On generalized total curvatures and conformal mappings

Naoto ABE (Received September 16, 1981)

§1. Introduction

In this paper, we generalize the concept of total absolute curvatures of submanifolds immersed in a Riemannian manifold and study the properties in relation to conformal mappings. In § 2, generalized total curvatures are defined. We construct certain conformal invariants in § 3, using generalized total curvatures. These invariants contain that of C. C. Hsiung and L. R. Mugridge [4] and T. J. Willmore [7].

§2. Generalized total curvatures

Let N be an (n+q)-dimensional Riemannian manifold with the metric g and M an n-dimensional submanifold immersed in N. For a normal vector field ξ and a tangent vector field X on M, the second fundamental form A of M is defined to be

$$A^{\xi}(X) := - (\mathbf{\nabla}_X \xi)^T,$$

where \mathbf{V} is the Levi-Civita connection of N and ()^T denotes the tangential component.

Let GL_n be the real general linear group, gl_n its Lie algebra and $\mathfrak{s}_n (\subset gl_n)$ the subspace which consists of all symmetric matrices. An algebra I is defined to be

$$I:=\{\varphi\in C^0(\mathfrak{s}_n)\,|\,\varphi(gBg^{-1})=\varphi(B)\quad\text{for any}\quad B\in\mathfrak{s}_n,\,g\in O(n)\}\,,$$

where $C^0(\mathfrak{s}_n)$ is the algebra of all real-valued continuous functions on \mathfrak{s}_n and O(n) is the orthogonal group. For a positive real number r, we define the following subspace

$$I^r := \{ \varphi \in I \mid \varphi(bB) = b^r \varphi(B) \text{ for any } B \in \mathfrak{s}_n, b > 0 \}.$$

Let $T_1^{\perp}(M)$ be the normal unit sphere bundle. A linear mapping $\mu_M^N: I^r \to C^0(M)$ is defined to be

$$\mu_M^N(\varphi)(p) := (1/\omega_{q+r-1}) \int_{T_1^\perp(M)_p} \varphi(A_p^{\xi}) d\sigma_p(\xi) \quad \text{for} \quad \varphi \in I^r, \, p \in M,$$

Naoto Abe

where $d\sigma_p$ is the volume element of the fibre $T_1^{\perp}(M)_p$ and

$$\omega_{q+r-1} := 2\pi^{(q+r)/2} / \Gamma((q+r)/2),$$

which coincides with the volume of the (q+r-1)-dimensional unit sphere when r is an integer.

LEMMA 1. If N is a totally geodesic submanifold of \tilde{N} , then we have

$$\mu_{\mathcal{M}}^{\tilde{N}}(\varphi) = \mu_{\mathcal{M}}^{N}(\varphi) \qquad for \quad \varphi \in I^{r}.$$

This fact is due to the factor ω_{q+r-1} in the definition. From now on we will denote μ_M^N by μ_M for simplicity if there will be no ambiguity.

Let $I(GL_n)$ be the algebra of all invariant polynomials on gl_n . It is clear that elements of $I(GL_n)$ restricted to \mathfrak{s}_n belong to I. The generators $c_k \in I(GL_n)$ $(0 \le k \le n)$ are defined to be

$$\sum t^k \binom{n}{k} c_k(B) := \det (I_n + tB) \quad \text{for} \quad B \in \mathfrak{gl}_n.$$

For $p \in M$ and $\xi \in T_1^{\perp}(M)_p$, $c_k(A_p^{\xi})$ is called the k-th mean curvature of M at p with respect to ξ and $K_k^*(p) := \mu_M(|c_k|^{n/k})(p)$ the k-th total absolute curvature at p. The k-th total absolute curvature of M is defined to be

$$TK_k^*(M) := \int_M K_k^*(p) dV_M(p),$$

where dV_M denotes the standard measure on M. Especially $TK_n^*(M)$ is the usual total absolute curvature of M. These curvatures have been studied by many geometers. For example, see [2].

§3. Conformal invariants

It is well-known that $TK_k^*(M)$ is invariant under homotheties of N. Noting that $|c_k|^{n/k} \in I^n$, we can clearly generalize this fact as follows. Let \overline{N} be another Riemannian manifold with the metric \overline{g} and $f: N \to \overline{N}$ a diffeomorphism. If g and $f^*\overline{g}$ are homothetically equivalent, then we have

(1)
$$f^*(\mu_{f(M)}^N(\varphi)dV_{f(M)}) = \mu_M^N(\varphi)dV_M$$

for any $\varphi \in I^n$. In the case where g and $f^*\bar{g}$ are conformally equivalent, the formula (1) does not hold for all of $\varphi \in I^n$ in general. An example of the elements, for which the formula (1) holds, is $(c_1^2 - c_2)^{n/2} \in I^n$:

THEOREM (C. C. Hsiung and L. R. Mugridge [4]). Let M be a submanifold immersed in a Euclidean space E^{n+q} and f a conformal mapping of E^{n+q} . Then we have

204

On generalized total curvatures and conformal mappings

$$f^*(\mu_{f(M)}((c_1^2-c_2)^{n/2})dV_{f(M)}) = \mu_M((c_1^2-c_2)^{n/2})dV_M,$$

(in our notation).

This theorem is due to B.-Y. Chen [1] for n=2 and a general q and due to T. J. Willmore [7] for a general ambient space with q=1. In the case where M is a surface, we have the following conformal invariant.

THEOREM (B.-Y. Chen [1], J. H. White [6]). Let M be an orientable closed surface in E^{2+q} and f a conformal mapping of E^{2+q} . Then we have

$$\int_{f(M)} |\overline{H}|^2 dV_{f(M)} = \int_M |H|^2 dV_M,$$

where H (resp. \overline{H}) is the mean curvature vector field of M (resp. f(M)) in E^{2+q} .

We will generalize the above theorems as follows.

THEOREM 1. Let M be a submanifold immersed in a Riemannian manifold N with the metric g and $f: N \rightarrow \overline{N}$ a diffeomorphism into a Riemannian manifold \overline{N} with the metric \overline{g} . If g and $f^*\overline{g}$ are conformally equivalent, then we have

$$f^*(\mu_{f(M)}^{N}(|\hat{c}_{k}|^{n/k})dV_{f(M)}) = \mu_{M}^{N}(|\hat{c}_{k}|^{n/k})dV_{M} \quad for \quad k \ge 2,$$

where $\hat{c}_k \in I^k$ is defined to be

$$\hat{c}_k$$
: = $\sum_{i=0}^k \binom{k}{i} (-1)^i (c_1)^i c_{k-i}$.

Note that $\hat{c}_2 = c_2 - c_1^2 (\leq 0)$. The proof of Theorem 1 will be given in § 4.

REMARK. If the mean curvature vector of M vanishes at $p \in M$, then $\mu_M(|\hat{c}_k|^{n/k})(p) = K_k^*(p)$.

COROLLARY. In the theorem, let M be an orientable closed surface and N (resp. \overline{N}) a space of constant sectional curvature c (resp. \overline{c}). Then we have

$$\int_{M} |H|^2 dV_M + c \operatorname{Vol}(M) = \int_{f(M)} |\overline{H}|^2 dV_{f(M)} + \bar{c} \operatorname{Vol}(f(M)),$$

where H (resp. \overline{H}) denotes the mean curvature vector field of M (resp. f(M)) in N (resp. \overline{N}) and Vol() is the volume.

PROOF. Carry out the integration over the normal unit sphere, and we obtain

$$\mu_M(c_1^2) = \frac{2}{\omega_2} |H|^2$$
 and $\mu_M(c_2) = \frac{2}{\omega_2} (K-c)$,

205

where K is the Gaussian curvature of M. By applying the Gauss-Bonnet formula to Theorem 1, we obtain the formula.

The formula in the Corollary coincides with that of M. Maeda [5] in the case where N (resp. \overline{N}) is the hyperbolic space $H^{2+q}(c)$ (resp. the Euclidean space E^{2+q}) and f is the inclusion mapping from the Poincare disc model into E^{2+q} .

§4. Proof of Theorem 1

Let $\sigma: \mathfrak{s}_n \rightarrow \mathfrak{s}_n$ be a homomorphism defined to be

$$\sigma(B): = B - c_1(B)I_n \quad \text{for} \quad B \in \mathfrak{s}_n,$$

and $\sigma^*: I \rightarrow I$ the induced homomorphism.

A straightforward calculation gives

LEMMA 2. $\sigma^* c_k = \hat{c}_k$.

Therefore, in order to get the formula in Theorem 1, it is sufficient to prove

THEOREM 2. If g and $f^*\bar{g}$ are conformally equivalent, then we have

$$f^*(\mu_{f(M)}^N(\varphi)dV_{f(M)}) = \mu_M^N(\varphi)dV_M \quad for \quad \varphi \in \sigma^*(I^n)$$

At first we prove the following lemmas. Let ρ be a smooth function on N such as $f^*\bar{g} = e^{2\rho}g$.

LEMMA 3. For $p \in M$, $\xi \in T^{\perp}(M)_p$ and $X \in T(M)_p$, we have

$$(f^*\overline{A})^{\xi}_p(X) = A^{\xi}_p(X) - (\xi\rho)X,$$

where \overline{A} is the second fundamental form of f(M) in \overline{N} .

PROOF. It is clear that $f^*\overline{A}$ is the second fundamental form of M relative to the induced metric $f^*\overline{g}$. Then we get

$$(f^*\bar{A})^{\xi}_{p}(X) = -((f^*\bar{\nu})_X\xi)^T,$$

where \overline{P} is the Levi-Civita connection of \overline{N} and $f^*\overline{P}$ is the induced connection. Since g and $f^*\overline{g}$ are conformally equivalent, we have

$$(f^* \mathcal{V})_X Y - \mathcal{V}_X Y = (X\rho)Y + (Y\rho)X - g(X, Y) \text{grad } \rho$$

for vector fields X, Y on N. This formula implies

(2)
$$(f^* \vec{\nu})_X \xi - \nu_X \xi = (X\rho)\xi + (\xi\rho)X$$

for $X \in T(M)_p$, $\xi \in T^{\perp}(M)_p$. By taking the tangential parts of the both sides of (2), we have the lemma.

REMARK. Let ω_{α}^{β} (resp. $\overline{\omega}_{\alpha}^{\beta}$) be the normal connection form relative to a local orthonormal frame field ξ_{α} (resp. $e^{-\rho}f_{*}\xi_{\alpha}$). By taking the normal part of the both sides of the formula (2), we see that $f^{*}\overline{\omega}_{\alpha}^{\beta} = \omega_{\alpha}^{\beta}$. Thus we find that transgression forms with respect to the normal connection are invariant under changes of metrics on the ambient space (cf. [3]).

LEMMA 4. For $\varphi \in I^r$ and $p \in M$, we have

$$\mu_{f(M)}(\varphi)(f(p)) = e^{-r\rho} \int_{T_1^{\perp}(M)_p} \varphi(A_p^{\xi} - (\xi\rho)I_p) d\sigma_p(\xi),$$

where I_p is the identity transformation of $T(M)_p$.

PROOF. For $\xi \in T_1^{\perp}(M)_p$, take $\bar{\xi} \in T_1^{\perp}(f(M))_{f(p)}$ such that $\bar{\xi} = e^{-\rho(p)} f_* \xi$. From Lemma 3, we see

$$\varphi(\bar{A}^{\bar{\xi}}_{f(p)}) = \varphi((f^*\bar{A})^{e^{-\rho(p)}\xi}_p) = e^{-r\rho(p)}\varphi((f^*\bar{A})^{\xi}_p) = e^{-r\rho(p)}\varphi(A^{\xi}_p - (\xi\rho)I_p).$$

Since the corresponding $\xi \rightarrow \overline{\xi}$ is an isometry, we get the required formula.

LEMMA 5.
$$f^*(\mu_{f(M)}(\varphi)) = e^{r\rho} \mu_M(\varphi)$$
 for $\varphi \in \sigma^*(I^n)$.

Since $\sigma(A_p^{\xi} - (\xi \rho)I_p) = \sigma(A_p^{\xi})$, Lemma 5 follows from Lemma 4.

Now, Theorem 2 is an immediate consequence of Lemma 5, since

$$f^*(dV_{f(M)}) = e^{n\rho} dV_M.$$

References

- [1] B.-Y. Chen, An invariant of conformal mappings, Proc. Amer. Math. Soc. 40 (1973), 563-564.
- [2] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- [3] S. S. Chern and J. Simons, *Characteristic forms and geometric invariants*, Ann. of Math. **99** (1974), 48–69.
- [4] C. C. Hsiung and L. R. Mugridge, Conformal invariants of submanifolds, Proc. Amer. Math. Soc. 62 (1977), 316–318.
- [5] M. Maeda, The integral of the mean curvature, Sci. Rep. of Yokohama Nat. Univ. 25 (1978), 17-21.
- [6] J. H. White, A global invariants of conformal mappings in space, Proc., Amer. Math. Soc. 38 (1973), 162-164.
- [7] T. J. Willmore, *Minimal conformal immersions*, Springer Lecture Notes in Math. 392 (1974), 111–120.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University