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§1. Introduction

The aim of this paper is to generalize the results of Essén and Jackson [3].

Let D={x=(x,, X3,..., X,) € RP; x; >0}, where p=2. Let u be a non-
negative superharmonic function on D. Then it is known that u is uniquely
decomposed as

u(x) = cxy + gD G(y, x)du(y) + SBD x4 |y —x|-7dw(y),

where ¢ is a non-negative number, u (resp. v) is a (Radon) measure on D (resp.
0dD) (see Helms [4; p. 37 and p. 116]). Lelong-Ferrand [5; Théoréme 1c] showed
that

lim|x|—mo,xeD-E (u(x)—cxl)/xl =0,

with a set E in D which is minimally thin at co. Recently Essén and Jackson
[3; Theorem 4.6] proved that

lim]xl—»oo,xeD—-E(u(x)—cxl)/lxl =0,

with a set E in D which is rarefied at oo.

We introduce in §2 the notion of a-minimal thinness (0<a<1), which is
identical to minimal thinness when a=1 and which is identical to rarefiedness
when a=0. As our main result we shall prove in § 3 that

im0 xen - £ (U(X) — €x1)/(x§]x]17%) = 0,

with a set E in D which is a-minimally thin at co. This result is best possible in
the sense that if E<D is unbounded and g-minimally thin at co in D, then there
exists a non-negative superharmonic function u on D such that

lim g oo, e (#(X) — €x1)/(x§]x]17%) = co.

We note that if 0<a<a’<1, then a set a-minimally thin at co is a’-mini-
mally thin at co; however the converse is not necessarily true as shown by an
example in §5. In §4 the covering theorems, which were proved by Essén and
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Jackson [3] for minimally thin sets and rarefied set, will be also obtained for
a-minimally thin sets.

While this work has been in prepraration, Mizuta [6] extended our Theorem
3.2 to the case where the Green potential is of general order.

I would like to thank Professor Makoto Ohtsuka and Dr. Yoshihiro Mizuta
for their help in preparing this paper.

§2. Preliminaries

We introduce the following notation.

(i) As in §1, D denotes the half space {x=(x;, x,,..., x,) € RP; x; >0},
p=2.

(ii) Denote by D=DUy 4 the Martin compactification of D. Note that
the Martin boundary 4 is the Alexandroff compactification of dD, i.e., A=0D U
{o0}. Every point of 4 is a minimal boundary point. For these facts see e.g.
[2; pp. 115-117].

(i) If x=(x;, X5..., X,), then x'=(—x;, X,,..., x,) denotes the reflection
of x with respect to dD.

(iv) Let G(x, y)=¢(x—y|)—d(x—y’]) be the Green kernel for D, and
let Gu(x)=SG(y, x)du(y) be the Green potential at x of a (Randon) measure u,
where ¢(r)=r?"P for p>3 and = —logr for p=2.

(v) Let K(y, x) be the Martin kernel with reference point e=(1, 0,..., 0),
more precisely

1 on {e} x {e}
K(.V: X) = G(ya X)/G(y, e) on DxD- {e} X {e}
lim,,, .., G(z, x)/G(z, e) on 4 x D.
We note that K(y, x) is a minimal harmonic function of x for any yed. It is
known that K(co, x)=x, and that K(y, x)=x,|y—x|"?|y—e|P for any yedD

(see Brelot [2; p. 116]).
(vi) We introduce a Martin type kernel on D x D as follows:

G(y, X)/y, on DxD
K(y, x) = { 2¢,x|y—x|7? on 0D x D
Xq on {oo} x D.
Here c,=1 when p=2, and c¢,=p—2 when p=3. We note that K(y, x) is con-

tinuous in the extended sense on (DU dD)x D. Following Brelot [1; p. 31], we
let K*(x, y)=K(y, x) be the associated kernel of K on D x D.
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If u is a measure on D (resp. D), we abbreviate SD K(y, x)du(y) (resp.

[, K*, 0ty to Kux) (resp. K¥u().

(vii) For a non-negative superharmonic function v on D, there exists a unique
measure u on D such that v—Gpu is harmonic on D. This measure is called the
measure associated with » on D (see Helms [4; p. 116]).

(viii) For a non-negative function u on D and E =D, let RE be the regularized
reduced function of u relative to E (Helms [4; p. 134]).

(ix) Let s>1 be fixed and define

I,={xeD,; s" < |x] <s"1}.

For EcD, we let E(n)=EnI, and E(n)'=s""E,={s""x; x€E,}.
(x) For a number a, 0<a =<1, we define f,(x) = x4,

DEerINITION 2.1. A set EcD is called minimally thin at ye4=0D U {0}
if R%,,.,#K(»,-) (cf. Brelot [2; p. 122]).

REMARK 2.1. From the definition of K and K, we have K(y, x)=K(y, e)-
R(y, x) on (DU {o0})xD. Since K and K are continuous in the extended sense
on (D U dD)x D—{e} x {e}, the equality holds on DxD. We note that K(y, x)
plays the role of the Martin kernel in the following sense:

1. For any non-negative harmonic function h on D, there exists a unique
measure v on 4 such that

h(x) = Kv(x).

From the Riesz decomposition theorem, for any non-negative superharmonic
function u on D, there exists a unique measure x on D such that

u(x) = Ku(x)

2. K* potential is lower semi-continuous on D U 0D (see Essén and Jackson
[3; p. 240]).

Let EcD be a bounded set. Then RE is bounded and R} #f;. Since
K(o0, x)=f, is a minimal harmonic function, the greatest harmonic minorant of
RE is zero. Therefore there exists a unique measure A on D such that

E =Gl on D
or equivalently
2.1 Y1'R},(y) = K*2g(y)  on D.

DEerINITION 2.2 We call A the fundamental distribution on E (cf. Lelong-
Ferrand [5; p. 129] and Essén and Jackson [3; p. 237]).



428 Hiroaki AIKAWA

Let 0£a<1. If Eis a bounded set, then Rfa is a bounded superharmonic
function on D. From Remark 2.1 we find a unique measure 1% on D=D U 6D U
{oo} such that RE =KAg. However ﬁfﬂ is bounded, so that A({c0})=0, i.e.

¢ is a bounded (Radon) measure on D U dD.

DEerINITION 2.3. Let E be a bounded set. We define the a-mass of E by
AY(E)=A%(D U 0D) for 0<a<1, where 14 is the measure on Dy dD such that
Kig=RE .

LEmMMA 2.1. If E and Q are bounded subsets of D and EcQ, then

2.2) 29(E) = S K*A5dAg = S fudip = g RE_dag,.
DUOD D D
In particular
J\(E) =g fudig =g Gigdiy and 1°(E) = D).
D D
To prove Lemma 2.1 we need the following Lemmas 2.2 and 2.3, which
were proved in Essén and Jackson [3; pp. 239-240].

LEMMA 2.2 Let EcD. Let u, v be non-negative superharmonic functions
in D, and uE be the measure associated with RE in D. Then uE is concentrated
on the set {x e D; RE(x) = u(x)}.

LemMA 2.3. Let EcD be a bounded set. Let Bg be the set of points in
0D at which E is not minimally thin. Then K*Ag=1 on Bg and A3(0D — Bg)=0.

PrOOF OF LEMMA 2.1. By Lemma 2.2, we see that Az is concentrated on the
set

{xeD; RE (x) = x4} < {xeD; R2 (x) = x4}.

Hence

S fdig =S RY. diy =$ Kigdiy =S K*Apdid.
D p ¢ Jp DUaD

Since y7!RE (y)=K*Ag(y) on D, by Lemma 2.2 again,
a({xeD; RE (x) # x,}) = Mg({x e D; K*1x(x) # 1}) = 0.
If a=0, then by Lemma 2.3
A({xedD; K*1g(x) # 1}) = 0.

If 0<a<1, then the greatest harmonic minorant of Rfa is zero, so that 14(0D)=0.
Thus Ag is concentrated on the set
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{xeDUID; K*\g(x) =1} =« {xe DU dD; K*1y(x) = 1}

in any case. Therefore

J9(E) = g dig = SDWD K*igdis = SD Kigdig = SD RE.dag,

DUOD

Taking Q=E, this value is also equal to

S RE.di, = g fdig.
D D
Hence we obtain (2.2).

ReMARK 2.2. In Essén and Jackson [3], p. 237, the total mass of the fun-
damental distribution Ay (resp. A2) is called the outer charge (resp. Green mass),
and the Green energy of the fundamental distribution is called the outer power.
Lemma 2.1 shows that the outer charge equals the Green mass, which we call the
0-mass, and that the outer power equals the 1-mass.

Now we shall show some properties of the a-mass.

LEMMA 2.4. Let Q be a bounded set in D.

(i) If EcFcQ, then J*(E)<%(F).

(ii) IfE;<Q and E; 1 E, then A%(E;) 1 A°(E).

(iii) If E;=Q, then A°(\U%-; E))S Y. %=1 A%(E)).

(iv) If EcQ, then A°(E)=inf {A%(0); O>E, O is open}.

Proor. The properties (i), (ii) and (iii) readily follow from (2.2) and Brelot
[2; p. 49]. As in the proof of (2.1) in [3; Lemma 2.1], we see that

SD RE.dAg = lim,.., SD Romaz,

for some decreasing sequence {O(n)} of open subsets of D containing E. By our
Lemma 2.1, the left hand side is equal to A%(E) and the right hand side is equal
to lim,_ ., 4%(O(n)). Hence we obtain (iv).

LemMa 2.5. If E is a bounded set in D, then
AYkE) = kpte~1)9(E)  for k> 0.

ProOF. Let Q be a bounded set which includes E and kE. We note that
RYE(y)=kRE (k~'y) and hence K*Ag(y)=K*Ag(k~'y). By Remark 2.1, 2 we
find that the latter equality holds on Dy dD. Since K(k™ly, x)=kP~1K(y, kx),
we have from (2.2)
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poeB) = | Kehadin) = | K¥k i)

DU4D

- SDUBD {Su KKy, x)d’lE(x)}dflﬁ(y)
- SD {Spuap kP~ K(, kX)dlﬁ(y)}d/lE(x)

- kP'IS 9 (kx)dag(x) = kP‘lg kexadiy(x) = kr+a-139(E).
D D

DEFINITION 2.4. We say that Ec D is a-minimally thin at oo in D if
2.3) ®_A%(E(n))s~rmrta=1) < o0 for some s> 1.

By the aid of Lemma 2.5 we see that E is a-minimally thin at co in D if
and only if

2.3) ©_, A%(E(n)) < o0, where E(n)' = s7"E(n).

We shall abbreviate “a-minimally thin at co in D’’ to “‘a-min. thin’’. The
following lemma shows that the definition of a-min. thinness is independent of
the choice of s>1. The proof is similar to that of Lemma 3.1 of Essén and
Jackson [3], so we omit the proof.

LMEMA 2.6. Let A%(r) denote the a-mass of the set EN{xeD; |x|<r}.
Then E is a-min. thin if and only if
(2.4) Sw rPa)a(r)dr < oo.
1
REMARK 2.3. If 0<a<a’<1, then (2.2) yields

l“'(E(n)) = Sbfa,d)bE(") é s(n+1)(a’—a) Spf"dlE(") = s(n+l)(a"a))'a(E(n))

since s"*!>x, for x € E(n). Therefore if E is a-min. thin then E is a’-min. thin.
The converse is not true in general; but in case E is contained in a cone I" in D
with vertex at the origin and with axis parallel to the x; axis, there exists a positive
constant C such that C|x|=x,=|x| for xeI' and C¢4s"A°(E(n))<A%(E(n))<
s(»+1)a)0(E(n)), so that E is a-min. thin if and only if E is 0-min. thin or equiva-
lently 1-min. thin. Later we shall construct an example of a set which is a’-min.
thin but not a-min. thin for a <a’ (see Proposition 5.1).

By an elementary caluclation we have the next lemma.

LemMMA 2.7. If p=3, then there exist positive constants A and B such that
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A £ G(x, p)/(x 1y lx—y*Plx=y) = B

for all x, yeD. If p=2 and >0, then there exists positive constants A and
B; such that

Axyy|x=y|7? £ G(x, y) £ Bsx1y1|x—y|7%|x=y'|*"2  for all x, yeD.

§3. The main results

We consider the function g,(x)=x,[x[?, where y is a real number. By an
elementary calculation we find that Ag,(x)=y(p+y)x,|x|?~2. Therefore g, is
superharmonic in D if and only if—p<y<0. Since K(c0, x)=x, is a minimal
harmonic function on D, min (x,, x,|x|?) is a Green potential if —p<y<0. We set

Gvy(x) = min (x,, x,|x|1"?~#) for 1—-p<p=1.
We note that

1 for |x|] <1

|x|t-p—F for |x| = 1.

(3.1 K*vy(x) = {

DEerFINITION 3.1 (cf. [3; Definition 4.1]). For B, 1—-p<B=1, let &, be the
class of all non-negative superharmonic functions u on D for each of which there
exists a measure p on D U 0D such that

u@={ KO, 0du),

(3.2) SK*v,,(y)du(y) = gKu(x)dvﬁ(x) = Su(x)dv,,(x) < o0.

ReMARK 3.1. If u,,u,e%; and c¢ is a positive constant, then u;+u,,
cu,€Fy. If 1—p<a<f=1, then it is evident that &,=%,;. A non-negative
superharmonic function u(x) belongs to &, if and only if for any ¢>0, u(x) fails
to dominate cx, on D (see [3; Remark 4.2]).

LemMma 3.1. If veSy and u is a non-negative superharmonic function
such that 0Su=<v on D, then ue #,.

ProOF. In view of Remark 3.1, we see that ue ;. Hence we find a
measure y on D U 0D such that u(x)= Ku(x) and Sudvp§gvdvﬂ< co. This proves
the lemma.

LemMa 3.2. Ifu,e ¥4 and ZSu,,dv,< 0o, then 3 u,e L.
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Proor. By Lebesgue’s monotone convergence theorem SZu,,dvﬂ=
ZSu,,de< oo. Therefore it is sufficient to prove Y u,e%;. Suppose that > u,(x)
=cx, where ¢=0. Take an arbitrary integer m. Put >7_,u,=K¢ and X, .u,
=Kn. Then (£+n) ({oo})=c. Since u,e ¥, &({0})=0, so that n({o})=c.
It follows that ., u(x)=cx,. Hence

0= chldv,,(x) S Yom gu,,dvﬁ -0 as m — 0.

Thus ¢=0 so that Yu,e ;.

We investigate relations between the regularized reduced functions and the
class &;. Let f be a non-negative function on D and EcD. Since E=\U,E(n),
where E(n)=E NI, it is obvious that RES Y RE™, so that 3 RE™ e &, implies
Ef € #5. The converse does not hold generally. If we assume

(3.3) lim inf ;.o f(x)/(x,]x]|f~1) > 0,
then we can show the converse.
LemMMA 3.3 Let f(x) satisfy (3.3). If REe %y, then 32, RE™W e 7).

PrOOF. Since RENO<E:»I21<RE and {yeE; |y|21}(n)=E(n) for n=1, if
necessary, taking the intersection EN{ye DU dD; |y|=1}, we may assume that
E is included in the set {yeDudD; |y|=1}. Let R§=Ku, where p satisfies
(3.2). Since the support of u is included in the closure of E, u({yeDu dD;
|yl <1})=0. Noting (3.1), we have

flyt-rsau(y) < co.

We find a positive constant C and a natural number N such that f(x)=Cx,|x|#~1
for |x|>sV. Since YN, REM<NREe &, it is sufficient to prove Y,y RE™
€Sy WesetJ,,=I,_,U--UI,U-- Ul for k>0. Let n>N and x e E(n).
If |y|<s" %, then s*|y|<|x| and [x—y|=(1—s7¥)|x|]. From Lemma 2.7 we

have
K(y, x) = G(y, x)[y; = Const. x;|x[#~1(1 —s~*)~2(s*|y|)* 74

Hence

51 e KO () < Const. k=0 (x).
ylssn-k

Similarly we have

K(y, x)du(y) < Const.f(x)gl Iy1t=P=Pdp(y).

ylzsk+N+1

Slylzsn+k+l
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Since sk(1-p=#) and S |¥|*=P~Bdu(y) tend to O as k—oo0, choosing k

ylzsk+N+1

large, we have

g K(y, x)du(y) = f(x)/2 for all xe E(n).
DUBD—Jp,k

Since RE2 f q.e. on E(n), it follows that

S, K( 0du() ()2 q.e.on En).

The definition of regularized reduced function yields
{, Ko.0duo)zRE™2  on D.
In K

If we now sum both sides over n, then we have
(2k+1)RE = 2k+1)Kp = 271,y REM,
By Lemma 3.1 we obtain Y ,. 5 I?f(") € %p. Thus the lemma follows.

LemMA 3.4. Let f(x) satisfy (3.3). Let W,=\Uys,I,. If {A;} is a sequence
of sets such that ﬁ'}feyp, then there exists an increasing sequence {n(j)} of
natural numbers such that ZJR}U""U)) € Py, where A(j, n)=A4;NW,.

ProOF. Since R4U:W<Y,. R4U:H, we have \R4U:Mdy,—0 as n—
oo by Lemma 3.3. Take an increasing sequence {n(j)} such that R'}U mUdy,
<2-J. Then ¥ ,.Sﬁ;uf»nu>>dv,,<1. By Lemma 3.2 we have ¥, RAU.nDe g,

THEOREM 3.1 (cf. [3; Theorems 4.4 and 4.5]). Let f(x)=x$|x|f~* with
1—p<B=Z1. Then the following three statements are equivalent:

(i) E is a-min. thin.

(ii)) Xo,REMe,

(i) REe .

Proor. In this proof, constants of comparison will be positive. Obviously
f(x)=x4|x|f satisfies (3.3). Hence Lemma 3.3 yields that (ii) and (iii) are
equivalent. We note

Const. R?‘ﬁn) é S_"(B_a)Rf.(") é Const. R?E}l)’

Const. A*(E(n)) < s"’(l"’"’)gl 117 d2g y(») < Const. A%(E(n)),

X.ﬁ?‘in)d\’ﬁ = SKlaE(")de = SK*Vﬁdl%(") = Slyll—p_ﬂdl%(”)(y).
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Hence
Const. s"(1=3=P))a(E(n)) < Sﬁ‘}(")dvp < Const. s"(1=a=p)}a(E(n)),

which implies that (i) and (ii) are equivalent.

ReEMARK 3.2. In the case a=f=1 Theorem 3.1 shows that E is 1-min. thin
if and only if Rfl € &, which implies that 1’?’}1 is a Green potential. It follows
that E is 1-min. thin if and only if E is minimally thin at co.

Now we discuss the behavior at co of functions in &,, which is characterized
by the use of a-min. thin sets. From Lemma 3.4 we have the following theorem.

THEOREM 3.2 (cf. [3; Theorem 4.7]). Let f(x)=x{|x|#72. If uey,
then there exists a set Ec D which is a-min. thin such that

lim|x|—>oo,xED—E u(x)/f(x) = 0.

Conversely, if E is unbounded and a-min. thin, then there exists u € & such that

lirn|.vc|—voo,;vceE u(x)/f(x) = 0.

Proor. Weset 4;={xeD; u(x)/f(x)= j!} for each positive integer j. We
note that by Theorem 3.1, 4; is a-min. thin since R’}f Sjue . Applying
Lemma 3.4, we find {n(j)} such that 3" ; ﬁ}(f;"(m €y Set \US; A(J, n(j))=E.
Since RESY ; R4Us"()), REe #, and hence E is a-min. thin by Theorem 3.1.
If x¢&E, then x&A(J, n(j)) for every j. It follows that if |x|=s"(), then
x&A; This implies that u(x)/f(x)<j!. Thus we have wu(x)/f(x)—0 as
|x| >0, xe D—E.

For the converse we take an open set O> E such that O is a-min. thin. This
is possible since A¢ is continuous to the right (Lemma 2.4 (iv)). By Theorem 3.1
we have

>, R?(”) €Sy, where O(n) =0 n I,

which implies
2t ROy, < o0,
We find an increasing sequence {c,} of positive numbers such that c,t co and
pIFY Cngﬁ‘}(”’dvﬁ < .

Set u=Y 2, c,R%™. By the aid of Lemma 3.2 we have ue &y Since O(n)
is included in the interior of O(n—1) U O(n),
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RD(x) + RIM(x) 2 RY™=DVOW(x) 2 f(x)
for xe O(n). Hence, if x € E(n) = O(n), then

u(x) Z - 1 RY*D(x) + ¢,RIM(x) 2 -1 f(x).
Therefore

lim |, o xep #(X)/[f(x) = 0.

§4. Covering theorems

In this section we consider only the case p=3. Now we estimate the a-mass
of a ball. We use the following notation: B=B(t, r, R) denotes the open ball
of radius r and with center {=(¢, x,,..., x,), where t>0 and R=|¢|. Let 5 be
the collection of all sets of the form Bn D with 0<r=tp!/2. One notes that if
FcDuydD is a closed cube with sides parallel to the coordinate axes, then the ball
B whose center is the center of F and whose diameter is that of F satisfies BN D
eH.

LemMA 4.1. Let H=Bn D e s, where B=B(t, r, R). Then we have
4.1) Const. t1+erp=2 < J9(H) < Const. tl+arp=2,
where the constants of comparison are positive.

Proor. Constants of comparison will be positive in this proof. We start
with the case t>r; in this case H=B. From the minimum principle we have
R?B=f, on B, which implies that R%2=R% on D. By the aid of Lemma 2.1
we have A9(0B)=A%(B). Let £ be the center of B and y e B. Then, noting that
supp A4 <=dB and t=¢, <|£—y'| < Const. &€, =Const. t, we have from Lemma 2.7

Const. K2g5(¢) < 71 Sa | — y[2-Pdag,(y) < Const. KAZ,(¢).
B

Hence,

Const. R33(&) < t~1r2-7A%(0B) < Const. R?8(¢) < Const. t4.
Since R?2 is harmonic on B and continuous on B, it follows that
R}‘z(é) = oplri7rp Sa ﬁ?ﬁ(y)da(y) = a;lrl‘Pg y4do(y) = Const. 19,
B oB

where ¢ is the surface measure on 0B and o, is the surface area of a unit ball in
Rr. Thus we have

Const. t4+172-2 < 19(3B) = J%(B) < Const. t++177-2,



436 Hiroaki AIKAWA

If t<r, then we have t<r<tp'/2. The ball B’ whose center lies at the center
of B and whose radius equals r/p!/? is contained in B. Let { be the projection of
the center of B on 0D. Then {xeD; |x—{|<2r} contains B. By the above
argument and Lemmas 2.4 and 2.5, we have

Const. rrta=1 < 19(B’) £ A9(H) < A%({xeD; |x—{| < 2r}) < Const. rrta-1,
Thus the proof of the lemma is complete.

THEOREM 4.1 (cf. [3; Theorem 4.1]). Set H,=B(t,, r,, R,) N D, and suppose
H,clI,. Then E=\U,H, is a-min. thin if and only if

(4'2) :D=l (tn/Rn)1+a(rn/Rn)p—2 < 0.

Proor. Since H,cI,, we have s"<R,<s""!. From (4.1) we see that there
exist positive constants C and C’ such that Ctlter?-2<e(H,)<C'titerd-2,
Hence Theorem 4.1 follows from Definition 2.4.

DEFINITION 4.1 (cf. [3; Definition 5.1]). Let h: [0, c0)—[0, o) be a non-
decreasing continuous function such that h(0)=0. If H=B(t,r, R)\nDe s#,
then we define a premeasure (see Rogers [7; p. 9]) by

T8(H) = t'*eh(r), Hes.
DEFINITION 4.2 (cf. [3; Definition 5.2]). We define
L4(E) = infm,,) 2.Th(H,),
where the infimum is taken over all countable coverings {H,} =s# of E.

REMARK 4.1. If h(r)=rr~2, then there exist positive constants which depend
only on p such that Const. 1¢(H)<t{(H)< Const.A%(H) (Lemma 4.1). By
using the monotone and countably subadditive properties of the a-mass A¢
(Lemma 2.4), we have Const. 1%(E) < L#(E), where the constant is positive.

The same argument as in Essén and Jackson [3; pp. 255-260] shows the
following lemma.

LEMMA 4.2. If E is contained in {x € D; |x|<b}, and if h is defined as in
Definition 4.1 and satisfies

S: S(Hdh(r) < o,

then there exists a constant C which depends only on p and b such that

#(E) = CA%(E).
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THEOREM 4.2 (cf. [3; Theorem 5.1]). Let EcD be a-min. thin. If a
Sfunction h: [0, 00)—[0, c©) is non-decreasing, continuous and satisfies h(0)=0
and

[ oryan < oo,

then there exists a covering {H,} in s of E such that H,=B,n D, B,=B(t,,
r.,, R,) and

Zn (tn/Rn)1+ah(rn/R,,) < 0.

Proor. We recall the definition of g-min. thinnness. From (2.3’) we have
> . A%E(m))<oo. Since E(n) ={xeD; |x|<s}, applying Lemma 4.2, we have
2. LY(E(n))< 3, CA%E(n))<oco. We can cover E(n)’ by a sequence {H, ;}
in 5 such that

2 rreh(ry, ) < Li(E(n)) + 277,

where H, ;=B, ;N D, B, ;=B(t, ;, r,;, R, ;), and R, ;=21. We set ;i =5"th i
Tpj=5"Ty ;» R,;=s"R; ; and H, ;=B(t,;, 1, R,;)nD. We observe U, ;H,;
>\,E(m)=E, r, ;2r,;/R,; and t, ;=t,;/R,;. Since h is non-decreasing,

Zn,j(tn,j/Rn,j)1+ah(rn,j/Rn,j) < 0.
Our proof is now complete.

If h(r)=rf for 0=r=1 and=1 for r>1, then Sw ¢(r)dh(r)< oo for each
0

B>p—2. Hence we have the following corollary.

COROLLARY. Let EcD be a-min. thin. For each B>p—2, E can be covered
by a sequence {H,} in s# such that H,=B(t,, r,, R,) N D and Y, (t/R)°(r,/
R,)? < 0.

§5. Examples

In this section we use the following notation.
(i) Let & be the projection from D onto 0D, namely,
n(x) = (X1, X25...5 Xp)) = (0, X2,..., Xp).
(ii) For t>0 and a bounded set A =dD we define A(t) by
A = {x = (X1, X25.., X,)€D; n(x) €A, 0 < x; < t}.
We investigate the behavior of 19(A(t)) when 0<t<1.

LeEmMMA 5.1. Let p=2. If A is a bounded subset of 0D, then there exists
a constant C{ which depends only on p and A such that

A5(A(f) < C,te.
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ProorF. From Lemma 2.1 we have
19040) = [RpP 20y S 1425CAQD).

Since A(1) is a bounded set, 1°(4A(1))<oo. Hence the lemma follows.

LemMA 5.2. If p=3 and A is a bounded subset of 0D which has an interior
point in 0D, then there exists a positive constant C, which depends only on p
and A such that

C,t% < A9(A(H)).

Proor. Let A'(f)={x=(xy, X5,..., X,) €D; n(x) € A, x; =t/2} and u, be the
restriction of the (p—1)-dimensional Lebesgue measure on A'(f). Let x, y € A'(¢).
Put r=|x—y|=|n(x)—n(y)|. Since |y—x'|2=r2+1t2, we have from Lemma 2.7

K*u(x) < cOnst.S o, [Er72[ (¢ 1)), < Const. Sw [t/(#2+r?)]dr = Const.
A’ (1) 0
Therefore we have

A9(A() 2 29(A(D)) = Sm,m > Const. gK*u,d/lf,,(,)
= Const. SK/IQ,(,)du, = Const. Sﬁ'};")du,,

where the constants are positive. Since p, has finite energy, p, vanishes on any
set of capacity zero. Hence

(Raoau, = (REOdp, = @ (du, 2 271141,

where |A] is the (p—1)-dimensional Lebesgue measure of A. Since A has an
interior point in 6D, 0<|A| < oo and the lemma follows.

LemMma 5.3. Take any €>0. If A is as in Lemma 5.2 and p=2, then there
exists a positive constant C; which depends only on A and ¢ such that

Catete < A9(A(1)).

Proor. Without loss of generality we may assume that 0<e<1. Applying
Lemma 2.7 with 6=1—¢, we have

K*(y, x) < Const. y;|y—x[|y —x'|717¢,

Letting A’(¢) and y, be as in the proof of Lemma 5.2, we have
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K*u(x) < Const. t°2 on A'(Y),
A%(A(1) 2 22(A'(1)) 2 Cyte*s,
where C, is a positive constant which depends only on A4 and e.
Lemma 5.3 is not sharp, but if a=0, then we have the following lemma.

LEMMA 5.4. If A is as in Lemma 5.2, then there exists a positive constant
C, which depends only on p and A such that

C, Z 2%(A(Y))  forany t,0<t<l.

PrOOF. There exist r,>0 and {€dD such that U={xe€dD; |x—{|<ry}
cA. Let V={xedD; |x—{|<ry/2} and p be the restriction of the (p—1)-
dimensional Lebesgue measure on V. We find that Ku(x) is harmonic in D and
continuous on (D U dD)—{x € 0D; |x—{|=ry/2} and that

Ku=1 onV, Ku=0 on 0D — U,
0LKu=<1 onDudD, lim ||, Kp(x) = 0.
Since RY® =1 on U(t), we have
lim inf, ... op (RY® — Ku(z)) 2 0
for all xedD u {o0}. By the maximum principle we have
RV >Kuy  on D.

Since K*Ayy=1 on V, it follows from Lemma 2.1 that

2A®) 2 2UO) = | ROty 2 | Kudiug

- S K*Aydp = S K*dydp = S du = V| > 0.
DUOD oD oD
Thus the lemma follows.

We have already shown in Remark 2.3 that if E is contained in a cone I" with
vertex at the origin and with axis parllel to the x, axis, then the g-min. thinness
of E is equivalent to the minimal thinness. On the other hand A*((D—TI')(n)")=
A((D—-T)(1))>0 for every positive integer n, and hence D—1I is not a-min. thin.
Now we give examples of a-min. thin sets conatained in D—1TI".

DEeFINITION 5.1.  Let h(r) be a positive monotone function on [0, c0). We
define D, by

Dy, = {x = (x4, X2,..., X,) € D; 0 < x; < h(|n(x)|}.
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REMARK 5.1. From Lemma 5.4 it follows that D, is not O-min. thin. In
particular a strip domain {x e D; 0<x; <b}, b>0, is not 0-min. thin.

Hereafter let 4 be non-decreasing and satisfy
5.1 lim sup,_q h(r)/r < .

Take 0, 0<6<m/2, and ry, ry>0, so that h(r)<r tan 6 for r=r,, i.e. D,N{xeD;
x| <ro}=D,tans- Choose s, s>1, such that that s cos0>1. We set

E=D, F={xedD;1<|x| <scosb},

G ={xedD; cosf £ |x|] < s}.

From the assumption we have Fcn(E(n)')<=G if n is large. Set m,=h(s")/s"
and M,=h(s"*1)/s". Then we obtain

F(m,) < E(n)’ = G(M,) if nis large,

where F(m,)={xeD; n(x)eF,0<x,<m,} and GM,={xeD; n(x)eG, 0<
x;<M,}. Since the a-mass is monotone, A%(F(m,))=A%(E(n)")=<1%(G(M,)).
By Lemma 5.1 we have 1%(G(M,))<C,M?, so that

(5.2 A(E(m)') < C;M:¢ for p=2
if n is large. Similarly there exist positive constants C, and C; such that

(5:3) Comj £ A%(E(n)') for p23,
5.4 Ci;ma*te < A9(E(n)) for p=2 and ¢>0,

if n is large.

PROPOSITION 5.1. Let h(r) be a non-negative non-decreasing function on
[0, o) and satisfy (5.1). Then D, is a-min. thin if

ST [(h(r)/r)?/rldr < co.
In case p<3, D, is not a-min. thin if
[ Lneyryimar = .
In case p=2, D, is not a-min. thin if
[ Wirseairtdr =0 for some &> 0.

Proor. Since h(r) is non-decreasing, we have
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M, = h(s""V)[s" = m, = h(s")[s" = M,_/s
and
syt = st < (7 [y irldr < (s tylsne(sntt =5y,

Therefore

n

Const. M2_, < S [(h(r)/r)e/r]dr < Const. M2 < Const. mé., ,
where the constants of comparison are positive and depend only on a and s.
Similarly

Ss: [(h(r)/r)**¢[r]dr < Const. ma1s.

Using (5.2), (5.3) and (5.4), we obtain the proposition.

REMARK 5.2. If 0<a<1 and h(r)=b, b>0, then h satisfies (5.5). Hence,
a strip domain {xe D; 0<x,<b} is a-min. thin for any a, 0<a=l. If h(r)=

(e/a)* for 0=r<e* and=r/(log r)* for r=e*, then Sm [(h(r)/r)?/r]dr< o if and
1

only if an>1. Therefore in case p=3 D, is a-min. thin if and only if ax>1,
and in case p=2 D, is a-min. thin if ax>1 and D, is not g-min. thin if ax<1.
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