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Introduction

It is known that there exist four simple Lie groups of type E7 up to local
isomorphism, one of them is compact and the others are non-compact. We
have shown that in [3], [5] the group

EΊ = {αelso c(φ c, φ c ) |α(Px ρ)α"1 = αPxαβ, <αP, αβ> = <

= {αeIsoc(Pc, φ)\aMc = Wlc, {αP, αβ} = {P, β}, <αP, αβ> = <P, β>}

is a simply connected compact simple Lie group of type EΊ and in [4], [5] the
group

EΊtl = {αelso c(φ c, φ c ) |α(Px β K 1 = αPxαβ, <αP, αβ>t = <P, β>J

= aRc, {αP, αβ} = {P, β}, <αP, αβ>t = <P, β>J

is a connected non-compact simple Lie group of type EΊ^25) a n < l its polar decom-
position is given by

In this paper, we show that the group

E7>σ ={αelso c (φ c , φ c ) |α(Px β ) ^ 1 = αPxαβ, <αP, αβ>σ = <P, β>σ}

= mc, {αP, αβ} = {P, β}, <αP, αβ>σ = <P, β>σ}

is a connected non-compact simple Lie group of type EΊi-5) with the center
z(EΊfff) = {l, —1}. The polar decomposition of the group EΊttτ is given by

EΊtσ * (SU(2)xSpin(l2))IZ2 x

To give this decomposition, we find subgroups

51/(2), Spin(l2), (SU(2) x Spΐn(12))/Z2

in the group £ 7 and the group £7>(T explicitly.
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1. Preliminaries

1.1. Cayley algebra (£ and exceptional Jordan algebra 3 C

Let (£ denote the Cayley algebra over the field R of real numbers and (£c its
complexification with respect to the field C of complex numbers. Let 3 C denote
the Jordan algebra consisting of all 3 x 3 Hermitian matrices X with entries in

x2

ξteC,

with repect to the multiplication X<>Y=(XY+ YX)/2. In 3 C , the symmetric inner
product (X, Y), the positive definite Hermitian inner product <Z, Y> and the
crossed product X x Y are defined respectively by

(X, Y) = tr(XoY), <Z, 7> = (τX, Y) = (X, 7),

X x Y=(2XoY-tr(X)Y-tr(Y)X + (tr(X)tr(Y)-(X, Y))E)/2

where τ: 3C~»3C is the conjugation relative to the field C (τX is also denoted by
X) and £ the 3 x 3 unit matrix. We use the following notations in 3 C
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1.2. Compact Lie group E6 and its Lie algebra e 6 ([1], [7])

A simply connected compact simple Lie group of type E6 is given by

£ 6 = { α e I s o c ( 3 c , 3C)I(OLX, OLXXOLX) = (X, XxX\ <αX, αY> = <X, Y>}

= {αelso c(3 c, 3 c)|τατ(Xx Y) = αlxαY, <αX, αY> = <X,

and its Lie algebra is

e6 = {φ e Hom c(3 c, 3C) I «>*, X x X) = 0, <0X, Y> = -

The complexification e£ of the Lie algebra e6:

e6

c = {ψeHom c(3 c, 3C)I(ΦX, XxX) = 0}

is a simple Lie algebra over C of type E6. For A, Be 3 C , 4̂ v 5 e eξ is defined by
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(A v B)X = ((£, X)β)A + (04, B)/6)X -2Bx(AxX), Xe 3 C .

1.3. Compact Lie group EΊ and its Lie algebra e7 ([1], [3])

Let φ c be a 56 dimensional vector space over C defined by

61

An element P =
ξ

of φ c is often denoted by P = (X, 7, £, *y). In φ c , the

positive definite Hermitian inner product <P, Q> and the skew-symmetric inner

product {P, Q} are defined respectively by

{P, Q} = (X, W) - (Z, Y) + ξω - ζη

where P = {X, Y, ξ, η), β = (Z, W9 ζ9 ω)eSJβc.

For </> e eg, A, Be3C and veC, we define a linear transformation

b9 A9 B9 v) of φ c by

Φ(φ, ^ , 5, v)

X

Y

ξ

"ψ-(v/3)l

0

B

0

s

v

0

0

0

— v

7

ί

2ΛxX+φ'Y+(vl3)Y+ξB

(B9X)-vη

where φ' e t% denotes the skew-transpose of φ with respect to the inner product

(X, 7) : (φX, 7) + (X, φ' 7) = 0. Now, for P = (X, 7, & ιj), Q = (Z, w; ζ, ω) e φc,

we define a linear transformation P x Q of ̂ βc by

P x β = Φ(φ9 A, By v),
X= -(27xW- ξZ-ζX)l4,

B = (2XxZ-ηW- ωY)l4,

{v = ((x, w) + (z, y) - 3(ξ

And we define a submanifold 2ftc of φ c , called a Freudenthal manifold, by
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IV 7=0, XxX = ηY, YxY=ξX,

(X, Y) = 3ξη9 P Φ 0

Now, as stated in the introduction, a simply connected compact simple Lie

group of type Eη is given by

EΊ = {αeIsoc0Pc, ψ)\<x(Px Q)orι = αPxαβ, <αP, αβ> = <P,
= {αelsoc(<βc, φ c)|α$R c = SKC, {αP, αβ} = {P, ρ}, <αP, αQ> = <P,

2AxX+φY+(v/3)Y-ξΆ

and its Lie algebra is

e7 = {Φ(φ, Λ9 v) e H o m c ( φ c , φ c ) | ̂  e e6, A e 3 C , v e C, v = - v}

where Φ(φ, A, v) = Φ(φ, A, —A, v), so the action Φ(φ, A, v) on φ c is defined by

Φ(Φ, A, v)

The Lie bracket [Φί9 Φ2~\ in e7 is given by

u Al9 v j , Φ(φ2, A29 v2)] = Φ(φ, A, v),

Φ = IΦi, Φi\ - 2A± vΆ2 + 2A2 v Άί9

A = 0^+^/3)1)^ - (φ2

v = <Al9 A2> - <A29 At>.

2. Subgroups (£7),, EϋtKtλ, Eσ>κΛΛ of £7 and their Lie algebras

We define linear transformations σ, jq of 3 C respectively by

=

=

-

-

0

0

* 3

x2

0

~ξ2

X

ξ

x

3 ~X : 2

2 X\

1 ξ3.

0 ~

Λ:2 XX

and then define linear transformations σ (denoted by the same notation as the

above), K, λ of 9βc respectively by
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X

Y

ξ

J\ -

=
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σY
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=

KlY

κ^X
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_ n -

, λ

^x
Y

ξ
=

1x Y

^X

u Y)

Now, we define subgroups (E7)σ, Eσκλ9 EσκλΛ of the group EΊ by

( £ 7 ) σ = { α e £ 7 | σ α = ασ},

Eσ,κ>λ = {α e ( £ 7 ) σ | κ:α = CCK, λoc = αA},

, £ 1 ? 1, 1) = (Eu Eu 1,1)}.

Our first aim is to show that these groups are isomorphic to the following groups

respectively:

(SU(2) x Spin(12))IZ29 Spin(l2), Spin(l 1).

The Lie algebras of these groups are easily calculated as follows.

PROPOSITION 1. (1) The Lie algebra (e7)σ of the group (EΊ)σ is

φ e e6, σφ = φσ9

0 7 ) σ = {Φ e e7 I σΦ = Φσ} = , A9 v) G e7

veC, v = — v

(2) The Lie algebra eσ>Kjλ of the group EσtKλ is

*σ,κ,λ = {ΦG(e7)ff|κ:Φ = ΦK, λΦ = Φλ}

Φ £ ^6J σφ = φσ9

, A, v) e e 7

v = -XφEuE,)l2

(3) The Lie algebra tσtKtλ)1 of the group EσtKfλti is

φ e e6, φE± = 0,

A e 3 C , 2E1 x A = A

( = { Φ G e 7 | Φ ( £ l 5 El9 1, 1) = 0} = ( e 7 ) r (see § 10)).

For v G C, v = — v, we define a linear transformation φ(y) of 3 C by
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φ(v)

ξl X3 *2

x3 ξ2 xλ = (v/3) x3 -2ξ2 -2xx

x2 -2xλ -2ξ3 j

Then φ(y) = 2vEί v Eγ e e 6 and σφ(v) = φ(v)σ. Further we define a Lie algebra

ax = {Φ(φ(v), α £ 1 , v ) e e 7 | α , v e C , v = - v}.

This aί is a Lie subalgebra of (e7)σ and isomorphic to the special unitary Lie

algebra su(2) = {A eM(2, Q\A*=-A, tr(A) = 0} by the correspondence

v)9aEu v)
v α

— a —v
eβu(2).

PROPOSITION 2. The Lie algebra (e7)σ /s the direct sum of the Lie sub-

algebras ax and effK>A in e 7 :

PROOF. The correspondence

—>Φ(0(v'), αBi, v') + Φ(φ-φ(v'\ A-aE1,v-v')ea1 + tσ,K9

, φE^/2, α = ( £ 1 ? A), gives an isomorphism between them.where vr =

3. Spinor subgroup Spin (11) of EΊ

We shall show that the group Eσκ λΛ is isomorphic to the spinor group

Spin (11) (cf. Theorem 20). To show this, consider an 11 dimensional vector

space W over R defined by

W= {Peφc\σP = P, KP = P, λP = P, Px(Eu Eu 1, 1) = 0}

ηeC,η = -η,
= (ηEx+X9 -ηE.-X, -η, η)

η 0 0

0 ξ x

0 x -ξ

-n
0

0

0

-ξ

— X

0

— x

ξ

\

n
1

,2ExxX = -X

η9 ξeC, η=-η9

xe(ί

and let S 1 0 be the unit sphere in W:
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, P > = 4 }

η 0 0~

0 ξ x

_ 0 3c - | _

-η 0 0

0 -ξ -x

0 -3c ξ

, - η, η
η, ξeC, η=-η,

Remember that the spinor group ([7, Proposition 11])

Spin (10) = {α e £ 6 I σα = ocσ, ocEί = £ J = {α e £ 6 | α£ x = £ J

acts transitively on the 9 dimensional sphere S 9 ([7, Lemma 10])

0 0 0~

0 ξ x

_0 3c - I .

0

0

0

0

-ξ

— 3c

0

— x

ξ.

, o,0
1

\ξ\2+\x\2=l

LEMMA 3. For aeC, the linear transformation αf(α) (z = l, 2, 3) of

defined by

l+(cos \a\-l)pi (2α/|α|) sin \a\Et 0 — (α/|α|) sin | a | ^

-(2δ/|α|)sin|β|£ ί 1 + (cos \a\-l)pi (a/\a\) sin \a\Et 0

0 — (aI\a\) sin. \a\Ei cos \a\ 0

(al\a\)sin\a\Et 0 0 cos \a\

(ϊ/α = 0, ί/ien (α/|α|)sin \a\ means 0) belongs to the group (£ 7 ) σ , w/z r̂e ί/ie mαj?-

Ping pr 3 C - ^ 3 C is

Pi

/ί̂  action of α, (α) on ^ c ΪS defined as similar to that of Φ(φ, A, B, v) in

§ 1.3. Furthermore, for aeC, α23(α) = α2(α)α3(ά) belongs to the group EσKfλί.

PROOF. For Φ(0, -5E,, 0)e(e 7 ) σ , we have αf(α) = expΦ(0, - ά £ , , 0)e(e 7 ) σ ,

i = 1, 2, 3. For Φ(0, -aE2 - aE3i 0) e eσ j K j λ ) 1, we have

α2 3(α) =α2(α)α3(ά) = expΦ(0, ~ ά £ 2 , 0)exρΦ(0, -aE3, 0) (cf. [3, Lemma 7])

= exp(Φ(0, -aE2, 0) + Φ(0, - α £ 3 , 0))

(because Φ(0, — α£2,0) and Φ(0, —aE3, 0) are commutative)

= expΦ(0, -άE2-aE3,
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LEMMA 4. α e £ σ M 1 satisfies α(£ l5 — El9 — 1, ΐ) = (El9 — El9 —1, 1) if and
only if α(0, 0,1, 0) = (0, 0, 1, 0). In particular, we have the following

isomorphism:

{ α e £ f f M 1 |α(£1 ? - E l 5 - 1 , 1) = (£ 1 ? - £ l 5 - 1 , 1)} = S/>in (10).

PROOF. Suppose that α e £ 7 satisfies <x,(Eί9El9l9ϊ) = (Eί9Eί9l9ϊ) and
α(£1? - £ l 5 - 1 , l) = (£ l 5 -El9 - 1 , 1). Put α(0, 0, 1, 0) = (X, 7, {, η). Then
<α(£l5 £ l f 1, 1), α(0, 0, 1, 0)> = l, (a(Eu -Eu - 1 , 1), α(0, 0, 1, 0)>= - 1 imply
{Eu X) + (El9 Y) + ξ + η = 1, - ( E u X) + (El9 Y) + {-η = 1 respectively. Further-
more {oc(El9 El9 1, 1), α(0, 0, 1, 0)}= - 1 , {oc(Eu -El9 - 1 , 1), α(0, 0, 1, 0)}= - 1
imply (£ l f Y)-(EU X) + η-ξ=-l9 (Eu y) + (£ l f Z ) - ^ / - ί = - l respectively.
Therefore we have

f = 1, ( £ l s X) = (Eί9 Y) = η = 0.

Finally <α(0, 0, 1, 0), α(0, 0,1, 0)> = l implies <Z, Z> + <7, 7> + 1 + 0 = 1 , hence
X= 7=0. Thus we have α(0, 0, 1, 0) = (0, 0, 1, 0). The proof of the converse is

similar. Since we have the identification

E6 = {αe£ 7 | α(0, 0, 1, 0) = (0, 0, 1, 0)} ([13, Proposition 2])

and (El9 0, 0, 0) = ((£1? El91,1) + (£ 1 ? -El9 -1, l)-2(0, 0, 0, l))/2 (see [3, Lemma
1]), we have

l 5 -Eu - 1 , 1) = (£ l f - E l 5 - 1 , 1)}

= {α G £ 7 I α(0, 0, 1, 0) = (0, 0, 1, 0), α(£ l 5 0, 0, 0) = (El9 0, 0, 0)}

= {α e £ 6 I (xE1 = £ J = Spm (10).

LEMMA 5. T/zβ group Eσ>KtλΛ acts transitively on Sί0 and the isotropy
subgroup of EσiKfλl at i(Eί9 —Eί9 —1,1) is Spin (10). Therefore the homo-
geneous space EσκλtίISpin (10) is homeomorphic to Sί0:

in (10) c* S">.

/n particular, the group Eσ>K)λtί is simply connected.

PROOF. Obviously the group EσtKtλΛ acts on S10. In order to prove that
£ σ K j λ > 1 acts transitively on S 1 0, it suffices to show that any element P of S 1 0 can be
transformed in i(Eu —Ex, — 1, 1)e S 1 0 by a certain element α of Eσκ λ 1# Now,

(Γη 0 0 Ί Γ-^7 Q 0 Ί ' " \
for a given element P = 0 ξ x L 0 - ξ - * , -fy, i n

VLo χ - d L 0 - x ξ j
choose aeR, π/4^α^0, such that
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and operate 0ί23(a)eEσtKλΛ of Lemma 3 on P. Then the ^y-part of α 2 3 (α)P

becomes ((ξ — ξ)/2)sin 2a + η cos 2a = 0. Hence

oc23(a)PeS9.

Since the group Spin (10)czEσκλι acts transitively on S9, there exists β e Spin (10)

such that

βoi23(a)P = i (£ 2 + £ 3 , £ 2 + £ 3 , 0, 0).

Again operate α23(π/4) of Lemma 3 on it. Then we have

oc23(π/4)βa23(a)P = i(El9 - £ l f - 1 , 1 ) .

This proves the transitivity of EσλλΛ. On the other hand, Lemma 4 shows that

the isotropy subgroup of EσκλΛ at /(£ 1 ? — Eu — 1, 1) is Spin (10). Thus we have

the required homeomorphism EσfKλί/Spίn (10) ^ S 1 0 .

REMARK. The transitivities in Lemma 5 and the following Lemma 8 are

easily obtained by another way. In fact, since the compact Lie group EσtKtλΛ

acts on S 1 0 , an orbit EσtKtλtli(El9 -Eu - 1 , 1 ) (^EatKtXJSpin (10)) is 5 5 - 4 5 = 10

dimensional compact submanifold of S 1 0 , hence it must coincide with S 1 0 :

EσKtλί/Spin(10)~S10. However, here, we gave their elementary concrete

proofs.

THEOREM 6 (cf. Theorem 20). The subgroup EσtKtλΛ of EΊ is isomorphic to

the spinor group Spin (11):

Kκ,x,i = Spin (11).

PROOF. Let SO (11) = SO (W) = {α'eIsoΛ(W; W)\<μ'P9 α'β> = <P, β>, detα r

= 1} be the rotation group in W. For each α e £ σ > κ Λ > 1 , the restriction α' = α| W

obviously belongs to O ( l l ) = O (W) = {af elsoR(W^W)\ <α'P, a'e> = <P, Q>}.

Hence we can define a homomorphism p: Eσκλl-+O (11) by p(α) = α'. Since

Eσ>KtλΛ is connected (Lemma 5), p induces a homomorphism

p:EσfKiλΛ—+ SO (11).

We shall show that p is onto. Recall that p' = p\Spin (10): Spin (10)->SO (10)

= S0(W) (where W' = {Pe W\P = (X, - Z , 0 , 0 ) } is onto ([7, Proposition 11]).

By using the five lemma, from the commutative diagram

SO(lϋ) > SO(ll) > S10



68 Osami YASUKURA and Ichiro YOKOTA

we see that p is onto. Finally it is easy to see that Ker/? = {1, σ}. Therefore
σ̂,κ,λ,i i s a universal covering group of SO (11). Thus we have proved that

Eσ,κ,λ,ι is isomorphic to the spinor group Spin (11).

From now on, we identify the group Eσκλ)l with the group Spin (11).

4. Spinor subgroup Spin (12) of Eη

We shall show the group Eσκλ is isomorphic to the spinor group
Spiμ (12). To show this, consider a 12 dimensional vector space V over R
defined by

2Eι x X = - X}

ξ,ηeC,\

xe<Z

= P, KP = P9 λP = P}

= {(ηEt + X, r\Eγ - X, η, η) \ ηeC,

η 0 0

0 ξ x

0 x -ξ_

η 0 0

0 -ξ -x

.0 -5c ξ]

η,η

and let S1 1 be the unit sphere in V:

S11 = {PeF|<P, P> = 4 } .

LEMMA 7. For veC, v= — v, a linear transformation α(v) of?βc defined by

α(v)

"{I X2 \

B2V^! evx3 evx2

evx3 ξ2 Xl

_e X2 Λι S3 _J

7̂2

belongs to
σ>Ktλ.

PROOF. For φ(v)ee6 defined in §2, we have Φ(φ(y), 0, — 2v)ec σ κ λ and
α(v) = exρΦ(^(v), 0, -2v), hence α(v)e£ffjK>λ.

LEMMA 8. The group EσtKλ acts transitively on S11 and the isotropy sub-
group of Eσκλ at (Eu El9 1, 1) is Spin (11). Therefore the homogeneous space
EσκλjSpin (11) is homeomorphic to S11:
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In particular, the group EσiKfλ is simply connected.

PROOF. Obviously the group EfftKtλ acts on S 1 1 . In order to prove that

Eσκλ acts transitively on S 1 1, it suffices to show that any element P of Sιί can be

transformed in (Eί9 El9 1, l ) e S u by a certain element α of Eσκλ. Now, for a
(Vη 0 OΊ Γη 0 OΊ \

given element P = 0 ξ x , 0 - £ JC , ι/, i; e S 1 1 , choose veC,
VLo x - f J Lo -3c d

v = — v such that

v = ϊ(π/4-β/2)

where θ is the argument of η: η = \η\eiθ, and operate α(v) of Lemma 7 on P.

Then the */-part of α(v)P becomes e2vf/ = eiπ/2e~iθη = z|#71. Hence

α(v)PeS 1 0 .

Since the group Spin(ll) = Eσκλfl acts transitively on S 1 0, there exists βeSpin

(11) such that

= KEu -Eu - 1 , 1 ) .

Again operate α(— iπ/4) of Lemma 7 on it. Then we have

P = (EuEu 1, 1).

This shows the transitivity of £σ>7C>A. The isotropy subgroup of £ σ j K , λ at (El9

El9 1, 1) is Spin (11) by the definition. Thus the proof of Lemma 8 is completed.

THEOREM 9. The subgroup Eσκ λ of Eη is isomorphic to the spίnor group

Spin (12):

E.,Ktλ* Spin (12).

PROOF. The proof is similar to that of Theorem 6 according to Lemma 8.

From now on, we identify the group Eσκλ with the group Spin (12).

REMARK. The group Spin (12) has the center z(Spίn (12)) = {1, - 1 , σ, -σ}

= {1, σ}x{l, —σ} = Z 2 x Z 2 . And we have

Spin (12)/{1, σ}^SO (12). Hence Spin (12)/{1, - σ } ^ S s (12).

5. Special unitary subgroup SU(2) of EΊ

THEOREM 10. The group E7 contains a subgroup
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SU(2) = {aA e EΊ \ A e SU(2)}

which is ίsomorphic to the special unitary group SU(2) = {A e M(2, C)\A*A =

E, det A = 1}. Here, for A e SU(2), ocA is defined by

where

ξl X3 * 2

*3 ζ>2 x l , ξ,

χ'3 χ'2

'3 ξ'2

'i ξ'3.

'/i ii J

nΊ yf3 y

^3 Ά2 y\

yr2 PI */3.

*

> ς > */

JΊ

P R O O F . F o r ^ = e x p Γ ^ - v l e S U ( 2 ) ' («> v e C , v = - v), w e h a v e α A =

exp Φ(φ(v)9 aEu v)e SU(2).

6. Connectedness of (EΊ)σ

We shall prove that the group (EΊ)σ is connected. We denote, for a while,

the connected component of (E7)σ containing the identity 1 by ((£ 7 ) σ ) 0 .

LEMMA 11. Any element Xe(3c)(T = {Xe^ c \σX = X} can be transformed

in a diagonal form by a certain element α of the group (E6)σ = {oceE6 \ σα = ασ}:

<xX =

"fi 0 0

0 ξ2 0

0 0 ξ3

PROOF. In the proof of [7, Proposition 5], if we remember that i(Eί—E2),

i(Eί-E3)9 iF^a), Άί(a)e(e6)σ = {φet6\σφ = φσ} (which is the Lie algebra of

the group CE6)<τ)>tnen w e c a n prove this lemma by the same way as [7, Proposition

5].

We define the spaces (90ϊc)σ and Qfflι)σ respectively by
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= P}, (SW,), = {Pe (Wl*), | <P, P> = 1}.

LEMMA 12. ^4ny element P of(Wc)σ can be transformed in a diagoanl form

by a certain element α of((EΊ)σ)0:

ccP = (X, 7, £, η), X, Y are diagonal forms.

Moreover we can choose ae((E7)σ)0 so that ζ is a positive real number.

PROOF. By making use of Lemma 11, we can prove this lemma by the same

way as [3, Proposition 8].

PROPOSITION 13. The group (E7)σ acts transitively on (9Ki)σ (which is con-

nected) and the ίsotropy subgroup of(E7)σ at (0, 0, 1, 0) e (Wti)σ is (Eβ)σ. There-

fore the homogeneous space (E7)J(E6)σ is homeomorphic to (^ΰlι)σ:

(£ 7 ),/(£ 6 ), * (SKO,.

In particular, the group (EΊ)σ is connected.

PROOF. For aeC, remember Φ(0, -aEb 0)e(e 7 ) σ , z = l, 2, 3. Then by

the use of Lemmas 12 and 3, we can prove the homeomorphism (E 7 ) σ /(E 6 ) σ ~

(9W1)σ by the same way as [3, Theorem 9]. Now, since the group (E6)σ is iso-

morphic to the group

(E6)σ s (1/(1) x Spin (10))/Z4 ([7, Theorem 13]),

(E6)σ is connected. Therefore the group (EΊ)σ is also connected.

7. Isomorphism (EΊ)σ ^ (SU(2) x Spin (12))/Z2

THEOREM 14. The subgroup (E7)σ = {oceE7 |σα = ασ} of E7 is isomorphic

to the group (SU(2) x Spin (12))/Z2:

(E7)σ s (SU(2)xSpin(12))IZ2 where Z2 = {(1, 1), ( - 1 , - σ ) } .

PROOF. We define a mapping

φ: SU(2) x Spin (12) > (E7)σi φ(μ, β) = αjS.

Since the Lie algebra (e7)σ is the direct sum of Lie algebras a1 and eσκ. }λ as ideals

(Proposition 2), oceSU(2) and βe Spin (12) are commutative. Hence we see

that φ is a homomorphism. Moreover φ is onto, because the group (E7)σ is

connected (Proposition 13). K e r ψ = Z 2 = {(l, 1), (—1, — σ)} is easily obtained.

Thus the proof of Theorem 14 is completed.
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8. Lie group E7>a and its polar decomposition

We define an inner product <P, Q}σ in Sβc by

<P, β> σ = <σP, β> = <P, <τβ>

and a group £ 7 j f f by (cf. [3], [5])

E7>σ = {αe l so c ($ c , φ ) c | α2Kc = 2RC, {αP, αβ} - {P, β}, <αP, αβ>σ = <P, β>σ} .

(Later, we see that this group E7ι<r is connected (Theorem 17), therefore it may

also defined by (see [5])

E7>σ = {ae l so c (^ c , φ c ) | α(P x β)α" 1 = αP x αβ, <αP, αβ>σ = <P, β > J .)

In order to give a polar decomposition of the group £ 7 σ , we use

LEMMA 15 ([2, p. 345]). Let G be a pseudoalgebraic subgroup of the general

linear group GL(n9 C) such that the condition AeG implies A* e G. Then G

is homeomorphic to the topological product of the group G Π U(n) and a Eu-

clidean spaceRd:

G <z (G n U(n)) x Rd

where U(n) is the unitary subgroup of GL(n9 C).

LEMMA 16. The group E7>σ is a pseudoalgebraic subgroup of the general
linear group GL(56, C) = I s o c ( ^ c , φ c ) and satisfies the condition that aceE7i(T

implies α* e £ 7 σ , where α* is the transpose of a with respect to the inner product
< P , β > : < α P , β > = <Λα*β>.

PROOF. Since <α*P, β> = <P, αβ> = <σP, αβ> σ = <α"1σP, β > σ = (σar^σP, β>

for α e £7 f ( T, we have

α* = σa~iσGE7σ.

It is obvious that E7>σ is pseudoalgebraic, because £ 7 > σ is defined by pseudo-

algebraic relations m c = mc

9 {αP, αβ} = {P, β}, <αP, αβ>σ = <P, β> σ .

Let ί/(56) = U(φc) = { α e I s o c ( ^ c , φ c ) | <αP, αβ> = <P, β>} denote the

unitary subgroup of the general linear group GL(56, C) = Isoc(^βc, ^ c ) . Then

E7%a Π (7(56) = {αe£ 7 j f f | σα = ασ} = {αeE 7 \ σ<x = ασ}

^ (51/ (2) x Spin (12))/Z2 (Theorem 14).

Since it is easy to see that £ 7 > σ is a simple Lie group of type E7 (see [3], [4]), the
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dimension of EΊσ is 133. Hence the dimension d of the Euclidean part of £7><τ

and the Cartan index i are calculated as follows:

d = d im£ 7 > σ - dim (SI/(2) x Spin (12)) = 133 - (3 + 66) = 64,

i = d im£ 7 > σ - 2 dim (SU(2) x Spin (12)) = 133 - 2(3 + 66) = - 5.

Thus we have the following

THEOREM 17. The group £7>(T is homeomorphic to the topological product

of the group (SU(2) x Spin(\2))/Z2 and the Euclidean space Λ 6 4 :

EΊtσ st (SU(2) x Spin (12))/Z2 x R6\

In particular, the group EΊ>σ is a connected non-compact simple Lie group of

type E 7 ( _ 5 ) .

9. Center z(E7>σ) of EΊ>σ

THEOREM 18. The center z(EΊσ) of the group E7tσ is the cyclic group of

order 2:

z(£ 7 t,) = {l, - 1 } .

PROOF. Let αez(£ 7 < y ) . From the commutativity with σeEΊσ9 α is con-

tained in the center z((EΊ)σ) of the group (EΊ)σ: αez((£ 7 ) σ ) = {l, — 1, σ, —σ}

(cf. Theorem 14). Obviously, σ, — σ^z(£ 7 j ( T), so we have z ( £ 7 σ ) = {l, —1}.

10. Remark on the definition of Spin (11) in EΊ

We shall show that

(£ 7 ) , = { α e £ 7 | α ( £ l s Eu 1, 1) = (Eu Eu 1, 1)} = Spiπ(Π),

that is, in the definition of the group Eσ§KtλtU the conditions σα = ασ, /cα = ακ,

λoc = oιλ are of no use.

We see that the Lie algebra ( e ^ of the group (£ 7 ) x coincides with the Lie

algebra e σ j M , i of the group EfftK>λι (Proposition 1, (3)). So, if we prove that the

group (E7)1 is connected, then we can conclude (EΊ)X =Eσκλί.

We consider a vector space Wc which is invariant by the group (E1)ί:

-ξ

0

0

0

X

0

X

ξ3.

J 0

0

0

ξ

— x » 2 j

,ξ,-ξ
ξ,ξ2,ξ3eC,



74 Osami YASUKURA and Ichiro YOKOTA

This Wc is the complexification of W in § 3 and of course Wc has the positive

definite Hermitian inner product <P, Q> which is invariant by the group (£ 7)i

We shall define one more inner product (P, Q) in Wc which is also invariant by

the group (Eη)x.

LEMMA 19. // α e £ 7 satisfies oc(Eu Eu 1, ϊ) = (El9 Eu 1, 1), ί/zen α ^ , 0,

1, 0) = ( £ l 5 0, 1, 0). Therefore this α α/so satisfies

ί9 iEl9 1, f) = ( £ 1 ? zΈ1? 1, Ϊ) and oc(El9 —ίEl9 1, — z) = (Eί9 —iEί9 1, — z)

PROOF. The proof is similar to that of Lemma 4.

We define vector spaces Uf ( ε = l , —1) and (7C which are invariant by the

group (EΊ)1 respectively by

l/f = {P G φ c IP x ( £ l 9 ε/£1 ? 1, εi) = 0}

- ξ 0 0

0 ξ2 x

0 x ξ3j

εiξ 0 0

0 —εiξ3 εix

0 εix — εiξ2 _

ξ, ~

Uc= Uξ + I/f (which is the direct sum)

"ίi 0 0

0 ξ2 x

θ 3c ξ3]

0 η2 y

We define a linear involutive transformation κr of Uc by

0

0

0

X

0

X j 0

0 0

/̂2 J

Ĵ  ^3 .

0 if|3

0 - iΆi-

j 0

0

i 0

" « 3

ix

0

-«2-

\

1

Then Uc= Uξ + U£t is the decomposition into the eigen spaces ofκ'. Therefore

we have, for any <xe(E7)l9

κ'a = CLK' on Uc.

Now, we define an inner product (P, Q) in Uc by
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(P, β) = i{κ'P, β } .

Then (P, β) is a symmetric non-degenerate inner product in Uc (of course so is in

Wc(a Uc)) which is invariant by the group (£7)!: (αP, αβ) = (P, β) for α e ( £ 7 ) i .

Furthermore the two inner products <P, β>, (P, 2) coincide on W:

<P, β > = ( P , β) for P, β e ^ .

Let p' be the natural homomorphism

p': (£7)1 — O ( ^ ) = {<xe!soc(Wc, Wc)\(aP, αβ) = (P, β)}.

Since p'(CE7)i) is a compact subgroup of 0(WC), it is contained in a maximal

compact subgroup of O(WC). On the other hand, maximal compact subgroups

of 0{Wc) are conjugate to each other ([6, Theorem 3.1]), so there exists α e 0{Wc)

such that

,) cz aO(W)χ-K

Let eί9...9eίl be an orthogonal basis in W and put w1=α(e1),..., w n =

a(en)eWc.
Case 1. <wfc, ^ = 0 for all k, I {kΦΪ). In this case, <wfc, wz>=(wilc, wz) =

δkl = (wk9 w^Kwfr wΛ> for all /, so we have vvfc = wfe/<wk, wfe> (for w = w + ίί;e

Wc(u, ve W), w means u — iv). Hence wke W, /c=l,..., 11, so αeO(Pf), that is,

ocW=W. Therefore the group (EΊ)ί acts on W. Then by the same arguments

as those in § 3, we can conclude that the group (EΊ)1 is connected.

Case 2. There exist wk, wt(kφΐ) such that <wfc, wt}^0and(£7)! is not con-

nected. Since Ker// = {1, ^^((E^^Q (which denotes the connected component

of (£7)1 containing the identity 1), JP'((£ 7 )I) is not also connected, so

p'((EΊ)1) = (xSO(W)(x~1 does not occur. Hence we have

Let β e O(α^) be the reflection in Wc satisfying

Then we have <wΛ, wz> = <^wfc, jSwz> = < — wk, wz>, hence <wfc, wz> = 0. This

contradicts the hypothesis.

Thus we have

THEOREM 20. The subgroup (E7)ί = {α e EΊ \ α(£ 1 ? E 1 ? 1, l) = (JSl9 El91,1)} 0/

£ 7 is isomorphic to the spinor group Spin (11):

(£ 7 ) x = Spin (11).
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