh p(H))ps*as}1/2
= [Ti<izs(cosh ;)27 [T, i< j<s (cosh (t;—t;) cosh (t;+ ;) v
X TT;<i<s (cosh 28)P°
= [Ti(cosh t;)>"+ TT;<; {(cosh t;- cosh t;)*> — (sinh t;-sinh ¢ ;)*}"ts
x I'T; {(cosh t,)? + (sinh t;)2}?’
< 2¢TT;(cosh t)?" [T;<; (cosh t;- cosh £ ;)?"is TT;(cosh t;)?P"
= 2¢ [T, (cosh t;)2ri+2si+2si+2pi, (' =X <irj).
A simple calculation shows that
20(H) = T ep a(H) = 257 + 2p).
Hence the lemma is true.

Recall that in Section 3 we constructed a C* function f, (A€ L) on G/H,.
We are now in a position to compute the norm of f,. From the definition (Sec-
tion 3), we have to(H)do=Ao(H)po (H €t€) and 14(X,)po =0 for all « in P,.
Moreover we assert that for each « in P,, t4(X",)¢,=0 for r sufficiently large.
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For the nonzero vectors among 7,(X",)¢o (r=0) are linearly independent since
they belong to the distinct weight A, —ra. But the dimension of V, is finite.
This implies our assertion. Therefore Lemma 2 of [6] tells us that the subspace
Vg of V, spaned by t4(X)¢o (X € U(TC)) is irreducible under K€. Let 7, be the
corresponding representation of K¢ on Vg,

For each element H=);t(X7++ X~7:) in b, we put H' =3 ;log(cosh t;,)H?:.

LEMMA 26. Let A be an element of L. Then there exists a positive constant
¢, so that

[fa(kexp H)| = c4llto(exp H')[le4-"" (ke K, Heb)
where | To(exp H')|| is the operator norm of o(exp H').

Proor. Recall, f,(kexp H)=(¢o, to(kexp HWo)[12-, (¢}, T(kexp H),)m:.
Combining Lemma 17, Lemma 3(2) and the fact that 8(X~?)e p, (for the nota-
tion, see Lemma 3), we find

(¢o> To(kexp H)WYo) = (to(exp H' - k™1)¢o, To(exp 2 ; (tanh 1) X7 )q) .
Therefore we conclude that if co=Max_; <,,<; [[To(exp X ; X;X7)o| then
(@0, To(k exp H)o)l = colitolexp H' - k™ol = colltoexp H)| -

Now we fix the index j (1< j=<p). We have shown in the proof of Lemma 10
that 1(X)¢;=0 for any X in I'=[f, f]. So using Lemma 17, we have

(@), Ti(kexp H)Y))| = |(t(exp H')$,, T,(exp X; (tanh 1) X 7))
= et HD|(¢;, Tj(exp X; (tanh 1) X7 )Y )| .
We recall the subgroups G° H° N2 of G¢ (see the proof of Lemma 8). It is
easy to see that gof(X?i)=X7i(1<i<s). This implies that exp(3,;x;X?*)e G°
for any x; (1<i<s) in R. Also we have already seen that G®=NZ%exp (it,)H®
is an Iwasawa decomposition of G° (see the proof of Lemma 8). We define the
element H(x) in it, for x=(x,,..., x;) in R* by
exp (X, x; X7i)e N2 exp H(x)H°.
Then
(9, Tj(exp X; (tanh t) X7 ) )| = |(¢;, T,(exp H(x)) )| = et HE=D

where x=(tanht,,..., tanh t;). This shows that if ¢;=Min_, <, <, et/ ) then

(¢, Tj(kexp H)rjym| < cpi - emidsH,

Noting that A_=3%_, m;A; we have shown that
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| fa(k exp H)| < c4llto(exp H')[led-H"
where ¢ =co [17-; c™.

LEMMA 27. Let W, denote the Weyl group of (¢, t€). Set 2p,=3 ,ep, ®.
Then for all H in it we have

Ita(exp H)I? S X puy, e250at o (D=20utiD),

ProoF. Since the representation 7y is irreducible ty(exp H)=e4e® . for
any H in ¢€ (by Schur’s lemma). Moreover s|¢€=1 for all s in W,. Hence we
have only to prove the lemma for H in it' (t'=tn¥). Set (it")g={Heit': «(H)
#0 for all a in P.}, and set (it"), ={H e€it’: «(H)>0 for all « in P,}. Then (it'),
is dense in it’, and (it')o=\Uew, s(it),.

Since 8] it= —1I, for each H in it ti(exp H) is a self-adjoint operator in V.
We remark that if T is a positive self-adjoint operator in a finite dimensional
vector space over C, then the operator norm ||T| of T cannot exceed the largest
eigenvalue in its spectra. Also every weight of 1 is of the form Ay —3 p, B,
where n, (o € P,) are nonnegative integers (see, [6, Lemma 2]). Let u be a weight
of t5. Then s~y (se W,) is also a weight (note that s~!u=uos), and so we can
write

ST = Ao — oep, Na (n,20).
Hence we find that if H e s(it"), then
WH) = sAo(H) — T rep, ni(s0) (H) = sAo(H).
Combining this with the above remark we find that
lIto(exp H)||? < e?sdo(H) (se W, Hes(it'),).

On the other hand we know that p,(H,) =0 for any « in P,. This implies that
sp < py (ie. sp(H)< p(H) for all H in (it'),) for any s in W,. Therefore sp,(H)
—p(H)Z0 (se W, Hes(it'),). We therefore see that

Ito(exp H)||? £ e2s(4otpr)(H)=2px(H) (se W, Hes(it)),).
But this implies that

Io(exp H)|? < 3 sew, €25 ote=20xt) (H e (it'),).
Since (it’), is dense in it’ the result is true for any H in it’.

THEOREM 1. Assume the assumptions Al~AIV. Then there is a real
constant ¢(=0) so that if (A+p)(H,)<c for all y in P, then f, € L%(G/H,).

Proor. Let H=,t(X?"i+ X 7)eb. Then H'=3 log(cosht)H?: is in
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it. Hence combining Lemmas 26 and 27 we find
|4k exp B2 < €5{E s, €240+ 00 ()= 20(H") jo24- ),

On the other hand Lemma 5 says that A_(H,)=0for all x in P,, and so sA_=A_
for any s in W,. Also it follows from Lemma 3(3) that sp,=p, for s in W,.
Here 2p,=3,cp, 7. Therefore

[fatk exp H)? = cG{Z sew, 2P HD}e™ 2001
= 4{Z sewi [T (cosh 1)2s(4+o)"} T, (cosh 1;)2¢".

Here {s(A+ p)} =s(A+ p)(H?i). This inequality combined with Lemma 25 implies
that ,

|fa(k exp H)|*D(exp H) < ¢52°{% sew, [Ti (cosh )2=4+» I, (cosh #;)2r+ 2+,

Now let ¢=—Max;(r;+s;). Then noting Lemma 3(3), we find that if (A+
p)(H,)<c for all y in P, then f, € L%(G/H,).

§6. Irreducibility of H,

In this paragraph we assume: (1) AeL, (2) f,€ L%(G/H,). Let H, be the
smallest closed subspace of L?(G/H,) containing f, which is invariant under
n(G). (= is the left regular representation of G on L%G/H,)). Letn, n, N, T,
TC, ¢,, I', be as in Section 2.

LemMMA 28 (Harish-Chandra [7, Lemma 6]). There exists a function ¢4e
I, such that

gT d(xhwh=1)dh = $(x)p4(w)  (xeG, we GTEN)

for every ¢ eIy, (dh is the normalized Haar measure on T). This function is
unique and ¢4(1)=1.

Let E, be the subspace of H, spanned by n(k)f, (ke K). We have seen in
the proof of Lemma 10 that t(X)¢;=0 for all X in ¥€ (1< j<p). But this
implies that t,(k)¢; € C¢; for every k in K (1< j<p), and therefore the definition
of f, tells us that E , is finite dimensional.

LEMMA 29. E, is irreducible under n(k) (k € K).

Proor. Let E,=Y"7_, E; be a decomposition of E, into the irreducible
components. Let f,=3,f; (fieE;). We can write fi=3; ¢;;f4(ki}-) where c;
are complex numbers and k;; are in K. From Lemma 11, for each element h of
T we have ’
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2ifi =fa =W fy = X Ea(h™Dn(h) S

and therefore f,=¢,(h~Y)r(h)f, 1<i<n, heT). Now let F, be as in the proof
of Lemma 11. Since f(x)={F(x~')} (xeG) and F,el 4, we have for x in G

Jix) = EA(h™ D) fi(h™1x) (heT)
= X ciifa(kifh™ ' X)E4(h™1) = 3 j ¢ {F s(x " hk;j)E aCh)}™
= YA F A(x Y hk h~1)} " = ch,.jg {F /(x~thik;;h=1)} dh.
We apply Lemma 28 and find '

STFA(X“hk,-jh“)dh = F (- 1)Aky)).

Thus
fi(x) = [Z, Cij{¢A(kij)}_]fA(X) (1isn, xeG).

But this means that there is an index i, so that f,eCf, <E,, that is, E,=E, .
This implies the lemma.

Let K denote the set of all equivalence classes of finite dimensional irre-
ducible unitary representations of K. For each d in K, let x; denote the character
of 6, d(6) the degree of 6. Put P(é):d(é)S is(k)n(k)dk, dk normalized Haar

K
measure on K. Let H,(6)=P(6)H,. Then H ,(0) consists of those vectors in
H,, the linear span of whose K-orbit is finite dimensional and splits into
irreducible K-submodules of type 6. Set H, yx=3> ;g Hy(6). Since H,n
C*(G/H,) is dense in H,, H, x is a dense subspace of H, (cf. [28, Proposition
4.43.5]). Set H,o=m(U(g%))f4, and set H, o(8)=H 4o N H4(J) (6 € R).

LemMA 30. H,o<cH,x. H,gisdensein H,. H,o(0) is a dense subspace
of H 4(5) for any § in K.

Proor. If Ze U(g¢) and ke K,
(K)M(Z) [y = n(Z*)n(k) [, € "(Z})E 4.

Since E , is finite dimensional, this implies the first assertion. G is connected and
f, is analytic, so the second assertion is obtained by a standard argument.

For each f in H,,, the linear span of K-orbit of f is a finite dimensional
subspace of H,,. Therefore P(6)H, o< H 4N H,(0)=H, ). Using P()|
H (0)=I, we get P(0)H,,=H, ,(5). Now let fe H,(5) and suppose that f,—f
where f,e H,o. Since P(d) is continuous, P(9)f,—P(0)f=f. Thus H, o) is
dense in H 4(5).

LeMMA 31. Let 6, denote the irreducible unitary representation of K with
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highest weight A. Then
HA,O((SA) =E,.

Proor. Obviously H, o(6,)=E,. So we need only to prove that [H 4 (3 ,);
d,]1=1. Define

H, o0 ={feH 0(0,): (1) n(X,)f=0 for all a in P,
(2) n(H)f = ACH)S for all H in €} .

It is enough to prove that dim H,,(5,),<1. Put F={X ,pnua: n, are non
negative integers}. For each vin &, let

UR) ™ ={ueU®): [H,u] = — v(H)u forall H in t¢}.

Then UM)=3 ,.s U(M)™*. We remark that U(n)°=C. Now set K,={ue
U(M): uf,=0}. Then for each u in U(it), we can choose the elements u; e U(n)
and v;e # (i=1,..., n) such that

(@) w;e U™ (1i<n),

(b) u=3,u; modulo K ,, and

(¢) {uyfas---» U f4} is linearly independent.

Let f be in H,¢(d4), Since U(g€)=U(g%)n+U(M)U(t€), we can write
f=uf, where u is in U(n). For each H in 1€, we have

Hf = Huf,) = HX u;f4) = X [H, ulfs + X uHf,)
= — XviHufy + AH) 2 ufg = — 2 v(Huf4 + AH)S.

On the other hand, Hf=A(H)f since f is in H, ,(5,), Hence X ;v{(H)u;f,=0
for all H in t¢. This combined with (c) implies that v,=0 (1<i<n), and so
feCf,. ThusdimH ,,(d,),=1, as we wished to prove.

THEOREM 2. Assume the assumptions AI~AIV. Let A be an element of
L such that f, is in L*(G/H,). Let H, be the smallest closed subspace of
L*(G/H,) containing f, which is invariant under n(G). Then H, is irreducible
under 7.

Proor. First we assert that H,(6,)=E,. Indeed, H,,(d,) is a finite
dimensional dense subspace of H ,(J,) (Lemmas 30, 31). Hence H ,(6,)=H 4 ¢(5,)
=E, as asserted. Now let H; be any closed invariant subspace of H, and let
H, be the orthogonal complement of H, in H,. Then H,=H,+ H,, and there-
fore either P(6,)H,#0 or P(6,)H,+#0. If P(6,)H,+#0, then P(6,)H,=E, since
H (6, =E, is irreducible under n(K). But this implies that H, s f,, and hence
H,=H,. Similar reasoning shows that if P(6,)H,#0 then H,=0. Hence the
theorem follows.
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§7. The final result

Let A be an element of L such that f, e L2(G/H,). Then from Lemmas 11,
29 and Theorem 2, we have

(a) mn(X,)f4=0 for every positive root « in @,
(b) n(H)f,=A(H)f, for all H in t¢, and
(¢) H, is irreducible under n(G) and dim n(U(f€))f, is finite.

Now we recall the holomorphic discrete series representation (U ,, # ) (see the
last of Section 2). Lemma 29 of [8] says that ¥4 is in »# 4. (For the definition
of Y4, see Lemma 28.) Moreover the following conditions hold:

(@) U (X ¥42=0 for every « in P.
(b') U (H)A=A(HWA for all H in €.
(¢') U, is irreducible and dim U ,(U(f€))y4 is finite.

(For a proof, see [7, Lemmas 8 and 12].) Therefore H, and s#, are infinitesi-
mally equivalent. Consequently H, and 5#, are unitarily equivalent (see, [6,
Theorem 2] and [28, p. 329]).

For a non positive real number ¢, let L. denote the set of all A in L which
satisfy the following condition:

(A+p)H)<c forall y in P,

We remark that L. is a infinite set for every ¢ (see, Lemma 5).
On the basis of these observations and Theorem 1, we have

THEOREM 3. Assume the assumptions Al~AIV. Then there exists a real
constant ¢(=0) so that if A is in L., then (U,, 5 ,) is a representation of the
discrete series for G/H,. Here (U ,, 5 ,), which was defined at the end of §2, is
an element of the holomorphic discrete series for G.
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