Subgroup ($S U(2) \times \operatorname{Spin}(12)) / Z_{2}$ of compact simple Lie group E_{7} and non-compact simple Lie group $E_{7, \sigma}$ of type $E_{7(-5)}$

Osami Yasukura and Ichiro Yокоta

(Received August 20, 1981)

Introduction

It is known that there exist four simple Lie groups of type E_{7} up to local isomorphism, one of them is compact and the others are non-compact. We have shown that in [3], [5] the group

$$
\begin{aligned}
E_{7} & =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{c}, \mathfrak{P}^{c}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(P^{\boldsymbol{c}}, \mathfrak{P}^{c}\right) \mid \alpha \mathfrak{M}^{\boldsymbol{c}}=\mathfrak{M}^{\boldsymbol{c}},\{\alpha P, \alpha Q\}=\{P, Q\},\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\}
\end{aligned}
$$

is a simply connected compact simple Lie group of type E_{7} and in [4], [5] the group

$$
\begin{aligned}
E_{7, \iota} & =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{c}, \mathfrak{P}^{\boldsymbol{c}}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle_{\iota}=\langle P, Q\rangle_{\imath}\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{c}, \mathfrak{P}^{c}\right) \mid \alpha \mathfrak{M}^{\boldsymbol{c}}=\mathfrak{M}^{c},\{\alpha P, \alpha Q\}=\{P, Q\},\langle\alpha P, \alpha Q\rangle_{\iota}=\langle P, Q\rangle_{\iota}\right\}
\end{aligned}
$$

is a connected non-compact simple Lie group of type $E_{7(-25)}$ and its polar decomposition is given by

$$
E_{7, \iota} \simeq\left(U(1) \times E_{6}\right) / Z_{3} \times \boldsymbol{R}^{54} .
$$

In this paper, we show that the group

$$
\begin{aligned}
E_{7, \sigma} & =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{\boldsymbol{c}}, \mathfrak{P}^{\boldsymbol{c}}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle_{\sigma}=\langle P, Q\rangle_{\sigma}\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{c}, \mathfrak{P}^{\boldsymbol{c}}\right) \mid \alpha \mathfrak{M}^{\boldsymbol{c}}=\mathfrak{M}^{\boldsymbol{c}},\{\alpha P, \alpha Q\}=\{P, Q\},\langle\alpha P, \alpha Q\rangle_{\sigma}=\langle P, Q\rangle_{\sigma}\right\}
\end{aligned}
$$

is a connected non-compact simple Lie group of type $E_{7(-5)}$ with the center $z\left(E_{7, \sigma}\right)=\{1,-1\}$. The polar decomposition of the group $E_{7, \sigma}$ is given by

$$
E_{7, \sigma} \simeq(S U(2) \times \operatorname{Spin}(12)) / Z_{2} \times \boldsymbol{R}^{64} .
$$

To give this decomposition, we find subgroups

$$
S U(2), \quad \operatorname{Spin}(12), \quad(S U(2) \times \operatorname{Spin}(12)) / Z_{2}
$$

in the group E_{7} and the group $E_{7, \sigma}$ explicitly.

1. Preliminaries

1.1. Cayley algebra \mathfrak{C} and exceptional Jordan algebra $\mathfrak{J}^{\boldsymbol{C}}$

Let \mathfrak{C} denote the Cayley algebra over the field \boldsymbol{R} of real numbers and $\mathbb{C}^{\boldsymbol{C}}$ its complexification with respect to the field \boldsymbol{C} of complex numbers. Let $\mathfrak{J}^{\boldsymbol{c}}$ denote the Jordan algebra consisting of all 3×3 Hermitian matrices X with entries in $\mathbb{C H}^{c}$:

$$
X=\left[\begin{array}{lll}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right], \quad \xi_{i} \in \boldsymbol{C}, x_{i} \in \mathbb{C}^{\boldsymbol{C}}
$$

with repect to the multiplication $X \circ Y=(X Y+Y X) / 2$. In $\mathfrak{J}^{\boldsymbol{C}}$, the symmetric inner product (X, Y), the positive definite Hermitian inner product $\langle X, Y\rangle$ and the crossed product $X \times Y$ are defined respectively by

$$
\begin{aligned}
& (X, Y)=\operatorname{tr}(X \circ Y), \quad\langle X, Y\rangle=(\tau X, Y)=(\bar{X}, Y), \\
& X \times Y=(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y)) E) / 2
\end{aligned}
$$

where $\tau: \mathfrak{J}^{\boldsymbol{C}} \rightarrow \mathfrak{J}^{\boldsymbol{C}}$ is the conjugation relative to the field \boldsymbol{C} (τX is also denoted by \bar{X}) and E the 3×3 unit matrix. We use the following notations in $\mathfrak{J}^{\boldsymbol{C}}$:

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad E_{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

1.2. Compact Lie group E_{6} and its Lie algebra \mathfrak{e}_{6} ([1], [7])

A simply connected compact simple Lie group of type E_{6} is given by

$$
\begin{aligned}
E_{6} & =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{I}^{c}, \mathfrak{J}^{c}\right) \mid(\alpha X, \alpha X \times \alpha X)=(X, X \times X),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{J}^{c}, \mathfrak{J}^{c}\right) \mid \tau \alpha \tau(X \times Y)=\alpha X \times \alpha Y,\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}
\end{aligned}
$$

and its Lie algebra is

$$
\mathfrak{e}_{6}=\left\{\phi \in \operatorname{Hom}_{\boldsymbol{c}}\left(\mathfrak{J}^{c}, \mathfrak{J}^{c}\right) \mid(\phi X, X \times X)=0,\langle\phi X, Y\rangle=-\langle X, \phi Y\rangle\right\} .
$$

The complexification \mathfrak{e}_{6}^{ℓ} of the Lie algebra \mathfrak{e}_{6} :

$$
\mathfrak{e}_{6}^{\boldsymbol{c}}=\left\{\phi \in \operatorname{Hom}_{\boldsymbol{c}}\left(\mathfrak{J}^{\boldsymbol{c}}, \mathfrak{J}^{\boldsymbol{c}}\right) \mid(\phi X, X \times X)=0\right\}
$$

is a simple Lie algebra over \boldsymbol{C} of type E_{6}. For $A, B \in \mathfrak{J}^{\boldsymbol{C}}, A \vee B \in \mathrm{e}_{6}^{\boldsymbol{C}}$ is defined by

$$
(A \vee B) X=((B, X) / 2) A+((A, B) / 6) X-2 B \times(A \times X), \quad X \in \mathfrak{I}^{C} .
$$

1.3. Compact Lie group E_{7} and its Lie algebra e_{7} ([1], [3])

Let $\mathfrak{P}^{\boldsymbol{C}}$ be a 56 dimensional vector space over \boldsymbol{C} defined by

$$
\mathfrak{P}^{\boldsymbol{c}}=\mathfrak{I}^{\boldsymbol{c}} \oplus \mathfrak{I}^{\boldsymbol{c}} \oplus \boldsymbol{C} \oplus \boldsymbol{C} .
$$

An element $P=\left[\begin{array}{l}X \\ Y \\ \xi \\ \eta\end{array}\right]$ of \mathfrak{P}^{c} is often denoted by $P=(X, Y, \xi, \eta)$. In \mathfrak{P}^{c}, the positive definite Hermitian inner product $\langle P, Q\rangle$ and the skew-symmetric inner product $\{P, Q\}$ are defined respectively by

$$
\begin{aligned}
& \langle P, Q\rangle=\langle X, Z\rangle+\langle Y, W\rangle+\bar{\xi} \zeta+\bar{\eta} \omega, \\
& \{P, Q\}=(X, W)-(Z, Y)+\xi \omega-\zeta \eta
\end{aligned}
$$

where $P=(X, Y, \xi, \eta), Q=(Z, W, \zeta, \omega) \in \mathfrak{P}^{c}$.
For $\phi \in \mathfrak{e}_{6}^{\boldsymbol{C}}, A, B \in \mathfrak{J}^{\boldsymbol{C}}$ and $v \in \boldsymbol{C}$, we define a linear transformation $\Phi(\phi, A, B, v)$ of \mathfrak{P}^{C} by

$$
\begin{aligned}
\Phi(\phi, A, B, v)\left[\begin{array}{l}
X \\
Y \\
\xi \\
\eta
\end{array}\right] & =\left[\begin{array}{cccc}
\phi-(v / 3) 1 & 2 B & 0 & A \\
2 A & \phi^{\prime}+(v / 3) 1 & B & 0 \\
0 & A & v & 0 \\
B & 0 & 0 & -v
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
\xi \\
\eta
\end{array}\right] \\
& =\left[\begin{array}{c}
\phi X-(v / 3) X+2 B \times Y+\eta A \\
2 A \times X+\phi^{\prime} Y+(v / 3) Y+\xi B \\
(A, Y)+v \xi \\
(B, X)-v \eta
\end{array}\right]
\end{aligned}
$$

where $\phi^{\prime} \in \mathfrak{e}_{6}^{\mathcal{C}}$ denotes the skew-transpose of ϕ with respect to the inner product $(X, Y):(\phi X, Y)+\left(X, \phi^{\prime} Y\right)=0$. Now, for $P=(X, Y, \xi, \eta), Q=(Z, W, \zeta, \omega) \in \mathfrak{P}^{c}$, we define a linear transformation $P \times Q$ of $\mathfrak{P}^{\mathbf{C}}$ by

$$
P \times Q=\Phi(\phi, A, B, v),\left\{\begin{array}{l}
\phi=-(X \vee W+Z \vee Y) / 2 \\
A=-(2 Y \times W-\xi Z-\zeta X) / 4 \\
B=(2 X \times Z-\eta W-\omega Y) / 4 \\
v=((X, W)+(Z, Y)-3(\xi \omega+\zeta \eta)) / 8
\end{array}\right.
$$

And we define a submanifold $\mathfrak{M}^{\boldsymbol{c}}$ of $\mathfrak{P}^{\boldsymbol{c}}$, called a Freudenthal manifold, by

$$
\begin{aligned}
\mathfrak{M}^{c} & =\left\{P \in \mathfrak{P}^{c} \mid P \times P=0, P \neq 0\right\} \\
& =\left\{P=(X, Y, \xi, \eta) \in \mathfrak{P} \boldsymbol{c} \left\lvert\, \begin{array}{l}
X \vee Y=0, X \times X=\eta Y, Y \times Y=\xi X, \\
(X, Y)=3 \xi \eta, P \neq 0
\end{array}\right.\right\} .
\end{aligned}
$$

Now, as stated in the introduction, a simply connected compact simple Lie group of type E_{7} is given by

$$
\begin{aligned}
E_{7} & =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{\boldsymbol{c}}, \mathfrak{P}^{\boldsymbol{c}}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{c}, \mathfrak{P}^{\boldsymbol{c}}\right) \mid \alpha \mathfrak{M}^{\boldsymbol{c}}=\mathfrak{M}^{\boldsymbol{c}},\{\alpha P, \alpha Q\}=\{P, Q\},\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\}
\end{aligned}
$$

and its Lie algebra is

$$
\mathfrak{e}_{7}=\left\{\Phi(\phi, A, v) \in \operatorname{Hom}_{\boldsymbol{c}}\left(\mathfrak{P}^{\boldsymbol{c}}, \mathfrak{P}^{\boldsymbol{c}}\right) \mid \phi \in \mathfrak{e}_{6}, A \in \mathfrak{J}^{\boldsymbol{c}}, v \in \boldsymbol{C}, \bar{v}=-v\right\}
$$

where $\Phi(\phi, A, v)=\Phi(\phi, A,-\bar{A}, v)$, so the action $\Phi(\phi, A, v)$ on \mathfrak{P}^{c} is defined by

$$
\Phi(\phi, A, v)\left[\begin{array}{l}
X \\
Y \\
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{c}
\phi X-(v / 3) X-2 \bar{A} \times Y+\eta A \\
2 A \times X+\overline{\phi \bar{Y}}+(v / 3) Y-\xi \bar{A} \\
(A, Y)+v \xi \\
-\langle A, X\rangle-v \eta
\end{array}\right]
$$

The Lie bracket $\left[\Phi_{1}, \Phi_{2}\right]$ in e_{7} is given by

$$
\begin{aligned}
& {\left[\Phi\left(\phi_{1}, A_{1}, v_{1}\right), \Phi\left(\phi_{2}, A_{2}, v_{2}\right)\right]=\Phi(\phi, A, v),} \\
& \left\{\begin{array}{l}
\phi=\left[\phi_{1}, \phi_{2}\right]-2 A_{1} \vee \bar{A}_{2}+2 A_{2} \vee \bar{A}_{1}, \\
A=\left(\phi_{1}+\left(2 v_{1} / 3\right) 1\right) A_{2}-\left(\phi_{2}+\left(2 v_{2} / 3\right) 1\right) A_{1}, \\
v=\left\langle A_{1}, A_{2}\right\rangle-\left\langle A_{2}, A_{1}\right\rangle .
\end{array}\right.
\end{aligned}
$$

2. Subgroups $\left(E_{7}\right)_{\sigma}, E_{\sigma, \kappa, \lambda}, E_{\sigma, \kappa, \lambda, 1}$ of E_{7} and their Lie algebras

We define linear transformations σ, κ_{1} of $\mathfrak{J}^{\boldsymbol{c}}$ respectively by

$$
\begin{aligned}
& \sigma\left[\begin{array}{lll}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right]=\left[\begin{array}{rrr}
\xi_{1} & -x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
-x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right], \\
& \kappa_{1}\left[\begin{array}{lll}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & -\xi_{2} & -x_{1} \\
0 & -\bar{x}_{1} & -\xi_{3}
\end{array}\right]
\end{aligned}
$$

and then define linear transformations σ (denoted by the same notation as the above), κ, λ of \mathfrak{P}^{c} respectively by

$$
\sigma\left[\begin{array}{c}
X \\
Y \\
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{c}
\sigma X \\
\sigma Y \\
\xi \\
\eta
\end{array}\right], \quad \kappa\left[\begin{array}{c}
X \\
Y \\
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{c}
\overline{\kappa_{1} Y} \\
\overline{\kappa_{1} X} \\
\bar{\xi} \\
\bar{\eta}
\end{array}\right], \quad \lambda\left[\begin{array}{c}
X \\
Y \\
\xi \\
\eta
\end{array}\right]=\left[\begin{array}{c}
\eta E_{1}+2 E_{1} \times Y \\
\xi E_{1}+2 E_{1} \times X \\
\left(E_{1}, Y\right) \\
\left(E_{1}, X\right)
\end{array}\right] .
$$

Now, we define subgroups $\left(E_{7}\right)_{\sigma}, E_{\sigma, \kappa, \lambda}, E_{\sigma, \kappa, \lambda, 1}$ of the group E_{7} by

$$
\begin{aligned}
& \left(E_{7}\right)_{\sigma}=\left\{\alpha \in E_{7} \mid \sigma \alpha=\alpha \sigma\right\} \\
& E_{\sigma, \kappa, \lambda}=\left\{\alpha \in\left(E_{7}\right)_{\sigma} \mid \kappa \alpha=\alpha \kappa, \lambda \alpha=\alpha \lambda\right\} \\
& E_{\sigma, \kappa, \lambda, 1}=\left\{\alpha \in E_{\sigma, \kappa, \lambda} \mid \alpha\left(E_{1}, E_{1}, 1,1\right)=\left(E_{1}, E_{1}, 1,1\right)\right\}
\end{aligned}
$$

Our first aim is to show that these groups are isomorphic to the following groups respectively :

$$
(S U(2) \times \operatorname{Spin}(12)) / Z_{2}, \quad \operatorname{Spin}(12), \quad \operatorname{Spin}(11)
$$

The Lie algebras of these groups are easily calculated as follows.
Proposition 1. (1) The Lie algebra $\left(\mathrm{e}_{7}\right)_{\sigma}$ of the group $\left(E_{7}\right)_{\sigma}$ is

$$
\left(\mathfrak{e}_{7}\right)_{\sigma}=\left\{\Phi \in \mathfrak{e}_{7} \mid \sigma \Phi=\Phi \sigma\right\}=\left\{\begin{array}{l|l}
\Phi(\phi, A, v) \in \mathfrak{e}_{7} & \begin{array}{l}
\phi \in \mathfrak{e}_{6}, \sigma \phi=\phi \sigma, \\
A \in \mathfrak{I}^{c}, \sigma A=A \\
v \in \boldsymbol{C}, \bar{v}=-v
\end{array}
\end{array}\right\}
$$

(2) The Lie algebra $\mathfrak{e}_{\sigma, \kappa, \lambda}$ of the group $E_{\sigma, \kappa, \lambda}$ is

$$
\begin{aligned}
\mathfrak{e}_{\sigma, \kappa, \lambda} & =\left\{\Phi \in\left(\mathfrak{e}_{7}\right)_{\sigma} \mid \kappa \Phi=\Phi \kappa, \lambda \Phi=\Phi \lambda\right\} \\
& =\left\{\begin{array}{l|l}
\Phi(\phi, A, v) \in \mathfrak{e}_{7} & \begin{array}{l}
\phi \in \mathfrak{e}_{6}, \sigma \phi=\phi \sigma \\
A \in \mathfrak{J}^{c}, \sigma A=A,\left(E_{1}, A\right)=0 \\
v=-3\left(\phi E_{1}, E_{1}\right) / 2
\end{array}
\end{array}\right\} .
\end{aligned}
$$

(3) The Lie algebra $\mathfrak{e}_{\sigma, \kappa, \lambda, 1}$ of the group $E_{\sigma, \kappa, \lambda, 1}$ is

$$
\begin{aligned}
\mathfrak{e}_{\sigma, \kappa, \lambda, 1} & =\left\{\Phi \in \mathfrak{e}_{\sigma, \kappa, \lambda} \mid \Phi\left(E_{1}, E_{1}, 1,1\right)=0\right\} \\
& =\left\{\Phi(\phi, A, 0) \in \mathfrak{e}_{7} \left\lvert\, \begin{array}{l}
\phi \in \mathfrak{e}_{6}, \phi E_{1}=0, \\
A \in \mathfrak{J}^{c}, 2 E_{1} \times A=\bar{A}
\end{array}\right.\right\} \\
(& \left.=\left\{\Phi \in \mathfrak{e}_{7} \mid \Phi\left(E_{1}, E_{1}, 1,1\right)=0\right\}=\left(\mathfrak{e}_{7}\right)_{1} \quad(\text { see } \S 10)\right) .
\end{aligned}
$$

For $v \in \boldsymbol{C}, \bar{v}=-v$, we define a linear transformation $\phi(v)$ of \mathfrak{J}^{c} by

$$
\phi(v)\left[\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right]=(v / 3)\left[\begin{array}{ccc}
4 \xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & -2 \xi_{2} & -2 x_{1} \\
x_{2} & -2 \bar{x}_{1} & -2 \xi_{3}
\end{array}\right] .
$$

Then $\phi(v)=2 v E_{1} \vee E_{1} \in \mathrm{e}_{6}$ and $\sigma \phi(v)=\phi(v) \sigma$. Further we define a Lie algebra a_{1} by

$$
\mathfrak{a}_{1}=\left\{\Phi\left(\phi(v), a E_{1}, v\right) \in \mathfrak{e}_{7} \mid a, v \in \boldsymbol{C}, \bar{v}=-v\right\} .
$$

This \mathfrak{a}_{1} is a Lie subalgebra of $\left(\mathfrak{e}_{7}\right)_{\sigma}$ and isomorphic to the special unitary Lie algebra $\mathfrak{s u}(2)=\left\{A \in M(2, C) \mid A^{*}=-A, \operatorname{tr}(A)=0\right\}$ by the correspondence

$$
\mathfrak{a}_{1} \ni \Phi\left(\phi(v), a E_{1}, v\right) \longleftrightarrow\left[\begin{array}{rr}
v & a \\
-\bar{a} & -v
\end{array}\right] \in \mathfrak{s u}(2) .
$$

Proposition 2. The Lie algebra $\left(\mathfrak{e}_{7}\right)_{\sigma}$ is the direct sum of the Lie subalgebras \mathfrak{a}_{1} and $\mathfrak{e}_{\sigma, \kappa, \lambda}$ in \mathfrak{e}_{7} :

$$
\left(\mathfrak{e}_{7}\right)_{\sigma}=\mathfrak{a}_{1}+\mathfrak{e}_{\sigma, \kappa, \lambda} .
$$

Proof. The correspondence

$$
\left(\mathfrak{e}_{7}\right)_{\sigma} \in \Phi(\phi, A, v) \longleftrightarrow \Phi\left(\phi\left(v^{\prime}\right), a E_{1}, v^{\prime}\right)+\Phi\left(\phi-\phi\left(v^{\prime}\right), A-a E_{1}, v-v^{\prime}\right) \in \mathfrak{a}_{1}+\mathfrak{e}_{\sigma, \kappa, \lambda},
$$

where $v^{\prime}=v / 3+\left(E_{1}, \phi E_{1}\right) / 2, a=\left(E_{1}, A\right)$, gives an isomorphism between them.

3. Spinor subgroup $\operatorname{Spin}(11)$ of E_{7}

We shall show that the group $E_{\sigma, \kappa, \lambda, 1}$ is isomorphic to the spinor group Spin (11) (cf. Theorem 20). To show this, consider an 11 dimensional vector space W over \boldsymbol{R} defined by

$$
\begin{aligned}
W & =\left\{P \in \mathfrak{P}^{c} \mid \sigma P=P, \kappa P=P, \lambda P=P, P \times\left(E_{1}, E_{1}, 1,1\right)=0\right\} \\
& =\left\{\left(\eta E_{1}+X,-\eta E_{1}-\bar{X},-\eta, \eta\right) \left\lvert\, \begin{array}{l}
\eta \in \boldsymbol{C}, \bar{\eta}=-\eta, \\
X \in \mathfrak{J}^{c}, 2 E_{1} \times X=-\bar{X}
\end{array}\right.\right\} \\
& =\left\{\left.\left(\left[\begin{array}{rrr}
\eta & 0 & 0 \\
0 & \xi & x \\
0 & \bar{x} & -\bar{\xi}
\end{array}\right],\left[\begin{array}{rrr}
-\eta & 0 & 0 \\
0 & -\bar{\xi} & -x \\
0 & -\bar{x} & \xi
\end{array}\right],-\eta, \eta\right) \right\rvert\, \begin{array}{l}
\eta, \xi \in \boldsymbol{C}, \bar{\eta}=-\eta, \\
x \in \mathbb{C}
\end{array}\right\}
\end{aligned}
$$

and let S^{10} be the unit sphere in W :

$$
\begin{aligned}
S^{10} & =\{P \in W \mid\langle P, P\rangle=4\} \\
& =\left\{\left(\left[\begin{array}{rrr}
\eta & 0 & 0 \\
0 & \xi & x \\
0 & \bar{x} & -\bar{\xi}
\end{array}\right],\left[\begin{array}{rrr}
-\eta & 0 & 0 \\
0 & -\bar{\xi} & -x \\
0 & -\bar{x} & \xi
\end{array}\right],-\eta, \eta \left\lvert\, \begin{array}{l}
\eta, \xi \in \boldsymbol{C}, \bar{\eta}=-\eta, x \in \mathbb{C}, \\
|\eta|^{2}+|\xi|^{2}+|x|^{2}=1
\end{array}\right.\right\} .\right.
\end{aligned}
$$

Remember that the spinor group ([7, Proposition 11])

$$
\operatorname{Spin}(10)=\left\{\alpha \in E_{6} \mid \sigma \alpha=\alpha \sigma, \alpha E_{1}=E_{1}\right\}=\left\{\alpha \in E_{6} \mid \alpha E_{1}=E_{1}\right\}
$$

acts transitively on the 9 dimensional sphere S^{9} ([7, Lemma 10])

$$
S^{9}=\left\{\left.\left(\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & \xi & x \\
0 & \bar{x} & -\bar{\xi}
\end{array}\right],\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -\bar{\xi} & -x \\
0 & -\bar{x} & \xi
\end{array}\right], 0,0\right) \right\rvert\, \begin{array}{l}
\xi \in \boldsymbol{C}, x \in \mathfrak{C}, \\
|\xi|^{2}+|x|^{2}=1
\end{array}\right\} .
$$

Lemma 3. For $a \in \boldsymbol{C}$, the linear transformation $\alpha_{i}(a)(i=1,2,3)$ of $\mathfrak{P}^{\boldsymbol{C}}$ defined by
$\alpha_{i}(a)=\left[\begin{array}{cccc}1+(\cos |a|-1) p_{i} & (2 a /|a|) \sin |a| E_{i} & 0 & -(\bar{a} /|a|) \sin |a| E_{i} \\ -(2 \bar{a} /|a|) \sin |a| E_{i} & 1+(\cos |a|-1) p_{i} & (a /|a|) \sin |a| E_{i} & 0 \\ 0 & -(\bar{a} /|a|) \sin |a| E_{i} & \cos |a| & 0 \\ (a /|a|) \sin |a| E_{i} & 0 & 0 & \cos |a|\end{array}\right]$
(if $a=0$, then $\left(a||a|) \sin |a|\right.$ means 0) belongs to the group $\left(E_{7}\right)_{\sigma}$, where the mapping $p_{i}: \mathfrak{J}^{\boldsymbol{c}} \rightarrow \mathfrak{J}^{\boldsymbol{C}}$ is

$$
p_{i}\left[\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\xi_{1} & \delta_{3 i} x_{3} & \delta_{2 i} \bar{x}_{2} \\
\delta_{3 i} \bar{x}_{3} & \xi_{2} & \delta_{1 i} x_{1} \\
\delta_{2 i} x_{2} & \delta_{1 i} \bar{x}_{1} & \xi_{3}
\end{array}\right](i=1,2,3),
$$

and the action of $\alpha_{i}(a)$ on \mathfrak{P}^{C} is defined as similar to that of $\Phi(\phi, A, B, v)$ in § 1.3. Furthermore, for $a \in \boldsymbol{C}, \alpha_{23}(a)=\alpha_{2}(a) \alpha_{3}(\bar{a})$ belongs to the group $E_{\sigma, \kappa, \lambda, 1}$.

Proof. For $\Phi\left(0,-\bar{a} E_{i}, 0\right) \in\left(\mathfrak{e}_{7}\right)_{\sigma}$, we have $\alpha_{i}(a)=\exp \Phi\left(0,-\bar{a} E_{i}, 0\right) \in\left(\mathfrak{e}_{7}\right)_{\sigma}$, $i=1,2,3$. For $\Phi\left(0,-\bar{a} E_{2}-a E_{3}, 0\right) \in \mathfrak{e}_{\sigma, \kappa, \lambda, 1}$, we have

$$
\begin{aligned}
\alpha_{23}(a)= & \alpha_{2}(a) \alpha_{3}(\bar{a})=\exp \Phi\left(0,-\bar{a} E_{2}, 0\right) \exp \Phi\left(0,-a E_{3}, 0\right) \quad(\text { cf. [3, Lemma 7]) } \\
= & \exp \left(\Phi\left(0,-\bar{a} E_{2}, 0\right)+\Phi\left(0,-a E_{3}, 0\right)\right) \\
& \quad\left(\text { because } \Phi\left(0,-\bar{a} E_{2}, 0\right) \text { and } \Phi\left(0,-a E_{3}, 0\right) \text { are commutative }\right) \\
= & \exp \Phi\left(0,-\bar{a} E_{2}-a E_{3}, 0\right) \in E_{\sigma, \kappa, \lambda, 1} .
\end{aligned}
$$

Lemma 4. $\alpha \in E_{\sigma, \kappa, 2,1}$ satisfies $\alpha\left(E_{1},-E_{1},-1,1\right)=\left(E_{1},-E_{1},-1,1\right)$ if and only if $\alpha(0,0,1,0)=(0,0,1,0)$. In particular, we have the following isomorphism:

$$
\left\{\alpha \in E_{\sigma, \kappa, \lambda, 1} \mid \alpha\left(E_{1},-E_{1},-1,1\right)=\left(E_{1},-E_{1},-1,1\right)\right\}=\operatorname{Spin}(10)
$$

Proof. Suppose that $\alpha \in E_{7}$ satisfies $\alpha\left(E_{1}, E_{1}, 1,1\right)=\left(E_{1}, E_{1}, 1,1\right)$ and $\alpha\left(E_{1},-E_{1},-1,1\right)=\left(E_{1},-E_{1},-1,1\right)$. Put $\alpha(0,0,1,0)=(X, Y, \xi, \eta)$. Then $\left\langle\alpha\left(E_{1}, E_{1}, 1,1\right), \alpha(0,0,1,0)\right\rangle=1,\left\langle\alpha\left(E_{1},-E_{1},-1,1\right), \alpha(0,0,1,0)\right\rangle=-1$ imply $\left(E_{1}, X\right)+\left(E_{1}, Y\right)+\xi+\eta=1,-\left(E_{1}, X\right)+\left(E_{1}, Y\right)+\xi-\eta=1$ respectively. Further$\operatorname{more}\left\{\alpha\left(E_{1}, E_{1}, 1,1\right), \alpha(0,0,1,0)\right\}=-1,\left\{\alpha\left(E_{1},-E_{1},-1,1\right), \alpha(0,0,1,0)\right\}=-1$ imply $\left(E_{1}, Y\right)-\left(E_{1}, X\right)+\eta-\xi=-1,\left(E_{1}, Y\right)+\left(E_{1}, X\right)-\eta-\xi=-1$ respectively. Therefore we have

$$
\xi=1, \quad\left(E_{1}, X\right)=\left(E_{1}, Y\right)=\eta=0 .
$$

Finally $\langle\alpha(0,0,1,0), \alpha(0,0,1,0)\rangle=1$ implies $\langle X, X\rangle+\langle Y, Y\rangle+1+0=1$, hence $X=Y=0$. Thus we have $\alpha(0,0,1,0)=(0,0,1,0)$. The proof of the converse is similar. Since we have the identification

$$
E_{6}=\left\{\alpha \in E_{7} \mid \alpha(0,0,1,0)=(0,0,1,0)\right\} \quad([13, \text { Proposition } 2])
$$

and $\left(E_{1}, 0,0,0\right)=\left(\left(E_{1}, E_{1}, 1,1\right)+\left(E_{1},-E_{1},-1,1\right)-2(0,0,0,1)\right) / 2($ see $[3$, Lemma 1]), we have

$$
\begin{aligned}
\{\alpha & \left.\in E_{\sigma, \kappa, \lambda, 1} \mid \alpha\left(E_{1},-E_{1},-1,1\right)=\left(E_{1},-E_{1},-1,1\right)\right\} \\
& =\left\{\alpha \in E_{7} \mid \alpha(0,0,1,0)=(0,0,1,0), \alpha\left(E_{1}, 0,0,0\right)=\left(E_{1}, 0,0,0\right)\right\} \\
& =\left\{\alpha \in E_{6} \mid \alpha E_{1}=E_{1}\right\}=\operatorname{Spin}(10)
\end{aligned}
$$

Lemma 5. The group $E_{\sigma, \kappa, \lambda, 1}$ acts transitively on S^{10} and the isotropy subgroup of $E_{\sigma, \kappa, \lambda, 1}$ at $i\left(E_{1},-E_{1},-1,1\right)$ is $\operatorname{Spin}(10)$. Therefore the homogeneous space $E_{\sigma, \kappa, \lambda, 1} / \operatorname{Spin}(10)$ is homeomorphic to S^{10} :

$$
E_{\sigma, \kappa, \lambda, 1} / \operatorname{Spin}(10) \simeq S^{10}
$$

In particular, the group $E_{\sigma, \kappa, \lambda, 1}$ is simply connected.
Proof. Obviously the group $E_{\sigma, \kappa, \lambda, 1}$ acts on S^{10}. In order to prove that $E_{\sigma, \kappa, \lambda, 1}$ acts transitively on S^{10}, it suffices to show that any element P of S^{10} can be transformed in $i\left(E_{1},-E_{1},-1,1\right) \in S^{10}$ by a certain element α of $E_{\sigma, \kappa, \lambda, 1}$. Now, for a given element $P=\left(\left[\begin{array}{rrr}\eta & 0 & 0 \\ 0 & \xi & x \\ 0 & \bar{x} & -\bar{\xi}\end{array}\right],\left[\begin{array}{rrr}-\eta & 0 & 0 \\ 0 & -\bar{\xi} & -x \\ 0 & -\bar{x} & \xi\end{array}\right],-\eta, \eta\right) \in S^{10}$, choose $a \in \boldsymbol{R}, \pi / 4 \geqq a \geqq 0$, such that

$$
\tan 2 a=2 \eta /(\bar{\xi}-\xi)
$$

and operate $\alpha_{23}(a) \in E_{\sigma, \kappa, \lambda, 1}$ of Lemma 3 on P. Then the η-part of $\alpha_{23}(a) P$ becomes $((\xi-\bar{\xi}) / 2) \sin 2 a+\eta \cos 2 a=0$. Hence

$$
\alpha_{23}(a) P \in S^{9}
$$

Since the group $\operatorname{Spin}(10) \subset E_{\sigma, \kappa, \lambda, 1}$ acts transitively on S^{9}, there exists $\beta \in \operatorname{Spin}$ (10) such that

$$
\beta \alpha_{23}(a) P=i\left(E_{2}+E_{3}, E_{2}+E_{3}, 0,0\right) .
$$

Again operate $\alpha_{23}(\pi / 4)$ of Lemma 3 on it. Then we have

$$
\alpha_{23}(\pi / 4) \beta \alpha_{23}(a) P=i\left(E_{1},-E_{1},-1,1\right) .
$$

This proves the transitivity of $E_{\sigma, \lambda, 2,1}$. On the other hand, Lemma 4 shows that the isotropy subgroup of $E_{\sigma, \kappa, \lambda, 1}$ at $i\left(E_{1},-E_{1},-1,1\right)$ is $\operatorname{Spin}(10)$. Thus we have the required homeomorphism $E_{\sigma, \kappa, \lambda, 1} / \operatorname{Spin}(10) \simeq S^{10}$.

Remark. The transitivities in Lemma 5 and the following Lemma 8 are easily obtained by another way. In fact, since the compact Lie group $E_{\sigma, \kappa, \lambda, 1}$ acts on S^{10}, an orbit $E_{\sigma, \kappa, \lambda, 1} i\left(E_{1},-E_{1},-1,1\right)\left(\simeq E_{\sigma, \kappa, \lambda, 1} / \operatorname{Spin}(10)\right)$ is $55-45=10$ dimensional compact submanifold of S^{10}, hence it must coincide with S^{10} : $E_{\sigma, \kappa, \lambda, 1} / \operatorname{Spin}(10) \simeq S^{10}$. However, here, we gave their elementary concrete proofs.

Theorem 6 (cf. Theorem 20). The subgroup $E_{\sigma, \kappa, \lambda, 1}$ of E_{7} is isomorphic to the spinor group Spin (11):

$$
E_{\sigma, \kappa, \lambda, 1} \cong \operatorname{Spin}(11)
$$

Proof. Let $S O(11)=S O(W)=\left\{\alpha^{\prime} \in \operatorname{Iso}_{\boldsymbol{R}}(W, W) \mid\left\langle\alpha^{\prime} P, \alpha^{\prime} Q\right\rangle=\langle P, Q\rangle\right.$, $\operatorname{det} \alpha^{\prime}$ $=1\}$ be the rotation group in W. For each $\alpha \in E_{\sigma, \kappa, \lambda, 1}$, the restriction $\alpha^{\prime}=\alpha \mid W$ obviously belongs to $O(11)=O(W)=\left\{\alpha^{\prime} \in \operatorname{Iso}_{\boldsymbol{R}}(W, W) \mid\left\langle\alpha^{\prime} P, \alpha^{\prime} Q\right\rangle=\langle P, Q\rangle\right\}$. Hence we can define a homomorphism $p: E_{\sigma, \kappa, \lambda, 1} \rightarrow O$ (11) by $p(\alpha)=\alpha^{\prime}$. Since $E_{\sigma, \kappa, \lambda, 1}$ is connected (Lemma 5), p induces a homomorphism

$$
p: E_{\sigma, \kappa, \lambda, 1} \longrightarrow S O(11)
$$

We shall show that p is onto. Recall that $p^{\prime}=p \mid \operatorname{Spin}(10): \operatorname{Spin}(10) \rightarrow S O$ (10) $=S O\left(W^{\prime}\right)$ (where $W^{\prime}=\{P \in W \mid P=(X,-\bar{X}, 0,0)\}$ is onto ([7, Proposition 11]). By using the five lemma, from the commutative diagram

we see that p is onto. Finally it is easy to see that $\operatorname{Ker} p=\{1, \sigma\}$. Therefore $E_{\sigma, \kappa, \lambda, 1}$ is a universal covering group of $S O$ (11). Thus we have proved that $E_{\sigma, \kappa, \lambda, 1}$ is isomorphic to the spinor group Spin (11).

From now on, we identify the group $E_{\sigma, \kappa, \lambda, 1}$ with the group $\operatorname{Spin}(11)$.

4. Spinor subgroup $\operatorname{Spin}(12)$ of E_{7}

We shall show the group $E_{\sigma, \kappa, \lambda}$ is isomorphic to the spinor group Spin (12). To show this, consider a 12 dimensional vector space V over \boldsymbol{R} defined by

$$
\begin{aligned}
V & =\left\{P \in \mathfrak{P}^{c} \mid \sigma P=P, \kappa P=P, \lambda P=P\right\} \\
& =\left\{\left(\eta E_{1}+X, \bar{\eta} E_{1}-\bar{X}, \bar{\eta}, \eta\right) \mid \eta \in \boldsymbol{C}, X \in \mathfrak{J}^{c}, 2 E_{1} \times X=-\bar{X}\right\} \\
& =\left\{\left.\left(\left[\begin{array}{rrr}
\eta & 0 & 0 \\
0 & \xi & x \\
0 & \bar{x} & -\bar{\xi}
\end{array}\right],\left[\begin{array}{rrr}
\bar{\eta} & 0 & 0 \\
0 & -\bar{\xi} & -x \\
0 & -\bar{x} & \xi
\end{array}\right], \bar{\eta}, \eta\right) \right\rvert\, \begin{array}{l}
\xi, \eta \in \boldsymbol{C}, \\
x \in \mathbb{C}
\end{array}\right\}
\end{aligned}
$$

and let S^{11} be the unit sphere in V :

$$
S^{11}=\{P \in V \mid\langle P, P\rangle=4\} .
$$

Lemma 7. For $v \in \boldsymbol{C}, \bar{v}=-v$, a linear transformation $\alpha(v)$ of \mathfrak{P}^{c} defined by

$$
\begin{aligned}
& \alpha(v)\left(\left[\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right],\left[\begin{array}{ccc}
\eta_{1} & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & \eta_{2} & y_{1} \\
y_{2} & \bar{y}_{1} & \eta_{3}
\end{array}\right], \xi, \eta\right) \\
&=\left(\left[\begin{array}{ccc}
e^{2 v} \xi_{1} & e^{v} x_{3} & e^{v} \bar{x}_{2} \\
e^{v} \bar{x}_{3} & \xi_{2} & x_{1} \\
e^{v} x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right],\left[\begin{array}{ccc}
e^{-2 v} \eta_{1} & e^{-v} y_{3} & e^{-v} \bar{y}_{2} \\
e^{-v} \bar{y}_{3} & \eta_{2} & y_{1} \\
e^{-v} y_{2} & \bar{y}_{1} & \eta_{3}
\end{array}\right], e^{-2 v \xi, e^{2 v} \eta}\right)
\end{aligned}
$$

belongs to the group $E_{\sigma, \kappa, \lambda}$.
Proof. For $\phi(v) \in \mathfrak{e}_{6}$ defined in $\S 2$, we have $\Phi(\phi(v), 0,-2 v) \in \mathfrak{e}_{\sigma, \kappa, \lambda}$ and $\alpha(v)=\exp \Phi(\phi(v), 0,-2 v)$, hence $\alpha(v) \in E_{\sigma, \kappa, \lambda}$.

Lemma 8. The group $E_{\sigma, \kappa, \lambda}$ acts transitively on S^{11} and the isotropy subgroup of $E_{\sigma, \kappa, \lambda}$ at $\left(E_{1}, E_{1}, 1,1\right)$ is Spin (11). Therefore the homogeneous space $E_{\sigma, \kappa, \lambda} / \operatorname{Spin}(11)$ is homeomorphic to S^{11} :

$$
E_{\sigma, \kappa, \lambda} / \operatorname{Spin}(11) \simeq S^{11} .
$$

In particular, the group $E_{\sigma, \kappa, \lambda}$ is simply connected.
Proof. Obviously the group $E_{\sigma, \kappa, \lambda}$ acts on S^{11}. In order to prove that $E_{\sigma, \kappa, \lambda}$ acts transitively on S^{11}, it suffices to show that any element P of S^{11} can be transformed in $\left(E_{1}, E_{1}, 1,1\right) \in S^{11}$ by a certain element α of $E_{\sigma, \kappa, \lambda}$. Now, for a given element $P=\left(\left[\begin{array}{rrr}\eta & 0 & 0 \\ 0 & \xi & x \\ 0 & \bar{x} & -\bar{\xi}\end{array}\right],\left[\begin{array}{rrr}\bar{\eta} & 0 & 0 \\ 0 & -\bar{\xi} & x \\ 0 & -\bar{x} & \xi\end{array}\right], \bar{\eta}, \eta\right) \in S^{11}$, choose $v \in \boldsymbol{C}$, $\bar{v}=-v$ such that

$$
v=i(\pi / 4-\theta / 2)
$$

where θ is the argument of $\eta: \eta=|\eta| e^{i \theta}$, and operate $\alpha(v)$ of Lemma 7 on P. Then the η-part of $\alpha(v) P$ becomes $e^{2 v} \eta=e^{i \pi / 2} e^{-i \theta} \eta=i|\eta|$. Hence

$$
\alpha(v) P \in S^{10}
$$

Since the group $\operatorname{Spin}(11)=E_{\sigma, \kappa, \lambda, 1}$ acts transitively on S^{10}, there exists $\beta \in \operatorname{Spin}$ (11) such that

$$
\beta \alpha(v) P=i\left(E_{1},-E_{1},-1,1\right)
$$

Again operate $\alpha(-i \pi / 4)$ of Lemma 7 on it. Then we have

$$
\alpha(-i \pi / 4) \beta \alpha(v) P=\left(E_{1}, E_{1}, 1,1\right)
$$

This shows the transitivity of $E_{\sigma, \kappa, \lambda}$. The isotropy subgroup of $E_{\sigma, \kappa, \lambda}$ at $\left(E_{1}\right.$, $E_{1}, 1,1$) is $\operatorname{Spin}(11)$ by the definition. Thus the proof of Lemma 8 is completed.

Theorem 9. The subgroup $E_{\sigma, \kappa, \lambda}$ of E_{7} is isomorphic to the spinor group Spin (12):

$$
E_{\sigma, \kappa, \lambda} \cong \operatorname{Spin}(12)
$$

Proof. The proof is similar to that of Theorem 6 according to Lemma 8.
From now on, we identify the group $E_{\sigma, \kappa, \lambda}$ with the group Spin (12).
Remark. The group $\operatorname{Spin}(12)$ has the center $z(\operatorname{Spin}(12))=\{1,-1, \sigma,-\sigma\}$ $\cong\{1, \sigma\} \times\{1,-\sigma\} \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$. And we have
$\operatorname{Spin}(12) /\{1, \sigma\} \cong \operatorname{SO}(12)$. Hence $\operatorname{Spin}(12) /\{1,-\sigma\} \cong S s(12)$.

5. Special unitary subgroup $S U(2)$ of E_{7}

Theorem 10. The group E_{7} contains a subgroup

$$
S U(2)=\left\{\alpha_{A} \in E_{7} \mid A \in \operatorname{SU}(2)\right\}
$$

which is isomorphic to the special unitary group $\mathrm{SU}(2)=\left\{A \in M(2, \boldsymbol{C}) \mid A^{*} A=\right.$ $E, \operatorname{det} A=1\}$. Here, for $A \in \mathrm{SU}(2), \alpha_{A}$ is defined by

$$
\begin{aligned}
& \alpha_{A}\left(\left[\begin{array}{lll}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right],\left[\begin{array}{lll}
\eta_{1} & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & \eta_{2} & y_{1} \\
y_{2} & \bar{y}_{1} & \eta_{3}
\end{array}\right], \xi, \eta\right) \\
& =\left(\left[\begin{array}{lll}
\xi_{1}^{\prime} & x_{3}^{\prime} & \bar{x}_{2}^{\prime} \\
\bar{x}_{3}^{\prime} & \xi_{2}^{\prime} & x_{1}^{\prime} \\
x_{2}^{\prime} & \bar{x}_{1}^{\prime} & \xi_{3}^{\prime}
\end{array}\right],\left[\begin{array}{lll}
\eta_{1}^{\prime} & y_{3}^{\prime} & \bar{y}_{2}^{\prime} \\
\bar{y}_{3}^{\prime} & \eta_{2}^{\prime} & y_{1}^{\prime} \\
y_{2}^{\prime} & \bar{y}_{1}^{\prime} & \eta_{3}
\end{array}\right], \xi^{\prime}, \eta^{\prime}\right) .
\end{aligned}
$$

where

$$
\begin{gathered}
{\left[\begin{array}{l}
\xi_{1}^{\prime} \\
\eta^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
\xi_{1} \\
\eta
\end{array}\right],\left[\begin{array}{l}
\xi^{\prime} \\
\eta_{1}^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
\xi \\
\eta_{1}
\end{array}\right],\left[\begin{array}{l}
\eta_{2}^{\prime} \\
\xi_{3}^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
\eta_{2} \\
\xi_{3}
\end{array}\right],\left[\begin{array}{l}
\eta_{3}^{\prime} \\
\xi_{2}^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
\eta_{3} \\
\xi_{2}
\end{array}\right],} \\
{\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime}
\end{array}\right]=\bar{A}\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right],\left[\begin{array}{l}
x_{2}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right],\left[\begin{array}{l}
x_{3}^{\prime} \\
y_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x_{3} \\
y_{3}
\end{array}\right] .}
\end{gathered}
$$

Proof. For $A=\exp \left[\begin{array}{rr}v & a \\ -\bar{a} & -v\end{array}\right] \in \operatorname{SU}(2), \quad(a, v \in \boldsymbol{C}, \bar{v}=-v)$, we have $\alpha_{A}=$ $\exp \Phi\left(\phi(v), a E_{1}, v\right) \in S U(2)$.
6. Connectedness of $\left(E_{7}\right)_{\sigma}$

We shall prove that the group $\left(E_{7}\right)_{\sigma}$ is connected. We denote, for a while, the connected component of $\left(E_{7}\right)_{\sigma}$ containing the identity 1 by $\left(\left(E_{7}\right)_{\sigma}\right)_{0}$.

Lemma 11. Any element $X \in\left(\mathfrak{J}^{\boldsymbol{c}}\right)_{\sigma}=\left\{X \in \mathfrak{J}^{\boldsymbol{C}} \mid \sigma X=X\right\}$ can be transformed in a diagonal form by a certain element α of the group $\left(E_{6}\right)_{\sigma}=\left\{\alpha \in E_{6} \mid \sigma \alpha=\alpha \sigma\right\}$:

$$
\alpha X=\left[\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & 0 \\
0 & 0 & \xi_{3}
\end{array}\right], \quad \xi_{i} \in \boldsymbol{C} .
$$

Proof. In the proof of [7, Proposition 5], if we remember that $i\left(\widetilde{E}_{1}-\widetilde{E}_{2}\right)$, $i\left(\widetilde{E}_{1}-\widetilde{E}_{3}\right), i \widetilde{F}_{1}(a), \widetilde{A}_{1}(a) \in\left(\mathfrak{e}_{6}\right)_{\sigma}=\left\{\phi \in \mathfrak{e}_{6} \mid \sigma \phi=\phi \sigma\right\}$ (which is the Lie algebra of the group $\left.\left(E_{6}\right)_{\sigma}\right)$, then we can prove this lemma by the same way as [7, Proposition 5].

We define the spaces $\left(\mathfrak{M c}^{\boldsymbol{C}}\right)_{\sigma}$ and $\left(\mathfrak{M}_{1}\right)_{\sigma}$ respectively by

$$
\left(\mathfrak{M}^{c}\right)_{\sigma}=\left\{P \in \mathfrak{M}^{c} \mid \sigma P=P\right\}, \quad\left(\mathfrak{M}_{1}\right)_{\sigma}=\left\{P \in\left(\mathfrak{M}^{c}\right)_{\sigma} \mid\langle P, P\rangle=1\right\} .
$$

Lemma 12. Any element P of $\left(\mathfrak{M}^{\boldsymbol{c}}\right)_{\sigma}$ can be transformed in a diagoanl form by a certain element α of $\left(\left(E_{7}\right)_{\sigma}\right)_{0}$:

$$
\alpha P=(X, Y, \xi, \eta), \quad X, Y \text { are diagonal forms }
$$

Moreover we can choose $\alpha \in\left(\left(E_{7}\right)_{\sigma}\right)_{0}$ so that ξ is a positive real number.
Proof. By making use of Lemma 11, we can prove this lemma by the same way as [3, Proposition 8].

Proposition 13. The group $\left(E_{7}\right)_{\sigma}$ acts transitively on $\left(\mathfrak{M}_{1}\right)_{\sigma}$ (which is connected) and the isotropy subgroup of $\left(E_{7}\right)_{\sigma}$ at $(0,0,1,0) \in\left(\mathfrak{M}_{1}\right)_{\sigma}$ is $\left(E_{6}\right)_{\sigma}$. Therefore the homogeneous space $\left(E_{7}\right)_{\sigma} /\left(E_{6}\right)_{\sigma}$ is homeomorphic to $\left(\mathfrak{M}_{1}\right)_{\sigma}$:

$$
\left(E_{7}\right)_{\sigma} /\left(E_{6}\right)_{\sigma} \simeq\left(\mathfrak{M}_{1}\right)_{\sigma} .
$$

In particular, the group $\left(E_{7}\right)_{\sigma}$ is connected.
Proof. For $a \in \boldsymbol{C}$, remember $\Phi\left(0,-\bar{a} E_{i}, 0\right) \in\left(\mathfrak{e}_{7}\right)_{\sigma}, i=1,2,3$. Then by the use of Lemmas 12 and 3, we can prove the homeomorphism $\left(E_{7}\right)_{\sigma} /\left(E_{6}\right)_{\sigma} \simeq$ $\left(\mathfrak{M}_{1}\right)_{\sigma}$ by the same way as [3, Theorem 9]. Now, since the group $\left(E_{6}\right)_{\sigma}$ is isomorphic to the group

$$
\left(E_{6}\right)_{\sigma} \cong(U(1) \times \operatorname{Spin}(10)) / Z_{4} \quad([7, \text { Theorem } 13])
$$

$\left(E_{6}\right)_{\sigma}$ is connected. Therefore the group $\left(E_{7}\right)_{\sigma}$ is also connected.
7. Isomorphism $\left(E_{7}\right)_{\sigma} \cong(S U(2) \times \operatorname{Spin}(12)) / Z_{2}$

Theorem 14. The subgroup $\left(E_{7}\right)_{\sigma}=\left\{\alpha \in E_{7} \mid \sigma \alpha=\alpha \sigma\right\}$ of E_{7} is isomorphic to the group $(S U(2) \times S p i n(12)) / Z_{2}$:

$$
\left(E_{7}\right)_{\sigma} \cong(S U(2) \times \operatorname{Spin}(12)) / \boldsymbol{Z}_{2} \quad \text { where } \boldsymbol{Z}_{2}=\{(1,1),(-1,-\sigma)\}
$$

Proof. We define a mapping

$$
\psi: S U(2) \times S p i n(12) \longrightarrow\left(E_{7}\right)_{\sigma}, \quad \psi(\alpha, \beta)=\alpha \beta .
$$

Since the Lie algebra $\left(e_{7}\right)_{\sigma}$ is the direct sum of Lie algebras \mathfrak{a}_{1} and $\mathfrak{e}_{\sigma, \kappa, \lambda}$ as ideals (Proposition 2), $\alpha \in S U(2)$ and $\beta \in S p i n(12)$ are commutative. Hence we see that ψ is a homomorphism. Moreover ψ is onto, because the group $\left(E_{7}\right)_{\sigma}$ is connected (Proposition 13). $\operatorname{Ker} \psi=\boldsymbol{Z}_{2}=\{(1,1),(-1,-\sigma)\}$ is easily obtained. Thus the proof of Theorem 14 is completed.

8. Lie group $E_{7, \sigma}$ and its polar decomposition

We define an inner product $\langle P, Q\rangle_{\sigma}$ in $\mathfrak{P}^{\boldsymbol{c}}$ by

$$
\langle P, Q\rangle_{\sigma}=\langle\sigma P, Q\rangle=\langle P, \sigma Q\rangle
$$

and a group $E_{7, \sigma}$ by (cf. [3], [5])

$$
E_{7, \sigma}=\left\{\alpha \in \operatorname{Iso}{ }^{c}\left(\mathfrak{P}^{c}, \mathfrak{P}\right)^{\boldsymbol{c}} \mid \alpha \mathfrak{M}^{\boldsymbol{c}}=\mathfrak{M}^{c},\{\alpha P, \alpha Q\}=\{P, Q\},\langle\alpha P, \alpha Q\rangle_{\sigma}=\langle P, Q\rangle_{\sigma}\right\} .
$$

(Later, we see that this group $E_{7, \sigma}$ is connected (Theorem 17), therefore it may also defined by (see [5])

$$
\left.E_{7, \sigma}=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{c}, \mathfrak{P}^{c}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle_{\sigma}=\langle P, Q\rangle_{\sigma}\right\} .\right)
$$

In order to give a polar decomposition of the group $E_{7, \sigma}$, we use
Lemma 15 ([2, p. 345]). Let G be a pseudoalgebraic subgroup of the general linear group $G L(n, \boldsymbol{C})$ such that the condition $A \in G$ implies $A^{*} \in G$. Then G is homeomorphic to the topological product of the group $G \cap U(n)$ and a $E u$ clidean space \boldsymbol{R}^{d} :

$$
G \simeq(G \cap U(n)) \times \boldsymbol{R}^{d}
$$

where $U(n)$ is the unitary subgroup of $G L(n, \boldsymbol{C})$.
Lemma 16. The group $E_{7, \sigma}$ is a pseudoalgebraic subgroup of the general linear group $G L(56, \boldsymbol{C})=\operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{\boldsymbol{C}}, \mathfrak{P}^{\boldsymbol{C}}\right)$ and satisfies the condition that $\alpha \in E_{7, \sigma}$ implies $\alpha^{*} \in E_{7, \sigma}$, where α^{*} is the transpose of α with respect to the inner product $\langle P, Q\rangle:\langle\alpha P, Q\rangle=\left\langle P, \alpha^{*} Q\right\rangle$.

Proof. Since $\left\langle\alpha^{*} P, Q\right\rangle=\langle\mathrm{P}, \alpha Q\rangle=\langle\sigma P, \alpha Q\rangle_{\sigma}=\left\langle\alpha^{-1} \sigma P, Q\right\rangle_{\sigma}=\left\langle\sigma \alpha^{-1} \sigma P, Q\right\rangle$ for $\alpha \in E_{7, \sigma}$, we have

$$
\alpha^{*}=\sigma \alpha^{-1} \sigma \in E_{7, \sigma} .
$$

It is obvious that $E_{7, \sigma}$ is pseudoalgebraic, because $E_{7, \sigma}$ is defined by pseudoalgebraic relations $\alpha \mathfrak{M}^{\boldsymbol{c}}=\mathfrak{M}^{\boldsymbol{c}},\{\alpha P, \alpha Q\}=\{P, Q\},\langle\alpha P, \alpha Q\rangle_{\sigma}=\langle P, Q\rangle_{\sigma}$.

Let $U(56)=U\left(\mathfrak{P}^{c}\right)=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{c}, \mathfrak{P}^{c}\right) \mid\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\}$ denote the unitary subgroup of the general linear group $G L(56, \boldsymbol{C})=\operatorname{Iso}_{\boldsymbol{c}}\left(\mathfrak{P}^{\boldsymbol{c}}, \mathfrak{P}^{\boldsymbol{C}}\right)$. Then

$$
\begin{aligned}
E_{7, \sigma} \cap U(56)= & \left\{\alpha \in E_{7, \sigma} \mid \sigma \alpha=\alpha \sigma\right\}=\left\{\alpha \in E_{7} \mid \sigma \alpha=\alpha \sigma\right\} \\
& \cong(S U(2) \times \operatorname{Spin}(12)) / Z_{2} \quad \text { (Theorem 14). }
\end{aligned}
$$

Since it is easy to see that $E_{7, \sigma}$ is a simple Lie group of type E_{7} (see [3], [4]), the
dimension of $E_{7, \sigma}$ is 133 . Hence the dimension d of the Euclidean part of $E_{7, \sigma}$ and the Cartan index i are calculated as follows:

$$
\begin{aligned}
& d=\operatorname{dim} E_{7, \sigma}-\operatorname{dim}(S U(2) \times \operatorname{Spin}(12))=133-(3+66)=64, \\
& i=\operatorname{dim} E_{7, \sigma}-2 \operatorname{dim}(S U(2) \times \operatorname{Spin}(12))=133-2(3+66)=-5 .
\end{aligned}
$$

Thus we have the following
Theorem 17. The group $E_{7, \sigma}$ is homeomorphic to the topological product of the group $(S U(2) \times \operatorname{Spin}(12)) / \boldsymbol{Z}_{2}$ and the Euclidean space \boldsymbol{R}^{64} :

$$
E_{7, \sigma} \simeq(S U(2) \times S p i n(12)) / \boldsymbol{Z}_{2} \times \boldsymbol{R}^{64} .
$$

In particular, the group $E_{7, \sigma}$ is a connected non-compact simple Lie group of type $E_{7(-5)}$.

9. Center $z\left(E_{7, \sigma}\right)$ of $E_{7, \sigma}$

Theorem 18. The center $z\left(E_{7, \sigma}\right)$ of the group $E_{7, \sigma}$ is the cyclic group of order 2:

$$
z\left(E_{7, \sigma}\right)=\{1,-1\} .
$$

Proof. Let $\alpha \in z\left(E_{7, \sigma}\right)$. From the commutativity with $\sigma \in E_{7, \sigma}, \alpha$ is contained in the center $z\left(\left(E_{7}\right)_{\sigma}\right)$ of the group $\left(E_{7}\right)_{\sigma}: \alpha \in z\left(\left(E_{7}\right)_{\sigma}\right)=\{1,-1, \sigma,-\sigma\}$ (cf. Theorem 14). Obviously, $\sigma,-\sigma \notin z\left(E_{7, \sigma}\right)$, so we have $z\left(E_{7, \sigma}\right)=\{1,-1\}$.
10. Remark on the definition of $\operatorname{Spin}(11)$ in E_{7}

We shall show that

$$
\left(E_{7}\right)_{1}=\left\{\alpha \in E_{7} \mid \alpha\left(E_{1}, E_{1}, 1,1\right)=\left(E_{1}, E_{1}, 1,1\right)\right\}=\operatorname{Spin}(11),
$$

that is, in the definition of the group $E_{\sigma, \kappa, \lambda, 1}$, the conditions $\sigma \alpha=\alpha \sigma, \kappa \alpha=\alpha \kappa$, $\lambda \alpha=\alpha \lambda$ are of no use.

We see that the Lie algebra $\left(e_{7}\right)_{1}$ of the group $\left(E_{7}\right)_{1}$ coincides with the Lie algebra $\mathfrak{e}_{\sigma, \kappa, \lambda, 1}$ of the group $E_{\sigma, \kappa, \lambda, 1}$ (Proposition 1, (3)). So, if we prove that the group $\left(E_{7}\right)_{1}$ is connected, then we can conclude $\left(E_{7}\right)_{1}=E_{\sigma, \kappa, \lambda, 1}$.

We consider a vector space $W^{\boldsymbol{C}}$ which is invariant by the group $\left(E_{7}\right)_{1}$:

$$
\begin{aligned}
& W^{\boldsymbol{c}}=\left\{P \in \mathfrak{P}^{\boldsymbol{c}} \mid P \times\left(E_{1}, E_{1}, 1,1\right)=0\right\} \\
&=\left\{\left.\left(\left[\begin{array}{rrr}
-\xi & 0 & 0 \\
0 & \xi_{2} & x \\
0 & \bar{x} & \xi_{3}
\end{array}\right],\left[\begin{array}{ccc}
\xi & 0 & 0 \\
0 & \xi_{3} & -x \\
0 & -\bar{x} & \xi_{2}
\end{array}\right], \xi,-\xi\right) \right\rvert\, \begin{array}{l}
\xi, \xi_{2}, \xi_{3} \in \boldsymbol{C}, \\
x \in \mathbb{C}^{\boldsymbol{c}}
\end{array}\right\} .
\end{aligned}
$$

This $W^{\boldsymbol{C}}$ is the complexification of W in $\S 3$ and of course $W^{\boldsymbol{C}}$ has the positive definite Hermitian inner product $\langle P, Q\rangle$ which is invariant by the group $\left(E_{7}\right)_{1}$. We shall define one more inner product (P, Q) in $W^{\boldsymbol{c}}$ which is also invariant by the group $\left(E_{7}\right)_{1}$.

Lemma 19. If $\alpha \in E_{7}$ satisfies $\alpha\left(E_{1}, E_{1}, 1,1\right)=\left(E_{1}, E_{1}, 1,1\right)$, then $\alpha\left(E_{1}, 0\right.$, $1,0)=\left(E_{1}, 0,1,0\right)$. Therefore this α also satisfies

$$
\alpha\left(E_{1}, i E_{1}, 1, i\right)=\left(E_{1}, i E_{1}, 1, i\right) \text { and } \alpha\left(E_{1},-i E_{1}, 1,-i\right)=\left(E_{1},-i E_{1}, 1,-i\right) .
$$

Proof. The proof is similar to that of Lemma 4.
We define vector spaces $U_{\varepsilon}^{\boldsymbol{c}}(\varepsilon=1,-1)$ and $U^{\boldsymbol{c}}$ which are invariant by the group $\left(E_{7}\right)_{1}$ respectively by

$$
\begin{aligned}
U_{\varepsilon}^{\boldsymbol{c}} & =\left\{P \in \mathfrak{P}^{\boldsymbol{c}} \mid P \times\left(E_{1}, \varepsilon i E_{1}, 1, \varepsilon i\right)=0\right\} \\
& =\left\{\left.\left(\left[\begin{array}{rrr}
-\xi & 0 & 0 \\
0 & \xi_{2} & x \\
0 & \bar{x} & \xi_{3}
\end{array}\right],\left[\begin{array}{rrc}
\varepsilon i \xi & 0 & 0 \\
0 & -\varepsilon i \xi_{3} & \varepsilon i x \\
0 & \varepsilon i \bar{x} & -\varepsilon i \xi_{2}
\end{array}\right], \xi,-\varepsilon i \xi\right) \right\rvert\, \begin{array}{l}
\xi, \xi_{2}, \xi_{3} \in \boldsymbol{C}, \\
x \in \mathbb{C}^{\boldsymbol{c}}
\end{array}\right\},
\end{aligned}
$$

$U^{\boldsymbol{C}}=U_{1}^{\boldsymbol{C}}+U_{1}^{\boldsymbol{C}}$ (which is the direct sum)

$$
=\left\{\left.\left(\left[\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & x \\
0 & \bar{x} & \xi_{3}
\end{array}\right],\left[\begin{array}{ccc}
\eta_{1} & 0 & 0 \\
0 & \eta_{2} & y \\
0 & \bar{y} & \eta_{3}
\end{array}\right],-\xi_{1},-\eta_{1}\right) \right\rvert\, \begin{array}{l}
\xi_{i}, \eta_{i} \in \boldsymbol{C}, \\
x, y \in \mathbb{C} \boldsymbol{C}
\end{array}\right\} .
$$

We define a linear involutive transformation κ^{\prime} of $U^{\boldsymbol{c}}$ by

$$
\begin{aligned}
\kappa^{\prime}\left(\left[\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & x \\
0 & \bar{x} & \xi_{3}
\end{array}\right],\right. & {\left.\left[\begin{array}{ccc}
\eta_{1} & 0 & 0 \\
0 & \eta_{2} & y \\
0 & \bar{y} & \eta_{3}
\end{array}\right],-\xi_{1},-\eta_{1}\right) } \\
& =\left(\left[\begin{array}{ccc}
i \eta_{1} & 0 & 0 \\
0 & i \eta_{3} & -i y \\
0 & -i \bar{y} & i \eta_{2}
\end{array}\right],\left[\begin{array}{ccc}
-i \xi_{1} & 0 & 0 \\
0 & -i \xi_{3} & i x \\
0 & i \bar{x} & -i \xi_{2}
\end{array}\right],-i \eta_{1}, i \xi_{1}\right)
\end{aligned}
$$

Then $U^{\boldsymbol{c}}=U_{1}^{\boldsymbol{C}}+U_{1}^{\boldsymbol{c}}$ is the decomposition into the eigen spaces of κ^{\prime}. Therefore we have, for any $\alpha \in\left(E_{7}\right)_{1}$,

$$
\kappa^{\prime} \alpha=\alpha \kappa^{\prime} \quad \text { on } \quad U^{C}
$$

Now, we define an inner product (P, Q) in $U^{\boldsymbol{C}}$ by

$$
(P, Q)=i\left\{\kappa^{\prime} P, Q\right\} .
$$

Then (P, Q) is a symmetric non-degenerate inner product in $U^{\boldsymbol{C}}$ (of course so is in $W^{C}\left(\subset U^{C}\right)$) which is invariant by the group $\left(E_{7}\right)_{1}:(\alpha P, \alpha Q)=(P, Q)$ for $\alpha \in\left(E_{7}\right)_{1}$. Furthermore the two inner products $\langle P, Q\rangle,(P, Q)$ coincide on W :

$$
\langle P, Q\rangle=(P, Q) \quad \text { for } \quad P, Q \in W .
$$

Let p^{\prime} be the natural homomorphism

$$
p^{\prime}:\left(E_{7}\right)_{1} \longrightarrow O\left(W^{\boldsymbol{c}}\right)=\left\{\alpha \in \mathrm{Iso}_{\boldsymbol{c}}\left(W^{\boldsymbol{c}}, W^{\boldsymbol{c}}\right) \mid(\alpha P, \alpha Q)=(P, Q)\right\}
$$

Since $p^{\prime}\left(\left(E_{7}\right)_{1}\right)$ is a compact subgroup of $O\left(W^{\boldsymbol{c}}\right)$, it is contained in a maximal compact subgroup of $O\left(W^{c}\right)$. On the other hand, maximal compact subgroups of $O\left(W^{\boldsymbol{c}}\right)$ are conjugate to each other ([6, Theorem 3.1]), so there exists $\alpha \in O\left(W^{\boldsymbol{c}}\right)$ such that

$$
p^{\prime}\left(\left(E_{7}\right)_{1}\right) \subset \alpha O(W) \alpha^{-1} .
$$

Let e_{1}, \ldots, e_{11} be an orthogonal basis in W and put $w_{1}=\alpha\left(e_{1}\right), \ldots, w_{11}=$ $\alpha\left(e_{11}\right) \in W^{\boldsymbol{C}}$.

Case 1. $\left\langle w_{k}, w_{l}\right\rangle=0$ for all $k, l(k \neq l)$. In this case, $\left\langle\bar{w}_{k}, w_{l}\right\rangle=\left(w_{k}, w_{l}\right)=$ $\delta_{k l}=\left\langle w_{k}, w_{l}\right\rangle \mid\left\langle w_{k}, w_{k}\right\rangle$ for all l, so we have $\bar{w}_{k}=w_{k} \mid\left\langle w_{k}, w_{k}\right\rangle$ (for $w=u+i v \in$ $W^{\boldsymbol{c}}(u, v \in W), \bar{w}$ means $\left.u-i v\right)$. Hence $w_{k} \in W, k=1, \ldots, 11$, so $\alpha \in O(W)$, that is, $\alpha W=W$. Therefore the group $\left(E_{7}\right)_{1}$ acts on W. Then by the same arguments as those in $\S 3$, we can conclude that the group $\left(E_{7}\right)_{1}$ is connected.

Case 2. There exist $w_{k}, w_{l}(k \neq l)$ such that $\left\langle w_{k}, w_{l}\right\rangle \neq 0$ and $\left(E_{7}\right)_{1}$ is not connected. Since Ker $p^{\prime}=\{1, \sigma\} \subset\left(\left(E_{7}\right)_{1}\right)_{0}$ (which denotes the connected component of $\left(E_{7}\right)_{1}$ containing the identity 1$), p^{\prime}\left(\left(E_{7}\right)_{1}\right)$ is not also connected, so $p^{\prime}\left(\left(E_{7}\right)_{1}\right)=\alpha S O(W) \alpha^{-1}$ does not occur. Hence we have

$$
p^{\prime}\left(\left(E_{7}\right)_{1}\right)=\alpha O(W) \alpha^{-1}=O(\alpha W)
$$

Let $\beta \in O(\alpha W)$ be the reflection in W^{c} satisfying

$$
\beta\left(w_{k}\right)=-w_{k}, \beta\left(w_{j}\right)=w_{j} \quad(j \neq k) .
$$

Then we have $\left\langle w_{k}, w_{l}\right\rangle=\left\langle\beta w_{k}, \beta w_{l}\right\rangle=\left\langle-w_{k}, w_{l}\right\rangle$, hence $\left\langle w_{k}, w_{l}\right\rangle=0$. This contradicts the hypothesis.

Thus we have
Theorem 20. The subgroup $\left(E_{7}\right)_{1}=\left\{\alpha \in E_{7} \mid \alpha\left(E_{1}, E_{1}, 1,1\right)=\left(E_{1}, E_{1}, 1,1\right)\right\}$ of E_{7} is isomorphic to the spinor group Spin(11):

$$
\left(E_{7}\right)_{1}=\operatorname{Spin}(11)
$$

References

[1] H. Freudenthal, Beziehungen der E_{7} und E_{8} zur Oktavenebene I, Nedel. Akad. Weten., Proc. Ser. A, 57 (1954), 218-230.
[2] S. Helgason, Differential Geometry and Symmetric Spaces, Akademic Press, New York, 1962.
[3] T. Imai and I. Yokota, Simply connected compact simple Lie group $E_{7(-133)}$ of type E_{7}, J. Math. of Kyoto Univ. 21 (1981), 383-395.
[4] T. Imai and I. Yokota, Non-compact simple Lie group $E_{7(-25)}$ of type E_{7}, J. Fac. Sci., Shinshu Univ. 15 (1980), 1-18.
[5] T. Imai and I. Yokota, Another definitions of exceptional simple Lie groups of type $E_{7(-133)}$ and $E_{7(-25)}$, J. Fac. Sci., Shinshu Univ. 15 (1980), 50-60.
[6] G. D. Mostow, Self adjoint groups, Ann. of Math. 62 (1955), 44-55.
[7] I. Yokota, Simply connected compact simple Lie group $E_{6(-78)}$ of type E_{6} and its involutive automorphisms, J. Math. of Kyoto Univ. 20 (1980), 447-473.

Department of Mathematics, Faculty of Science, Shinshu University

