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§ 1. Introduction

In the investigation of the time evolution of a system of infinitely many
particles which can be described by Newton's equations of motion, the first
problem is to construct a dynamical system, more precisely, to determine a class
of initial configurations for which equations of motion have solutions; the next
problem is to investigate statistical mechanical properties of the dynamical
system such as ergodicity. As for the construction of dynamical systems many
results were obtained ([1], [2], [4]-[7]); especially in [5] and [6] v-dimensional
systems with long range interactions were treated. However, an explicit descrip-
tion of a class of initial configurations for which equations of motion have
solutions was given only in the works of Dobrushin and Fritz ([1], [2]) in 1977.

We consider a system of infinitely many classical particles moving on the
real line R in such a way that each particle is under interaction (repulsive force)
only with its two right and left neighboring particles (the precise description of
our model is given in §2). In this paper we construct the dynamical system for
our model starting with a class &y of initial configurations, 0 ^ y < l . The class
°£y can be described as in [1]; in fact, it is given by (2.8) in § 2. The uniqueness
problem is also considered. The Gibbs states for our model become renewal
measures ([3]), and from this fact it will follow that the class &y has full measure
with respect to the Gibbs states. In this sense 2Ey may be considered sufficiently
wide.

The author would like to express his gratitude to Professors H. Tanaka and
H. Murata for their constant encouragement, and to Professor T. Shiga who
kindly pointed out to the author the results on renewal measures in [3].

§ 2. Definitions and results

In this section we give the definitions and notations used throughout this
paper and state the theorems.

Given a potential function 4>(r), r > 0 , we consider the one-dimensional
system of infinitely many (indistinguishable) particles moving according to the
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classical law of mechanics under the nearest neighbor interaction caused by <P(r).
We assume that

(2.1) # 0 ) ^ 0 and -<f>'(r)^O for r > 0,

(2.2) — $'{r) is nonincreasing and

limr_0+ <f>(r) = limr_»0 + -$'{r) = oo, lim,.^ <P(r) = l i rn ,^ -$'{r) = 0.

As the phase space of our system we adopt the set of all locally finite con-
figurations, that is, the set 2C of all equivalence classes of (possibly finite or even
empty) sequences x = (qh pt)h qh p(eR, such that the qfs are different and
N(x; A) = ${i \qts A}<oo for any compact interval A. Here two sequences are
said to be equivalent if they are the same as subsets of R x R. The q^s and /?f's
represent the position and momenta of particles. We have included finite con-
figurations in & only for mathematical convention; in what follows we restrict
our attention to the set % = {x e & \ N(x; ( - oo, 0)) = N(x; [0, oo)) = oo}.

The precise description of our system is given as follows. Take an initial
configuration x e J , label it in such a way that

(2.3) . * = (feft)i, . - < 0-i < 0 ^ go < « i < - >

and consider the equations of motion

(2.4)
*&--«»

dt

with the initial condition

(2.5) (<li(Q)> Pi(Q))i = (<lh Pi)i-

For simplicity, we are taking the particles to be identical and to have mass one.
From (2.3) and assumption (2.2), it will follow that the solution x(t) = (qi(t)9 pt(
of (2.4) and (2.5) (if exists) satisfies

(2.6) '"<q-i(t)<qo(t)<q1(t)

Forgetting the labels of x(i) = (qi(t), Pi(t))h we then obtain the configuration at
time t, which is still denoted by x(t) with confusion.

Take x e f , label it as in (2.3) and set

(2.7) H(x; A) = 2 ^ I ^ p ? + Z f t o r f t + 1

We also set

(2.8) # y = {xe^|supneIV(2n)-1iV(x; An) < oo, sup/ieN(2n)-1-vH(x; An)
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for each y with 0 ^ y < l , where An = [ — n, w].

THEOREM 1. Let &(r) satisfy (2.1) and (2.2). Then for each x = (qh

for some y with 0^y<l there exists a solution x(0 = (#*(*)> Pi(0X> ^ R , o/(2.4)
with initial condition (2.5) satisfying

( i ) •••< « f-!(0 < q&f) < qi+1(t)<-~,
(ii) x(t)eXy9

(iii) there is a constant S>0 such that for any i and f eR

f lirrifc-oo Gi+ko'"oai+loGi{t) = oo

UmJk^ffi.jko...o(7j.1offi(f) = oo,

where

(2.10) oft) = inf {s ^ <k i + 1 (s ) -^(s ) g 5}D.

The condition (iii) implies that the solution is not "being driven at infinity"
([5]). A solution of (2.4) is said to be regular if it satisfies the condition (iii)
for some <5>0. When we want to stress <5, it will be called a ^-regular solution.

To discuss the uniqueness of the solutions, we further assume the following
condition on <P(r):

(2.11) l i n v ^ n~2G(n1+y) = 0

for some y with 0 ^ y < l , here

(2.12) G(u) = sup{\(*Xr)-0'(s))l(r-s)\ \ r, s>0,

As an example satisfying (2.11), we can take ^(r) = r~a, a > 2 ; in this case y must
bein[0 , (a-2) / (a + 2)).

THEOREM 2. Let &(r) satisfy (2.1), (2.2) and (2.11) for some y with O^y< 1.
Then for any initial configuration xe^y satisfying

(2.13) l irnsup.- . n-*{N(x; [~n, 0)) A N(X; [0, n])} > 02>,

a regular solution of(2A) and (2.5) is unique.

From the equilibrium statistical mechanical viewpoint it is desirable that the
initial configuration space &y has full measure with respect to the Gibbs states.
Before giving the definition of Gibbs states we summarize the topology and the
Borel structure on & briefly; for details see Lanford [5]. Let ctif be the set of all
continuous functions \j/(q,p) on R xR vanishing for sufficiently large \q\9 and put

1) We adopt the convention inf <j> = oo and sup <j>= —
2) aA6=min{tf, b], avb=max{a9 b}.
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S+(x) = £ t Mqt, PiX * = (qi9 Pi)t e St.

We give 3C the weakest topology which makes the mapping S^ continuous for all
Then & is a Polish space, and £ is a G*-set of # ([3]). Denote by

the topological Borel field of st and by a(8) the restriction of ^ ( i 1 ) to 8.
For any Borel set M c R let nM(x) be the restriction of x = (qh pt)i to M, that is,
^AfW = (̂ /» Pi)i:qieMl denote by 5(#\M)the set of bounded measurable functions
<p on J such that (p(x) = (p(y) for all x, ye 8 satisfying nM(x) = nM(y), and by
3tM the smallest a-algebra on 8 for which every element of B(&, Mc) is
measurable.

A probability measure \i on ($*, &(&)) is called a Gibbs state associated with
the nearest neighbor interaction caused by 0, the inverse temperature /? and the
chemical potential u if it satisfies the following condition: For every compact
interval A — \_a, b~\ the conditional expectation E{(p\3!A}(x) of (p(x)eL1(89 fi)
given @A is equal to

(2.14) ~Ejx)\y^ + e x p iP*(S*4)} S ?

where SA(x) is the normalizing factor, y — nAc(x)9 f̂* = min {qt \qt>b}, q* =
msLx{qi\qi<a} for y = (qi9 pt)i9 and y-z is the configuration in ^* defined by
^ J C ( J -z) = y and 77^0 • z) = z.

Note that the above condition is equivalent to the following equilibrium
equation: For any compact interval A = [a, ft] and cp{x) e L\&9 fi)

(2.15) { KdxMx) = [ rtdy)\<p(y) + exp
Jar Jar(Ac) L

-z)exp { -

where
The set of all Gibbs states associated with 0, fi and u is denoted by &PtU(&).

For our potential 0 it can be seen from § 6 of [3] that #^ jM(#) = 1, and we have

THEOREM 3. Let #(r) safis/v (2.1) and (2.2). For iie&fitU(&) with
and real u9 /i(^0) = 1, and hence [x(%'y) = l for y e [0, 1).

§ 3. Basic Lemma

In this section we will prove Basic Lemma concerning the fluctuation of
energy of finitely many particles for the motion of time interval [ - 1 , 0], which
plays an essential role in the proof of our results.
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Suppose an initial configuration x=(qt, p,)( (labelled as in (2.3)) is given.
For each KeN we denote by xK(f)=(qf(t), pf(t))h teR, the (unique) solution of
equations of motion (3.1):

( dqf(f) _

(3.1a)

= P?(t)

for i with g4 e JK and

(3.1b)

for i with q; £ JK . Set

(3.2) Hfj(t) = 2"1 Z

BASIC LEMMA. Suppose an initial configuration x=(qh pt)t (labelled as in
(2.3)) belongs to SC^for some ye[0 , 1). Then for each i,j with i^j there exists
a constant M w ^ 0 such that H$j(t)f,Mitjfor any te [ - 1 , 0] and KeN.

We devide the proof of Basic Lemma into several steps. For s, teR set

(3.3) AHfj(s,t)

Then we have

LEMMA 1. Hftj(t) = HftJ(s) + AHfj(s, t), s,teR.

For the proof, recall that pf(u) = 0 for i with qt$AK, and differentiate Hftj(t)
— Hfj(s) with respect to t.

Let <5>0 and put

(3.4) AHftJ{s9 i)* = 29(8) + |* '0 ) | (s~

LEMMA 2. Suppose that
all fe[T0, T J ( — O O < T 0 < T 1 < O O ) . Then

t ^ s.

^^ hold for

AHfj(xl9 t) g i, 0*, t e [T0,

PROOF. Since
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(' dunqfiu)-<?*-!(«))(pf(u)-pf_!(u))

it follows from the assumption that

for f e [T0 , T J . Analogously we have

for ^e [T0 , T J . These inequalities prove the lemma. •

Since x e 9£v we can take two positive numbers p and 6 such that

(3.5) lim sup,..* (2n) -^ (x ; An) < p9 lim s u p ^ ^ (2nY^H(x\ An) < 6.

Choose S>0 so that

(3.6) 1 - 2p5 > 0

and define

<rf(O = inf {s ^ 11 qf+1(s)-qKs) g 8} .

LEMMA 3. xK(0, tGR, IS 8-regular; namely, (2.9) holds for any i and
teR (replacing x(t) and a^i) by xK(t) and of(0, respectively).

PROOF. Suppose xK(t) is not <5-regular. Then there exists a number i such
that

qj+1 — qj ^ 5 for all j with qj> Kw qt

or

qj — qj-i ^ <5 for all j with ^ < ( — K) A gf,

because the particles located outside AK are fixed. This implies that

lim sup^o,, (2n)"1iV(x; J J ^ (25)"1 > p (by (3.6)),

which contradicts (3.5). •

Put

i ( - l ) = i, J ( - 1 ) = J , ^o= - 1 ,

and define for fc=0, 1, 2,...
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i(fc) = min {/ ^ I(fc"~l)l0"^-io*"o°r^fc-i)-2o^fe-i)-i(^) > *&}>

;(fe) = max{/ ^ j(fc""l)lt7fo#"o0ri:(k-i)+ioO'5:(k-i)0fc) > **}>

inductively. By virtue of Lemma 3 we can choose a nonnegative integer m such
that

The followings are immediate from the definition:

(3.7) i(m) <Z i(m-1) ^••• ^ i(0) ^ i ( - 1 ) = i g j = j ( - 1 ) ^ ;(0) ^••• ^ j ( ^ ) ;

(3.8) (i(k)J(k)) * (i(fc + l),;(fe+l)), ^ = 0 , 1,..., m - 1 ;

for all r e [ ^ , rfe+1), fe = 0, 1,..., m;

Using these notations we define a function f̂̂ -: [— 1, 0]-»[0, oo), i^-j, by

for f e f t , »t+1) n [ - 1 , 0], fc = 0, 1,..., m,

where

(Notice that the definition of /?£,• depends on x and 8.)

LEMMA 4. £tfj(t) is nonincreasing in te [—1, 0],

(3.12) # f , / 0 ^ Hfik)tKk)(t) ^ 6*j(t)9 te ltk, tk+1) n [ - 1 , 0],

for fc = 0, 1,..., m. In particular

(3.13) Hf,,(0 ^ ^ f , / - l ) , t G [ - l , 0] .

PROOF. We prove only (3.12). The rest is obvious. If (3.12) holds for
k=l (1^/^m), so does for k — l — 1. In fact we have

(3.14) 4HJb-i)J<i-n(k 0 ^ ^f<i-i)j<i-i>('i> 0*,

by (3.9) and Lemma 2, and then
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Hfjt) g fff(I _ 1)>J(,_ „(*) (by (3.7))

= tff(/-I),,-(/-DOJ) + ^fa-Djci-oOz. 0 (by Lemma 1)

^ Hf(O,j(00() + AHh-vj^jt,, 0* (by (3.7) and (3.14))

:g #£/*,) + J t f ? ^ ^ , , ^ , 0* (by (3.12) with k=l)

= # L ( 0 (by (3.11))

for te [fi-i, tt). (3.12) for fc = m is verified in a similar way to the above:

Hfj(t) g #f (m)J (m)(0 = Hf(m)J(m)(0) + AHfim)J(mjP, t)

= d£j(t), teltm, tm+1) n [ - 1 , 0 ] . •

Let

(3.15) P(5; i,j) = 2|*'0)l + [4|<l»'(5)|2 + 2{Hw+2(j-i

LEMMA 5. #£,-(-1) g 2"1P(5; iCnXXm))2-

PROOF. Put P = {2Hf;J(-l)}1/2. Lemma 4 gives us

max {pf(t)(O
2, ^(*)(02} ^ 2Hf(lk)JW(0

g 2df , / -1 ) = P2, t G [*to t4+1) n [ - 1 , 0] ,

for k=0, 1, 2,..., m. Hence by (3.4)

/lflf(*,j(«(tk+1 A 0, tk)* ^ 2{$(8) + |#'(«)l ('*+1 A 0 -

k=0, 1,..., m. It then follows from (3.11) and (3.8) that

(3.16) 2-ip2 = £ f . / - l ) g HKm)J(m)

This inequality implies that PgP(<5; i(m), j(m)). D

Let Atj be the set of all pairs (i(m), j(m)) which appears in (3.7) when K
varies in N, and let £(i, j) be the maximum solution of

(3.17) {{l-2pS% - \q,\ v \qj\ -

Note that AUJ depends on x, S and that the left-hand side of (3.17) is greater than
the right for l>£(i,j).

LEMMA 6. Let JV̂  be a positive number such that
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(3.18) (2n)~1N(x; An) < p, (2n)"1^if(x; An) < 6 for all n^N^

Then the pair (/, J) with I^i^j^J and \qt\ v \qJ\>Nl v£(ij) does not belong
to AUj. In particular %Aitj<oo.

PROOF. Assume that there exists a pair (/, J) such that

I^i^j^J, \qI\v\qJ\>NlwaUJ) and (I9

Since (/, J) e Aij9 there exists a K e N and then a nonnegative integer m such that
i(m)=I and j(m) = J. Note that \qT\ v kj |>£(U)>k f | v \qs\ implies ^ j # ^ .
Without loss of generality we can assume that \qt\ v |#J| = |#J|. Then \qA = qj
>NU and we have

(3.19) J

Therefore if we put P = {2Hf>J(-l)}
1/2, it follows from Lemma 5 that

(3.20) P£P(8;I9J)

On the other hand, since pfik)(t)^P for *e[£fc, tk+1) n [— 1, 0] from Lemma 4,
we have

teW*) " «jF(*)(̂ +i A°)l = fe+i A 0 ~ h)?, k = 0, 1,..., m,

and hence by (3.10)

4 n A 0 ) - fciAO- tk)P - {j(/c)-j(/c-

for fc = 0, 1,..., m. Summing up these inequalities for k = 0, 1,..., m and using
(3.19), we get

tf(-l) ^ ^ - P - (J-j)^ ^ qj - P - 2(

Since qj(—l)^qj + P by Lemma 4, we then have

(3.21) 2P ̂  (l-2P8)qj - q, - 2p8 ̂  (l-2p8)qj - | 9 | | v \qj\ - 2p5.

By the choice of £(Uj)9 (3.20) and (3.21) imply that qj^£(i,j). This is a con-
tradiction. •

PROOF OF BASIC LEMMA. Choose p, 6 as in (3.5), and 8 as in (3.6). Then
Lemmas 4, 5 and 6 give us
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Hfj(t) ^ £ f , / - l ) ^ max {2-^(5; /, J)2 | (I, J) e 4 , J < oo,

f e [ - l , 0], XeN.

Thus we may take

(3.22) Mu = max {2-^(5; /, J)2 | (/, J) e AtJ . D

Concluding this section we will state some remarks which will be used later.

REMARKS. 1. Given xe°£v the right-hand side of (3.22) defines a function
MUj{5), 0<5<(2p)"1. What we have proved is that Basic Lemma holds with
Mij = Mij(8) for each positive S satisfying (3.6).

2. The whole argument of this section also holds for a <5-regular solution
x(t) of (2.4) and (2.5) (whenever 5 satisfies (3.6)); in this case the suffix "K" must
be neglected.

§ 4. Proof of Theorems 1 and 2

In this section, using results obtained in § 3, we will prove Theorems 1 and 2.

PROOF OF THEOREM 1. For x = (qi9 v^te^y (labelled as in (2.3)) and KeN,
let xK(t) = (qf(t), p?(t))i be the solution of (3.1). Take positive numbers p0, 60,
50 such that (3.5) and (3.6) hold for p = p0, 6 = 6O, <5 = <5O, and fix them. Then
Basic Lemma and (3.2) give us that for each i there exists a constant Miti^.O
(independent of K e N) satisfying

(4.1)

(4.2)

It then follows from (4.1) that {qf(t)}Ke^ is uniformly bounded and equicontinu-
ous on [ - 1 , 0] for each i:

qKt)-qKO\ ^ (IM^lt-t'l t, t'G[-l, 0], KeN.

Therefore using the Ascoli-Arzela theorem and the diagonal method, we can
extract a subsequence {^K(Z)(0}^N °f {*X(0}K6N such that for each i {qf (l)(t)}lels

converges uniformly on [ —1, 0] as Z-»oo; put ̂ l-(0 = lim/_oo qf^l)(t), ^e[ —1, 0].
Since qfil)(t), qiEAK^, satisfies the (integral form of) equations of motion

(4.3)

T ds(t-s){-<l>'(qf«Ks)-q?±[\s))
Jo

it follows from (4.2) that
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(4.4) qt(t) = qt + Pit

for te[_ — 1, 0]. It is easy to see that, by (4.3) and (4.4), jpf(O(0 also converges
uniformly on [—1,0] to Pi(t) = qi(t) for each i as Z-»oo. Thus we have con-
structed a solution x(0 = (#i(0> JPi(O)i °f (2.4) and (2.5) on the time interval
[ — 1,0]. We now state several properties of this x(t) in Proposition 1, which
will be proved later.

PROPOSITION 1. (i) •••< q^^t) < qtf) < qi+1(t) <•••, * e [ - l , 0 ] .
(ii) x(t)eS£yfor every t e[— 1, 0]; more precisely,

a) lim sup^oo (2n)-1JV(x(0; ^ ) ^ Km s u p , ^ (2n

< OO if y = 0,
b)

if 0 < y < 1.

(iii) lim,,.^ n"1 sup..eJ max_1:S^0 |Pi(OI = 0.

Consider x=(qt, —p^ie&y a s a n initial configuration, and apply the pre-
ceding argument to xW)(*) = tef(O(-0, -pf (°(~0)p t e [ - l , 0]. Then there
exists a subsequence {K(l)}le^ of {K(/)}/eN such that for each i (qf(l)( — t),
— pf(Z)(—0) converges uniformly on [—1, 0] to some (q&t), Pi(t)) as Z^oo. If
we put x(0 = (?X~0> ~"&("0)i f° r ^ [ 0 , 1], x(0 satisfies (4.4) and Proposition
1 (replacing [—1, 0] by [0, 1]). In this manner we have a solution x(0 of (2.4)
and (2.5) on the time interval [—1, 1]. Since x( — l), x(l)e^*y, we can continue
the above procedure and have a solution x(t), teR, of (2.4) and (2.5) satisfying
(i), (ii) of Theorem 1 and

(4.5) l i n v ^ n-1 supqteAn max,ejT \Pi(t)\ =0 , 0 < T < oo.

Now we prove (iii) of Theorem 1 for this x(t), teR. Let p be a positive
number defined by (3.5) for x e&y (0^y < 1), that is,

(4.6) lim s u p ^ (2n)-iN(x; An) < p.

Then take any <5>0 satisfying (3.6). Notice that p and d may be different from
p0 and <50. We can prove the ^-regularity of x(i) in the following way. Assume
that x(t) is not <5-regular. Then there exist an integer i and T0, T1 eR
such that

or
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We may also assume that the first case occurs. Write

fc = 0, 1, 2,...,

V(n) = sup^jeAn msiXteAT \p/t)\, n e N,

(4.7) m(q) = min{meN| \q\^m}.

Notice that

(4.8) -T=s0 £s± = =sk^ ^ T,

(4.9) 0 < fc+fcfo-O - 4i+(*-i)(s*-i) ^ 5 , fc = 1, 2,...,

(4.10) |««(0-^(Ol^nw)|t-t ' | , ^ e 4 t,t'eAT$ neN.

Then for each positive integer k we have

qi+k(sk) ^ q^uis^,) + nmCft+^fe-s*.!) (by (4.10))

-i) + S + KCmfe+OX^-s*-!) (by (4.9))

For every fc with ^+ f c>|^£ | it holds that m(qi+l)^m(qi+k)91 = 0, 1,..., fc, and hence
the above inequalities yield that

^ 4.(0) + kd + 3V(m(qi+k))T (by (4.8) and (4.10)).

On the other hand

qi+k(sk) = qi+k(0) - V(m(qi+k))T

by (4.8) and (4.10). Thus we have

qi+k ^qt + kd + 4V(m(qi+k))T

for every fc with qt+k> |#*|. Then

1 = lim sup^^, qi+klm(qi+k) = lim s u p ^ ^ kdlm(qi+k) (by (4.5))

= lim s u p ^ . (i + k)5lm(qi+k) < 2pd (by (4.6)),

which contradicts (3.6). •

PROOF OF PROPOSITION 1. (i) is obvious from (4.2). We devide the proof of
(ii) into four steps.

1°. Take any positive numbers p, 0 and S satisfying (3.5) and (3.6), and let
£(Uj) be the maximum solution of (3.17). Then
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(4.11) lim|*,|v|^oo Z(UJ)li\qi\ v \qj\} = (l-

In fact, let a be any accumulation point of {{(U)/(kil v \4j\)\i=*j} ( w e

permit the case a = oo) and choose a sequence {(qik, qjk)}ken satisfying

limt^oo |^lk| v \qh\ = GO, HmHoo £0W"k)/{|gJ v |^-J} = a.

Setting i = ik>j=jk i*1 (3.17) and letting /c-»oo, we have 0<a<oo and (1— 2p5a —
= 0.

2°. Let JVj>0 satisfy (3.18). Then for i, j with i£j and |^ | v \qj\^Nl9

(4.12) HUj{t)^MUj, te [-1,0],

where

(4.13) M f J = 2

Indeed, let i^j and |#f| v l^jl^N^ Then Lemma 6 implies that

for any (/, J)e,4 f J . On the other hand \qt\v \qj\<£(Uj) by the definition of
£(ij) in (3.17). Therefore we have

and hence

for all (/, J) e i4u . Thus, if we take MUj as in (3.22), we have by (3.15)

(4.14) Mu ^ Mu for ij with i ̂  j and | ^ | v |^-| ^ N t .

The solution x(0, f e [ —1, 0], constructed in the above may depend on p0, 60

and 50. But Hftj{t)^MUj, t e [ - l , 0], X e N (Basic Lemma and Remark 1).
Therefore Hitj{i)kMup t e [ - l , 0], and (4.12) follows from (4.14).

3°. For any ee(0, 1), there exists a positive number N2 such that for every
n^.N2 \qi\^m((l + e)ri) holds for all i with m i n - ^ ^ o |^ f(0|^n, where m(-) is
the function defined by (4.7).

To prove 3° it is sufficient to show that there exists N2 such that for every
l + e)ri) implies qi(t)>n, t e [ - l , 0]. Set

V(n) =
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L(n) = min {i | — n ^ qJ, #(n) = max {z | gf ^ n}, ne N.

Then we have ffyO^max.^^o {2ifL(n)jR(n)(0}1/2. Therefore we obtain

0 ̂  lim sup,,.,, n-i f (») ̂  lim sup,^ ^ f ^ t ^ T ^ 2°)

= 0 (by (4.13) and 1°),

and so

(4.15) lim/I^oon-1f(n) = 0.

Choose iV2>0 so that f(n)/(n-l)<e/2 holds for all n^N 2 . Suppose that
n^N2 and ^^>m((l+e)n); take fceN such that

fc-1 < ft ^ m((l+fi)«) + fe.

Then m a x ^ ^ o IJPI(OI ^ "^(m((l + e)n) + fc), and hence for * e [ - 1 , 0] we have

qt(t) ^ ft - f(m((l + e)n) + fc)|r| ̂  m((l + e)n) + fc-1 - ^(m((l+c)n) + fe)

} ( -e /2 ) ^ (l+6)n(l-6/2) > n.

Therefore 3° is proved.
4°. (Proof of (a).) Let e e (0, 1) and take N2 >0 as in 3°. Then for each

te\_ — 1, 0] we have

JV(x(0; ^ ) ^ N(x; Am((1+e)n)), n > N2.

Therefore

limsupn^oo(2«)-1iV(x(0; An) g limsup7l^oo(2n)-1iV(x; ^

^ (1 + fi) lim sup,,^ (2n)-1iV(x; ZJM), t e [ - 1 , 0] ,

which implies (a).

(Proof of (b).) For e e (0, 1) take N2 >0 as in 3°. Then

H(x(i); An) ^ HL(mai+E)n)))R(m((i+E)n))(t)9 n> N2

for t e [—1, 0]. Hence we have

lim sup^co (2n)-1-yff(x(0; ^ J

^ lim sup^,, (2n)"1-yML(m((1+E)n))iR(mai+e)n)) (by 2°)

if y = 0
(by (4.13) and 1°)

if 0 < v < 1
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for 16 [— 1, 0]. Therefore (b) for y = 0 is proved; in case 0<y < 1, letting e [ 0,
5 i 0, we get

lim sup^o, (2«)-i-*ff(x(0; AJ^e, te [ - 1 , 0] .

(iii) has been already proved in (4.15). •

REMARK 3. The inequality in (ii—a) of Proposition 1 can be replaced by the
equality. In fact, we choose N2 as in the proof of 3° (immediately after (4.15)).
Then, if n>N2l(l-e)9 ee(0, 1), and |tf, |^[(l-e)n]3>, we have for f e [ - l , 0]

qt(t) ^ qt

This implies that

N(x(t); An) ̂  N(x; Ai(1_s)nll r e [ - l , 0],

for n > N2I(1 — e). Therefore

i ( ) l (x; An),

which proves the opposite inequality of (ii—a).

PROOF OF THEOREM 2. Let #(r), y and x = (qh pt)i satisfy the conditions of
Theorem 2, and let x(O = (<Zj(O> Pi(t))i> *(0 = (<?i(0> Pi(0)i be two regular solutions
of (2.4) and (2.5). It is sufficient for us to prove

(4.16) x(t) = x(t)> *e[- l ,0] ,

(4.17) 5c(-l)e#y and

l imsup^, n-i{N(x(-l); [ -« , 0)) AiV(x(-l); [0, n])}

^ limsup^^ n-*{N(x; [-n, 0 ) )AN(X; [0, n])} .

Take p, 0 as in (3.5); choose 8>0 so small that l-2p(5>0 and that both
x(t) and x(0 are <5-regular (notice that if x(t) is <5-regular and if 0<8'^5, then
x(t) is also (5r-regular); define MUj [resp. Mtjy] as in (3.22) for x(t) [resp. jc(t)].
Then Remark 2 implies that Basic Lemma as well as (i), (ii) of Theorem 1 holds
for both x(i) and x(t). Set

fi(t) = Ut) - h-i(t), rt(t) = qt{t) - q^it),

3) [/?] denotes the largest integer not exceeding p.
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DUj = min^^ j

Then the followings are immediate:

(4.18) DkJSDu, k£i£j£l,

(4.19) |#'(ri(0)-*'(?i(0)l g GWPu))Arit), te [ - 1 , 0], » £ J g y + 1,

(the function G is defined by (2.12)),

(4.20) Du ^ min {r I #(r) = MftJ} (by Basic Lemma).

Since

max_ 1 S t a o {IpXOI v | WOI) ^ (2Mf,;)
1/2, i g / ^ j ,

by Basic Lemma, we have

(4.21) Ar,(t) ^ Sk-o . - ! {l«i+*(0-«i+*l + I4f«+*CO —«i+J}

^ 4|^|(2Mfi/.)
1/2, * 6 [ - l , 0], i + l g / g j .

On the other hand, (4.4) implies that rf(0 [resp. rf(0] satisfies

rit) = (qt-qi-i) + (Pi-Pt-Jt

[
Jo

Therefore we have for t e [ — 1, 0]

(4.22) Ari(t)^4G($(Di_u))\
t dt^t-tj max Arfa) (by (4.19))
Jo i-l^l^i+l

o

max
O

^ {4G(Mf_M+n)}»-' (' dt^t-tA'1 dt2(tl-t2)
Jo )o

(by (4.18), (4.20) and (4.21))

w j _ 1 } , (by (4.14))

^t_.,<+.) \ - i (2ift,..,,,i
(2n- l ) 2 J (2n-l)3-'2

(by Stirling's formula)
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for all sufficiently large n, where c is a constant independent of n. Since

c s l i m s u p ^ n~i{N(x; [ - n , 0 ) ) A N ( X ; [0, n])} > 0 (by (2.13)),

it is easy to find an increasing sequence {n(/)}jeN of positive integers satisfying

l i m s u p ^ o o ^ j - d ^ . ^ l vqi+n(l)} S c'1

(the sequence {n(l)}t may depend on i). Then

= 0 (by (4.13), (4.11) and (2.11))

and also

lim .up, . . Jjr^-nW,i+nW ^ lim sup,.. [ c { | g ^ ' ^

= 0, 0 ^ y < 1.

Therefore letting n-»oo in (4.22) via the subsequence {n(l)}le^, we have J *•,-(*) = 0,
^e [ - 1 , 0]. Thus (4.16) follows from (4.4). x(-1) e ^ y is clear from Theorem
1; the rest of (4.17) is proved analogously to that of Remark 3. Q

§ 5. Proof of Theorem 3

In this section we will prove Theorem 3. The proof relies essentially on the
results of [3; §6] ; we also use the terminology locally bounded (l.b.), locally
positive (l.p.),... as in [3].

Let / be a nonnegative l.b. measurable function on (0, oo), and let g be a
probability density function (p.d.f.) on R. For any compact interval A = [a, b]
and x e f , we define a probability measure m{A>x) on {y e<X \ nAC(y) = nAc(x)} by

(5.1) u(q*9a9b9q

= <p(4>)f(q* -1*)+\h dq\ dpcp((q9 p))f(q - q*)f(q* - q)g(p)

Here u(q+, a, b, q*) is the normalizing factor, and (q,, Pt)t=l denotes any element
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of & whose restriction to A is {qh p$=1. (For other notations, see § 2.) Denote
by &ftg the set of probability measures m on (^, ^(#*)) such that for every
compact interval A — [a, h] the regular conditional probability distributions
(r.c.p.d.) of m\MA evaluated 2Xxe% coincide with the measure m(J>x> given by
(5.1). Then we can prove the following facts by arguments similar to [3].

(a) If/is a l.b. p.d.f. on (0, oo) with a finite first moment, then ^/,g#</>.
(b) If/ is l.b. and l.p. and if ^ / ^ ^ ^ , then there is a X such that f(r) =

eXrf(r) is a p.d.f. on (0, oo) with a finite first moment p"1, and &ft9 consists of
exactly one element nif whose marginals are given by

(5.2)

p ( ( ) )
b-a

\"dq\ dp<p({q, p))p(l - P(q - a)) (1 - P(b - q))g(p)
Ja JR

dqi-dqk\-\ dp^
qi< — <qk£b J jR fc

(peB(&9 [a, 6]),

where P(t) = {* f(s)ds.
Jo

PROOF OF THEOREM 3. Set

f(r) = exp {-P<P(r) + fiu + log(2n/p)^}, g(p) = (^TT)1 /2 exp {-/

Then ^/^=^/?,«(^)- Since /(r) is bounded on (0, oo), there is a A>0 such that
\ ?(r)dr = l for f{r) = e~kr f(r). In this case / has a finite first moment p"1.
Jo
It then follows from (a) that # / ^ = # / ^ = #/M(#)9£0. Unfortunately /(r) is
not l.p., and so we cannot use (b) directly. However, /(r) is bounded, strictly
positive and continuous on (0, oo), and hence Lemma 6.9 (replacing N((l — x) by
N(s1—x9 f} — x) = infSl-x^t£p_xf(t) in the proof), Lemma 6.22 and Lemma 6.23
of [3] still hold. Therefore the conclusion of (b) is also valid, which implies
#^tt(<P) = l. Let ix be the unique element of &p}U(<P), which satisfies (5.2) with
nif replaced by pi. Regarding q0, qt — qt-i 0^1), Vt 0^0) as random variables
on the probability space (&, JJ), we can easily see from (5.2) that they are mutually
independent, and their p.d.f.'s are p(l-F(r)), /(r) and g(p), respectively. Then
the law of large numbers implies that
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r i i m ^ fc-Hfc, + S*=i (Qi-Qi-i)} = P" 1 Ai-a.e.,

l l i m ^ /r1 Zf=1 2-^f = (2/?)"1 ^-a.e.;

hence we have

(5.4) l i m ^ n-iN(x; [0, n]) = p ^-a.e.

Let # be a positive number such that

K ) / ( ) J r = 0~ i = 1, 2,... .
o

The law of large numbers also gives us

l im^ /r1 £*=1 ^ t e - ^ - 0 = 8 /x-a.e.

Therefore using (5.4) we get

l i m ^ n-'Hix; [0, n]) = p ^ ^ r 1 + ^} ^a.e.,

which implies our assertion that /i($*0) = 1. D

REMARK 4. From (5.4) it follows that the condition (2.13) of Theorem 2 is
satisfied for /i-a.e. x.
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