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§ 1. Introduction

The aim of this paper is to generalize the results of Essen and Jackson [3].
Let D = {x = (xl9 x2,..., xp)eRp; xt>0}9 where p^2. Let u be a non-

negative superharmonic function on D. Then it is known that u is uniquely
decomposed as

u(x) = cxx + \ G(y, x)dii{y) [
JD JdD

where c is a non-negative number, \i (resp. v) is a (Radon) measure on D (resp.
dD) (see Helms [4; p. 37 and p. 116]). Lelong-Ferrand [5; Theoreme lc] showed
that

limlx^o0tXeD.E(u(x)-cxi)lxl = 0,

with a set E in D which is minimally thin at oo. Recently Essen and Jackson
[3; Theorem 4.6] proved that

limlx]^tXeD^E(u(x)-cx1)l\x\ = 0,

with a set E in D which is rarefied at oo.
We introduce in §2 the notion of a-minimal thinness (O^a^l) , which is

identical to minimal thinness when a — \ and which is identical to rarefiedness
when a = 0. As our main result we shall prove in § 3 that

^x\-*oo,XeD-E(u(x)-CX1)l(x
a
l\x\1-a) = 0,

with a set E in D which is a-minimally thin at oo. This result is best possible in
the sense that if £ c D is unbounded and a-minimally thin at oo in D, then there
exists a non-negative superharmonic function u on D such that

We note that if 0^a<a'^l, then a set ^-minimally thin at oo is a'-mini-
mally thin at oo; however the converse is not necessarily true as shown by an
example in §5. In §4 the covering theorems, which were proved by Essen and
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Jackson [3] for minimally thin sets and rarefied set, will be also obtained for
a-minimally thin sets.

While this work has been in prepraration, Mizuta [6] extended our Theorem
3.2 to the case where the Green potential is of general order.

I would like to thank Professor Makoto Ohtsuka and Dr. Yoshihiro Mizuta
for their help in preparing this paper.

§ 2. Preliminaries

We introduce the following notation.
( i ) As in §1, D denotes the half space {x = (x1, x2,..., xp)eRp; x1>0},

P = 2'
(ii) Denote by B = D\jA the Martin compactification of D. Note that

the Martin boundary A is the Alexandroff compactification of dD, i.e., A=dD U
{oo}. Every point of A is a minimal boundary point. For these facts see e.g.
[2; pp. 115-117].

(iii) If x = (xu x2,...,xp)9 then x' = ( — xl9 x2,...9xp) denotes the reflection
of x with respect to dD.

(iv) Let G(x, y) = 4>(\x-y\)-(l)(\x-y'\) be the Green kernel for D, and
let Gfi(x) = \ G(y9 x)d[i(y) be the Green potential at x of a (Randon) measure \i9

where 0(r) = r2~p for p^.3 and = —log r for jp = 2.
(v) Let K(y9 x) be the Martin kernel with reference point e = (l, 0,..., 0),

more precisely

K(y, x) =

1 on {e} x {e}

G(y, x)/G(y, e) on D x D - {e} x {e}

limz^fZeD G(z, x)/G(z, e) on A x D.

We note that K(y, x) is a minimal harmonic function of x for any ye A. It is
known that K(co, x) = x 1 and that K(y, x) = x1\y — x\~p\y — e\p for any yedD

(see Brelot [2; p. 116]).
(vi) We introduce a Martin type kernel on D x D as follows:

G(y, x)ly1 on D x D

K(y, x) = 2cpx1b-x|-* on 3D x D

t on {oo} x D.

Here cp=l when p = 2, and cp = p — 2 when p ^ 3 . We note that K(y9 x) is con-
tinuous in the extended sense on (D u dD) x D. Following Brelot [1; p. 31], we
let K*(x9 y) = K(y, x) be the associated kernel o fXonDxf i .
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If fi is a measure on D (resp. D), we abbreviate \ K(y, x)dfi(y) (resp.

\ K*(y, x)dfi(y)) to K^x) (resp. X*AI(X)).

(vii) For a non-negative superharmonic function t? on D, there exists a unique
measure / / o n D such that v — G\i is harmonic on D. This measure is called the
measure associated with v on D (see Helms [4; p. 116]).

(viii) For a non-negative function u on D and EczD, let jRf be the regularized
reduced function of u relative to E (Helms [4; p. 134]).

(ix) Let 5 > 1 be fixed and define

In = {xeD;sn <> \x\ < sn+1}.

For EczD, we let E(n) = E n /„ and E{n)r = s~nEn = {s-nx; xeEn}.
(x) For a number a, O ^ a ^ l , we define fa(x) = xf,

DEFINITION 2.1. A set £ c D is called minimally thin at yeA=dD U {oo}
if *!( , , . )#£(*•) (cf. Brelot [2; p. 122]).

REMARK 2.1. From the definition of K and K, we have K(y, x) = K(y, e)-
K(y, x) on (D U {oo}) x D. Since K and K are continuous in the extended sense
on (D VdD)xD-{e} x {e}, the equality holds on DxD. We note that K(y, x)
plays the role of the Martin kernel in the following sense:

1. For any non-negative harmonic function h on D, there exists a unique
measure v on A such that

h(x) = Kv(x).

From the Riesz decomposition theorem, for any non-negative superharmonic
function u on D, there exists a unique measure /i on D such that

u(x) = K/Kx)

2. K* potential is lower semi-continuous on D U dD (see Essen and Jackson
[3; p. 240]).

Let EdD be a bounded set. Then JR^ is bounded and Rj-^fi- Since
X(oo, x)=f1 is a minimal harmonic function, the greatest harmonic minorant of
Rft is zero. Therefore there exists a unique measure XE on D such that

RE
fl = G2£ on D

or equivalently

(2.1) yT'RUy) = K*lE(y) on D.

DEFINITION 2.2 We call XE the fundamental distribution on E (cf. Lelong-
Ferrand [5; p. 129] and Essen and Jackson [3; p. 237]).
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Let O ^ a ^ l . If E is a bounded set, then kfa is a bounded superharmonic
function on D. From Remark 2.1 we find a unique measure X% on f) = D U dD U
{00} such that Rfa = KXE. However Rfa is bounded, so that 2f({oo}) = 0, i.e.
XE is a bounded (Radon) measure on D U dD.

DEFINITION 2.3. Let £ be a bounded set. We define the a-mass of E by
Xa(E) = Xa

E(D[)dD) for O ^ a ^ l , where X% is the measure on D u dD such that
JS.AE — Kfa.

LEMMA 2.1. J/E and Q are bounded subsets of D and EaQ, then

(2.2) HE) = ( K*XEdk°Q = \ fadkE = f ^f adAn .
JDUdD JD JD

In particular

X\E) = [ ftdXE=[ GXEdXE and X%E) = XE(D).
JD JD

To prove Lemma 2.1 we need the following Lemmas 2.2 and 2.3, which
were proved in Essen and Jackson [3; pp. 239-240].

LEMMA 2.2 Let EczD. Let u, v be non-negative superharmonic functions
in D, and \i^ be the measure associated with R*j in D. Then \x^ is concentrated
on the set {xeD; R*(x) = u(x)}.

LEMMA 2.3. Let EaD be a bounded set. Let BE be the set of points in
dD at which E is not minimally thin. Then K*XE=1 on BE and XE(dD-BE) = 0.

PROOF OF LEMMA 2.1. By Lemma 2.2, we see that XE is concentrated on the
set

{xeD; Rfm(x) = xf} c {xeD; R%(x) = xf}.

Hence

( fadXE = ( $PfadkE = ( KX°QdXE = [ K*XEdX°Q.
JD JD JD JDUdD

Since yT1Rfi(y) = K*XE(y) on D, by Lemma 2.2 again,

XE({xeD; RE
fl(x) # x j ) = XE({xeD; K*XE(x) * 1}) = 0.

If a = 0, then by Lemma 2.3

X°E({x E 8D; K*XE(x) # 1}) = 0.

^ l , then the greatest harmonic minorant of Rfa is zero, so that XE(dD) = 0.
Thus X% is concentrated on the set
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{xeDudD; K*kE(x) = 1} c {x eD u dD; K*kQ(x) = 1}

in any case. Therefore

*•(£) = ( <ttf = ( X*^As = f KkldkQ
jDlidD jDUdD JD

Taking Q = E, this value is also equal to

Hence we obtain (2.2).

REMARK 2.2. In Essen and Jackson [3], p. 237, the total mass of the fun-
damental distribution kE (resp. k°E) is called the outer charge (resp. Green mass),
and the Green energy of the fundamental distribution is called the outer power.
Lemma 2.1 shows that the outer charge equals the Green mass, which we call the
0-mass, and that the outer power equals the 1-mass.

Now we shall show some properties of the a-mass.

LEMMA 2.4. Let Q be a bounded set in D.
( i ) If E a Fez Q, then ka(E) g ka(F).
(ii) / / Ej czQandEjt E, then ka(Ej) t ka{E).
(iii) / / Ej c Q, then ka(\J JL t Ej) ̂  E ?= i ka(Ej).
(iv) IfEcQ, then ka(E)=inf{ka(O); Oz>E,O is open}.

PROOF. The properties (i), (ii) and (iii) readily follow from (2.2) and Brelot
[2; p. 49]. As in the proof of (2.1) in [3; Lemma 2.1], we see that

^ f a ^ = l imn_^^>^

for some decreasing sequence {O(n)} of open subsets of D containing E. By our
Lemma 2.1, the left hand side is equal to ka{E) and the right hand side is equal
to lim^oo ka(O(n)). Hence we obtain (iv).

LEMMA 2.5. If E is a bounded set in D9 then

Xa{kE) = kP+a-1ka(E) for k> 0.

PROOF. Let Q be a bounded set which includes E and kE. We note that
Rff(y) = k&fl(k~1y) and hence K^kkE{y) = K¥kE{k~1y). By Remark 2.1, 2 we
find that the latter equality holds on D U dD. Since K(k~1y9 x) = kP-iK(y, kx\
we have from (2.2)
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K*XkE(y)dX"Q(y) = \ K*XE(k~ly)dXfi(y)
DUdD JDUdD

= ( If K(k-iy, x)dXE{x)\dXfi{y)
JDUdD UD )

, kx)dX°n(y)\dXE(x)
)

{
D UDUdD

RJ (kx)dXE(x) = fc"
D a JD

DEFINITION 2.4. We say that EczD is a-minimally thin at oo in D if

(2.3) Zn=*a(E(n))s-n(p+a-v < oo for some s > 1.

By the aid of Lemma 2.5 we see that E is a-minimally thin at oo in D if
and only if

(2.3;) £?=i Xa(E(n)') < oo, where E(n)' = s~nE(n).

We shall abbreviate "a-minimally thin at oo in D " to "a-min. thin". The
following lemma shows that the definition of a-min. thinness is independent of
the choice of s > l . The proof is similar to that of Lemma 3.1 of Essen and
Jackson [3], so we omit the proof.

LMEMA 2.6. Let Xa(r) denote the a-mass of the set E(]{xeD; | x |< r} .
Then E is a-min. thin if and only if

(2.4) \ r~p-aXa(r)dr < oo.

REMARK 2.3. If 0 ̂  a < a' ^ 1, then (2.2) yields

since sn+1^.xl for xeE(n). Therefore if E is a-min. thin then E is a'-min. thin.
The converse is not true in general; but in case E is contained in a cone F in D
with vertex at the origin and with axis parallel to the xx axis, there exists a positive
constant C such that C l x l ^ x ^ l x l for xeT and CasanX0(E(n))S^a(E(n))S
s(*+1)flA%E(n)), so that E is a-min. thin if and only if E is 0-min. thin or equiva-
lency 1-min. thin. Later we shall construct an example of a set which is a'-min.
thin but not a-min. thin for a <a' (see Proposition 5.1).

By an elementary caluclation we have the next lemma.

LEMMA 2.7. //p}?:3, then there exist positive constants A and B such that
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A ^ G(x, y)l(xiyi\x-y\2-r\x-yr2) ^ B

for all x, yeD. If p = 2 and 8>0, then there exists positive constants A and
B5 such that

Axiyi\x-y\-2 ^ G(x, y) ^ B8xiyi\x-y\->\x-y'\5-2 for all x, yeD.

§3. The main results

We consider the function gy(x) = x1\x\y, where y is a real number. By an
elementary calculation we find that Agy(x) = y(p + y)x1\x\y~2. Therefore gy is
superharmonic in D if and only if—p^y^O. Since X(oo, x) = xx is a minimal
harmonic function on D, m i n ^ , xjxl7) is a Green potential if— p^y<0. We set

Gvp(x) = min (xi9 x^x]1'*'?) for 1 - p < fi ^ 1.

We note that

1 for IJCI < 1
(3.1) %W ,

' \ \ ^ P for

DEFINITION 3.1 (cf. [3; Definition 4.1]). For jS, l - j p < j 5 ^ 1 , let ^ be the
class of all non-negative superharmonic functions u on D for each of which there
exists a measure \i on D u dD such that

u(x)=\ K(y,x)dfi(y),
JDUdD

(3.2) \K*V0(yW(y) = ^Kii(x)dvjx) = JuWdv^x) < oo.

REMARK 3.1. If u1,u2eyp and c is a positive constant, then u1 + u2,
cu1ey^. If 1— p<oc<P^l9 then it is evident that ^ a c z ^ . A non-negative
superharmonic function u(x) belongs to Sf\ if and only if for any c>0, u(x) fails
to dominate cxx on D (see [3; Remark 4.2]).

LEMMA 3.1. If ve&p and u is a non-negative superharmonic function
such that O^u^v on D, then u

PROOF. In view of Remark 3.1, we see that w e ^ . Hence we find a

measure \x on D u dD such that u(x) = Kfi(x) and \udvpS \vdvfi< oo. This proves

the lemma.

LEMMA 3.2. Ifune^p and sUnrfv/9<oo, then Y,un
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PROOF. By Lebesgue's monotone convergence theorem
^\undvp< oo. Therefore it is sufficient to prove ZM«^^i- Suppose that £un(x)
^cxj where c^O. Take an arbitrary integer m. Put £™=1 un = K£, and Z«>mw«
= Krj. Then ({ + >/) ({oo})^c. Since utteSfl9 c({oo}) = 0, so that rj({oo})^c.
It follows that Sn>m wn(x)^cxi. Hence

0 ^ cjXidv/x) ^ £M>m ̂ uBdv, -> 0 as m -> oo.

Thus c = 0 so that I X

We investigate relations between the regularized reduced functions and the
class Sffi. Let / b e a non-negative function on D and EaD. Since E=\jnE(ri),
where £ (» = £n/„, it is obvious that Rf^^Rf^n\ so that Y^Ef{n)^^p implies
£ The converse does not hold generally. If we assume

(3.3) liminf^^/to/OcJxl '-1) > 0,

then we can show the converse.

LEMMA 3.3 Let f(x) satisfy (3.3). / / Aj e &>fi9 then £«= 1 Rj

PROOF. Since $E*{ycE'.\y\*i)^&E and {yeE; \y\^l}(n)=E(n) for n ^ l , if
necessary, taking the intersection E 0{yeD[j 3D; | j / | ^ l} , we may assume that
E is included in the set {yeDydD; \y\*>l}. Let Rf = Kfi, where ju satisfies
(3.2). Since the support of \i is included in the closure of E, n({yeD u dD;
|^|<l}) = 0. Noting (3.1), we have

fidi) oo.

We find a positive constant C and a natural number N such that /(x)^Cx1|x|^~1

for \x\>sN. Since X?=i RE
f
{n)^NRE

feSfp, it is sufficient to prove E«>N^/(fl)

esrfi. We set Jn>k = In-kU ••• U /„ U ••• U/n+k for fc>0. Let n>N and xeE(n).
If |j|^sw"fc, then 5fc|j|g|x| and |x- .y |^(l-s-k) |x | . From Lemma 2.7 we
have

K(y, x) = G(y, x)lyx ^ Const. x J x I ^ K l - s - T ^ l j l ) 1 " ^ .

Hence

Const. sfcd-

Similarly we have

>sn+k+t
K(y> x)d»(y) ^ Const./(x)J
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Since s*d-p-/*) and \ \y\1~p~pdfi(y) tend to 0 as /c-»oo, choosing k

large, we have

K(y9 xW(y)^f(x)/2 for all xeE(n).
DUdD-Jn,k

Since Rf^fq.Q. on E(n), it follows that

\ K(y,xW(y)^f(x)l2 q.e.on E(n).

The definition of regularized reduced function yields

K(y, x)dn(y) ^ Rf^/2 on D.

If we now sum both sides over n, then we have

(2k+l)Rf = (2k+l)Kfi ^ 2-1

By Lemma 3.1 we obtain £«>JV Rf(n) eyp. Thus the lemma follows.

LEMMA 3.4. Letf(x) satisfy (3.3). Let Wn= \Jk^nIk. If {Aj} is a sequence
of sets such that R^eSf^ then there exists an increasing sequence {n(j)} of
natural numbers such that yZjRfJ>nV» e^p, where A(j, n) = Aj n Wn.

PROOF. Since £f J 'n )^Z^n£/o" ' f e )> we have {RfJ'^dvp^O as n

oo by Lemma 3.3. Take an increasing sequence {n(j)} such that

<2~J. Then £ , [Rju-»u»dvfi<l. By Lemma 3.2 we have £,.

THEOREM 3.1 (cf. [3; Theorems 4.4 and 4.5]). Let /(x) = x?|x|"-fl with
1— p<p^l. Then the following three statements are equivalent:

( i ) E is a-min. thin.
(ii)
(iii)

PROOF. In this proof, constants of comparison will be positive. Obviously
f(x)=x\\x\P~" satisfies (3.3). Hence Lemma 3.3 yields that (ii) and (iii) are
equivalent. We note

Const. kfa
n) g j-»w-«>Uf<») g Const. RE/a"\

Const. Xa(E(n)) ̂  s-nV-*-n[\y\1-»-l'dX%(n){y)£iConst. Xa(E(n)),
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Hence

Const. sn^~a-^ka{E{n)) g [kf^dvp ^ Const. sn^-a^ka(E(n))9

which implies that (i) and (ii) are equivalent.

REMARK 3.2. In the case a = /?=l Theorem 3.1 shows that E is 1-min. thin
if and only if Rft E^l9 which implies that Rf1 is a Green potential. It follows
that E is 1-min. thin if and only if E is minimally thin at oo.

Now we discuss the behavior at oo of functions in 5?p, which is characterized
by the use of a-min. thin sets. From Lemma 3.4 we have the following theorem.

THEOREM 3.2 (cf. [3; Theorem 4.7]). Let f(x) = xa
l\x\P~a. If u

then there exists a set EcD which is a-min. thin such that

lim,JC,^OOfJceD_£M(jc)//(x) = 0.

Conversely, ifE is unbounded and a-min. thin, then there exists w e ^ such that

PROOF. We set Aj = {x e D; u(x)jf{x) ^j'1} for each positive integer j . We
note that by Theorem 3.1, Aj is a-min. thin since Rj^jueSfp. Applying
Lemma 3.4, we find {n(j)} such that £j,RjU;HJ)) e&>fim Set \JJ=1 A(j, n(j)) = E.
Since RjSHjRfU;n{j)\ Rj^^fi and hence E is a-min. thin by Theorem 3.1.
If x£E, then x<£A(j,n(j)) for every j . It follows that if |x|^sw^'>, then
x<£Aj. This implies that M(X)//(X)<7"1. Thus we have u(x)lf(x)-+0 as
|x|->oo, xeD-E.

For the converse we take an open set O D £ such that 0 is a-min. thin. This
is possible since Xa is continuous to the right (Lemma 2.4 (iv)). By Theorem 3.1
we have

where O(n) = O f] In,

which implies

dVp <00 .

We find an increasing sequence {cn} of positive numbers such that cn t oo and

Set M = E*=iCrt^(n>. By the aid of Lemma 3.2 we have w e ^ . Since O(n)
is included in the interior of O(n — 1) U O(ri),
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for x e O(n). Hence, if x e E(n) a 0(n), then

u(x) ^ c B _^( - - " (x ) + cnR°/»\x) ^ cn_ J(x).

Therefore

l i ( ) / / ( ) = oo.

§ 4. Covering theorems

In this section we consider only the case p^3. Now we estimate the a-mass
of a ball. We use the following notation: B = B(t, r, R) denotes the open ball
of radius r and with center £ = (t9 x2,..., xp), where t>0 and R — \^\. Let 3? be
the collection of all sets of the form Bf]D with 0<r^tpl/2. One notes that if
FcD u dD is a closed cube with sides parallel to the coordinate axes, then the ball
B whose center is the center of F and whose diameter is that of F satisfies B f) D

LEMMA 4.1. Let H = BnDej$r, where B = B(t, r, R). Then we have

(4.1) Const. tl+arP~2 ^ Xa(H) ^ Const. t1+arP~2,

where the constants of comparison are positive.

PROOF. Constants of comparison will be positive in this proof. We start
with the case t>r; in this case H = B. From the minimum principle we have
Rf^fi on B, which implies that £jf = i ^ on D. By the aid of Lemma 2.1
we have Xa(dB) = Xa(B). Let £ be the center of B and y e dB. Then, noting that
supp A%BcdB and * = £ i^ | { — y'\S Const. f1=Const. t, we have from Lemma 2.7

Const. KXfB(O ^ r 1 { \e-y\2-*dX$B(y) ^ Const. KX°dB(0.

Hence,

Const. Rd
f
B

a(0 ^ rW-PX'idB) ^ Const. Rfjg) ^ Const, p.

Since l^f is harmonic on B and continuous on B, it follows that

* f t« ) = °p-lrl-p \ &dfB
a(y)d°(y) = o-p'r1-* \ yldo(y) ^ Const, r,

JdB JdB

where (7 is the surface measure on dB and <rp is the surface area of a unit ball in
RP. Thus we have

Const. ta+1rP~2 ^ Afl(5J5) = la(B) ^ Const. ta+1rP~2.
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If t^r, then we have t^r^tp112. The ball B' whose center lies at the center
of B and whose radius equals r/p1/2 is contained in B. Let £ be the projection of
the center of B on 3D. Then {xeD; \x — £|<2r} contains B. By the above
argument and Lemmas 2.4 and 2.5, we have

Const. rP+o-1 ̂  Xa{B') ^ A«(if) g Afl({xeD; |x -C | < 2r}) ^ Const. rp
+a~K

Thus the proof of the lemma is complete.

THEOREM 4.1 (cf. [3; Theorem 4.1]). Set Hn = B(tn, rn, Rn) n D, and suppose
Hnaln. Then E=\JnHn is a-min. thin if and only if

(4.2) E?=i (tn/Rny
+°(rJRny-2 < ex).

PROOF. Since Hnaln, we have s";g.Rn:gsw+1. From (4.1) we see that there
exist positive constants C and C such that C*i+flr£-2^Afl(#M)^C'fJ+ar£-2.
Hence Theorem 4.1 follows from Definition 2.4.

DEFINITION 4.1 (cf. [3; Definition 5.1]). Let h: [0, oo)-»[0, oo) be a non-
decreasing continuous function such that /?(0) = 0. If H = B(t, r, R) n
then we define a premeasure (see Rogers [7; p. 9]) by

= t1+ah(r),

DEFINITION 4.2 (cf. [3; Definition 5.2]). We define

where the infimum is taken over all countable coverings {Ha}czj(f of E.

REMARK 4.1. If h(r) = rp~2, then there exist positive constants which depend
only on p such that Const. Xa(H)^i;a

h(H)<k Const. Xa(H) (Lemma 4.1). By
using the monotone and countably subadditive properties of the a-mass Xa

(Lemma 2.4), we have Const. ka(E)^L%{E), where the constant is positive.

The same argument as in Essen and Jackson [3; pp. 255-260] shows the
following lemma.

LEMMA 4.2. If E is contained in {xeD; |x |<6}, and if h is defined as in
Definition 4.1 and satisfies

T <Kr)dh(r) < oo,
Jo

then there exists a constant C which depends only on p and b such that
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THEOREM 4.2 (cf. [3; Theorem 5.1]). Let EaD be a-min. thin. If a
function h: [0, oo)->[0, oo) is non-decreasing, continuous and satisfies h(0) = 0
and

T 4>{r)dh{r) < oo,
Jo

then there exists a covering {Hn} in 2? of E such that Hn = BnO D, Bn = B(tn,
rn, Rn) and

PROOF. We recall the definition of a-min. thinnness. From (2.3') we have
J^nX

a(E(n)')<co. Since E(n)'a{xeD'9 \x\<s}9 applying Lemma 4.2, we have
YnLa

h(E(ny)^nCXa(E(n)')<co. We can cover E(n)' by a sequence {H'nJ}
in j f such that

where H'Hii = B'nJ n D, B'nJ=B(t'nj9 r'nj9 R'nJ), and R'nJ^l. We set tnJ = s%j9

rnJ = s"rf
Hj9 RnJ = s»R'nJ and HnJ = B(tnj9 rnj9 Rnj)0D. We observe \JHJHHJ

) = E9r
r
nJ^rnJRnj and tf

nJ^tnJIRnJ. Since h is non-decreasing,

^nj(tJRnjy
+aKrJRnJ) < ex).

Our proof is now complete.

If h(r) = rP for O ^ r ^ l a n d = l for r > l , then (°° <t>(jr)dh(r)< oo for each
Jo

P>p — 2. Hence we have the following corollary.

COROLLARY. Let EaD be a-min. thin. For each fi>p — 29E can be covered

by a sequence {Hn} in jf such that Hn = B(tn9 rn9 Rn) n D and Zn(tlRn)
1+a(rJ

Rny <oo.

% 5. Examples

In this section we use the following notation.
(i) Let n be the projection from D onto dD, namely,

TT(X) = n((xl9 x2,..., xp)) = (0, x2,..., xp).
(ii) For t > 0 and a bounded set A c= dD we define A(t) by

,4(0 = {x = (xl9 x29...9xp)eD; n(x)eA,0 < x1 < t}.
We investigate the behavior of Xa(A(t)) when

LEMMA 5.1. Let p^2. If A is a bounded subset of dD9 then there exists
a constant C1 which depends only on p and A such that

^ ctt:
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PROOF. From Lemma 2.1 we have

HA(t)) = fa?dXAW ^ t°X°(A{Vj).

Since A{\) is a bounded set, 2P(A(1))< oo. Hence the lemma follows.

LEMMA 5.2. / / p ^ 3 and A is a bounded subset of dD which has an interior
point in dD, then there exists a positive constant C2 which depends only on p
and A such that

C2t
a ^ Aa(A(t)).

PROOF. Let A'(t) = {x = (xu x2,...,xp)eD; n(x)eA, x1 = t/2} and \it be the
restriction of the (p — l)-dimensional Lebesgue measure on A'(t). Let x, ye A'(t).
Put r=\x — y\ = \n(x) — n(y)\. Since \y-x'\2^r2 + t2

9 we have from Lemma 2.7

K*fit(x) ^ Const. [ [ r r 2 - ^ 2 + r2)]d^ ^ Const. (°° \tj{t2 + r2y\dr = Const.
JA'{t) JO

Therefore we have

A-G4(0) ^ WAV)) = \d^{t) ^ Const.

= Const. {K^(t)dfit = Const. {kfa
(t)dfit9

where the constants are positive. Since \it has finite energy, \it vanishes on any
set of capacity zero. Hence

where |̂ 4| is the (p — l)-dimensional Lebesgue measure of A Since A has an
interior point in 3D, 0< |̂ 4| < oo and the lemma follows.

LEMMA 5.3. Take any s>0. If A is as in Lemma 5.2 and p = 2, then there
exists a positive constant C3 which depends only on A and e such that

C3t
a+E SHA(i)).

PROOF. Without loss of generality we may assume that 0<e< 1. Applying
Lemma 2.7 with 8 = 1 — e, we have

K*(y9 x) ^ Const, y^y-x^ly-x'^1-^

Letting A'(i) and \it be as in the proof of Lemma 5.2, we have



On the behavior at infinity of non-negative superharmonic functions 439

K*i4pc) g Const. rs on A'(t),

X°(A(t)) ^ X*(A'(t)) ^ C3t°
+*,

where C3 is a positive constant which depends only on A and e.

Lemma 5.3 is not sharp, but if a = 09 then we have the following lemma.

LEMMA 5.4. If A is as in Lemma 5.2, then there exists a positive constant
C4 which depends only on p and A such that

C4gA°(i4(0) for any t,O<t<l.

PROOF. There exist r o > 0 and £edD such that U = {xe8D; | x - ( | < r 0 }
a A. Let V={xedD; \x — C|<ro/2} and \i be the restriction of the (p — 1)-
dimensional Lebesgue measure on V. We find that Kfi(x) is harmonic in D and
continuous on (D u 3D) — {xedD; \x — C| = ro/2} and that

Kn = 1 on K, Xju = 0 on 3D - U,

0 ^ K\i ^ 1 on D u 3D, lim^^oo iCju(x) = 0.

Since ^^ r> = 1 on U(t), we have

for all x e 3D u {oo}. By the maximum principle we have

RY(t) ^ K/JL on D.

Since X*Al7(0 = l on V, it follows from Lemma 2.1 that

/ | |
dD

Thus the lemma follows.

We have already shown in Remark 2.3 that if E is contained in a cone F with
vertex at the origin and with axis parllel to the xt axis, then the fl-min. thinness
of E is equivalent to the minimal thinness. On the other hand Aa((D — F)(n)') =
Aa((D — r ) ( l ) )>0 for every positive integer n, and hence D —T is not a-min. thin.
Now we give examples of a-min. thin sets conatained in D — F.

DEFINITION 5.1. Let h(r) be a positive monotone function on [0, oo). We
define Dh by

Dh = {x = (xl9 x2,...,xp)eD; 0 < xt < h(\n(x)\}.
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REMARK 5.1. From Lemma 5.4 it follows that Dh is not 0-min. thin. In
particular a strip domain {xeD; 0<xx<b}, b>0, is not 0-min. thin.

Hereafter let h be non-decreasing and satisfy

(5.1) lim sup^oo h{r)jr < oo.

Take 0, O<0<TT/2, and r0, ro>O, so that h(r)<r tan 0 for r^r 0 , i.e. Dhn{xeD;
\x\<ro}aDrtan 0. Choose s, s> 1, such that that s cos 0> 1. We set

E = Dhi F = {xedD; 1 < |x| < scos0},

G = {xeaD;cos0 ^ |x| g 5}.

From the assumption we have F(=n(E(n)')c:G if n is large. Set mn = h(sn)/sn

and Mn=h(sn+1)lsn. Then we obtain

F(mn) c £ 0 ) ' c= G(Mn) if n is large,

where F(mn) = {xeD; n(x)eF, 0<x t <mn} and G(Mn) = {xeD; n(x)e G, 0<
x1<Mn}. Since the a-mass is monotone, Xa(F(
By Lemma 5.1 we have ^(GiM^^C^Z, so that

(5.2) *a(E(n)') ^ CiMj for p ^ 2

if n is large. Similarly there exist positive constants C2 and C3 such that

(5.3) C2m
a
n g Aa(E(n)') for p ^ 3,

(5.4) C3mj+e ^ Afl(£(«)r) for p = 2 and s > 0,

if n is large.

PROPOSITION 5.1. Lef h(r) be a non-negative non-decreasing function on
[0, 00) and satisfy (5.1). Then Dh is a-min. thin if

lrYlr-]dr < 00.

In case p^3, Dh is not a-min. thin if

L(Kr)lrYlr-]dr = 00.

Jn case p = 2, Dh is not a-min. thin if

[(/i(r)/r)fl+£/r]dr = 00 for some e > 0.[
i

PROOF. Since /i(r) is non-decreasing, we have
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Mn = h(sn+1)/sn ^ mn = h(sn)lsn = Mn.Js

and

(h(sn)/sn+1)a(sn+1-sn)/sn+l g (S"+1[(/i(r)/r)fl/r]rfr ^ (h(sn+1)lsn)a(sn+1-sn)lsn.
J sn

Therefore

Const. M£_! S \ [_{h{r)jr)ajr]dr ̂  Const. Ma
n S Const. m£ + 1,

where the constants of comparison are positive and depend only on a and s.
Similarly

[Sn+1 /r)a+fi/r]rfr ^ Const, m^f.

Using (5.2), (5.3) and (5.4), we obtain the proposition.

REMARK 5.2. If 0<a< ; i and h(r) = b, b>0, then /i satisfies (5.5). Hence,
a strip domain {xeD; 0<xx<b} is a-min. thin for any a, 0 < a ^ l . If ha(r) =

(e/ocy for 0<*r<ea and = r/(log r)a for r^e", then \ [(/ia(r)/r)
fl/r]rfr<oo if and

only if a a > l . Therefore in case p^.3 Dhx is a-min. thin if and only if a a > l ,
and in case p = 2 Dhgt is a-min. thin if a a > l and Dhct is not a-min. thin if a a < l .
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